Naïve Bayes with Large Vocabularies

Shannon Quinn

(with thanks to William Cohen and Aarti Singh of CMU)

Naïve Bayes: A primer

• Anyone remember how this works?

Classification

Goal: Construct a **predictor** $f : X \to Y$ to minimize a risk (performance measure) R(f)

Sports Science News

Features, X

Labels, Y

 $R(f) = P(f(X) \neq Y)$ **Probability of Error**

Optimal Classification

Optimal predictor: $f^* = \arg \min_{f} P(f(X) \neq Y)$ (Bayes classifier)

- Even the optimal classifier makes mistakes R(f*) > 0
- Optimal classifier depends on **unknown** distribution P_{XY}

Bayes Rule

• Anyone remember?

$$P(Y|X) = \frac{P(X|Y)P(Y)}{P(X)}$$
$$P(Y = y|X = x) = \frac{P(X = x|Y = y)P(Y = y)}{P(X = x)}$$

Optimal classifier:

$$f^{*}(x) = \arg \max_{Y=y} P(Y = y | X = x)$$

= $\arg \max_{Y=y} P(X = x | Y = y) P(Y = y)$
Class conditional Class prior density

Decision Boundaries

• Gaussian class conditional densities (1-dimension/feature)

$$P(X = x | Y = y) = \frac{1}{\sqrt{2\pi\sigma_y^2}} \exp\left(-\frac{(x - \mu_y)^2}{2\sigma_y^2}\right)$$

Learning the Optimal Classifier

Task: Predict whether or not a picnic spot is enjoyable

Training Data:	$X = (X_1$		X ₂	X_3			X _d)	Y
		Sky	Temp	Humid	Wind	Water	Forecst	EnjoySpt
n rows	1	Sunny	Warm	Normal	Strong	Warm	Same	Yes
		Sunny	Warm	High	Strong	Warm	\mathbf{Same}	Yes
		Rainy	Cold	High	Strong	Warm	Change	No
	↓	Sunny	Warm	High	Strong	Cool	Change	Yes

Lets learn P(Y|X) – how many parameters? Prior: P(Y = y) for all y K-1 if K labels Likelihood: P(X=x|Y=y) for all x,y (2^d – 1)K if d binary features

Curse of dimensionality

2^dK – 1 (K classes, d binary features)

Need n >> 2^dK – 1 number of training data to learn all parameters

Conditional Independence

X is **conditionally independent** of Y given Z:

probability distribution governing X is independent of the value of Y, given the value of Z

$$(\forall x, y, z) P(X = x | Y = y, Z = z) = P(X = x | Z = z)$$

Equivalent to:

 $P(X, Y \mid Z) = P(X \mid Z)P(Y \mid Z)$

e.g., P(Thunder|Rain, Lightning) = P(Thunder|Lightning)Note: does NOT mean Thunder is independent of Rain

Prediction with Conditional Independence

Predict Lightening

From two conditionally Independent features

- Thunder
- Rain

parameters needed to learn likelihood given L
P(T,R|L)
(2²-1)2 = 6
With conditional independence assumption

P(T,R|L) = P(T|L) P(R|L) (2-1)2 + (2-1)2 = 4

Naïve Bayes Assumption

Features are independent given class:

$$P(X_1, X_2|Y) = P(X_1|X_2, Y)P(X_2|Y)$$

= $P(X_1|Y)P(X_2|Y)$

– More generally:

 $P(X_1...X_d|Y) = \prod_{i=1}^d P(X_i|Y)$

Naïve Bayes Classifier

Given:

- Class Prior P(Y)
- d conditionally independent features X given the class Y
- For each X_i , we have likelihood $P(X_i | Y)$

Decision rule:

$$f_{NB}(\mathbf{x}) = \arg \max_{y} P(x_1, \dots, x_d \mid y) P(y)$$
$$= \arg \max_{y} \prod_{i=1}^d P(x_i \mid y) P(y)$$

Naïve Bayes Algorithm

Training Data $\{(X^{(j)}, Y^{(j)})\}_{j=1}^n$ $X^{(j)} = (X_1^{(j)}, \dots, X_d^{(j)})$

Maximum Likelihood Estimates

- For Class Prior

$$\widehat{P}(y) = \frac{\{\#j : Y^{(j)} = y\}}{n}$$

– For Likelihood

$$\frac{\widehat{P}(x_i, y)}{\widehat{P}(y)} = \frac{\{\#j : X_i^{(j)} = x_i, Y^{(j)} = y\}/n}{\{\#j : Y^{(j)} = y\}/n}$$

NB Prediction for test data $X = (x_1, \ldots, x_d)$

$$Y = \arg \max_{y} \widehat{P}(y) \prod_{i=1}^{d} \frac{\widehat{P}(x_i, y)}{\widehat{P}(y)}$$

SO, IN OUR CASE...

Bag of Words model

Naïve Bayes for documents

Learning phase:

- Class Prior P(Y)
- $P(X_i | Y)$

Test phase:

- For each document
 - Use naïve Bayes decision rule

 $h_{NB}(\mathbf{x}) = \arg \max_{y} P(y) \prod_{i=1}^{LengthDoc} P(x_i|y)$

SCALING TO LARGE VOCABULARIES: WHY

Numbers (Jeff Dean says) Everyone Should Know

L1 cache reference	0.	.5 ns
Branch mispredict	5	ns
L2 cache reference	7	ns ~= 10x
Mutex lock/unlock	100	ns
Main memory reference	100	ns ~=15x
Compress 1K bytes with Zippy	10,000	ns
Send 2K bytes over 1 Gbps network	20,000	ns
Read 1 MB sequentially from memory	250 , 000	ns
Round trip within same datacenter	500 , 000	ns
Disk seek	10,000,000	ns 40x
Read 1 MB sequentially from network	10,000,000	ns.
Read 1 MB sequentially from disk	30,000,000	ns ~= 100,000x
Send packet CA->Netherlands->CA	150,000,000	ns

Large Vocabularies

- How to implement Naïve Bayes
 - <u>Assuming</u> the event counters do *not* fit in memory
- Possible approaches:
 - Use a database? (or at least a key-value store)

Complexity of Naïve Bayes

- You have a *train* dataset and a *test* dataset
- Initialize an "event counter" (hashtable) C
- For each example *id*, *y*, x_1 ,..., x_d in *train*:
 - C("Y=ANY") ++; C("Y=y") ++
 - For *j* in 1..*d*:
 - $C("Y=y \land X=x_{j}") ++$
 - $C("Y=y \land X=ANY") ++$
- For each example *id*, *y*, x_1 , ..., x_d in *test*:
 - For each y' in dom(Y):
 - Compute $\log \Pr(y', x_1, \dots, x_d) =$

where:

$$q_x = 1/|V|$$

 $q_y = 1/|dom(Y)|$
 $m=1$

$$= \left(\sum_{j} \log \frac{C(X = x_j \land Y = y') + mq_x}{C(X = ANY \land Y = y') + m}\right) + \log \frac{C(Y = y') + mq_y}{C(Y = ANY) + m}$$

– Return the best y'