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Naive Bayes: A primer

* Anyone remember how this works?



Classification

Goal: Construct a predictor f: X — Y to minimize
a risk (performance measure) R(f)

Sports
> Science
News

Features, X Labels, Y

R(f) = P(f(X) #£Y) Probability of Error



Optimal Classification

Optimal predictor: f* =argmin P(f(X) #Y)
(Bayes classifier) /

P(Y =« |X) P(Y =*|X)
1

R(f™) Bayes risk

f (z) = arg gg;;P(Y = y|X ==z)

e Even the optimal classifier makes mistakes R(f*) >0
 Optimal classifier depends on unknown distribution Pyxy



Bayes Rule

* Anyone remember?

P(X|Y)P(Y
py|x) = ¢ 1’3())@( )
POY =y X =g) = LX= CZP(/X==@J)£(Y =y)

Optimal classifier:
f*(z) = arg max P(Y =y|X =x)
=y

= arg ?ax P(X =z|Y =y)P(Y = y)
=y
\ J\ J

1 1

Class conditional Class prior
density



Decision Boundaries

e Gaussian class conditional densities (1-dimension/feature)

exp (—(w — “y)2>

P(X =2y =y) = —
Yy

<N

2mo

P(Y =¢)P(X =z|Y =») P(Y = «)P(X = z|Y = o)

> Decision Boundary



Decision Boundary




Learning the Optimal Classifier

Task: Predict whether or not a picnic spot is enjoyable

Training Data:  X=(X; X, X3 .. .. Xy Y

Sky Temp Humid Wind Water Forecst | EnjoySpt
Sunny Warm Normal Strong Warm Same Yes
N rows

Sunny Warm High Strong Warm Same Yes
Rainy Cold High Strong Warm Change No
Sunny Warm High Strong Cool Change Yes

Lets learn P(Y|X) — how many parameters?
Prior: P(Y =y) forall y K-1 if K labels

Likelihood: P(X=x|Y =y) for all x,y ~ (2°—1)Kif d binary features



Curse of dimensionality

29K -1 (K classes, d binary features)

Need n >> 29K — 1 number of training data to learn all parameters



Conditional Independence

X is conditionally independent of Y given Z:

probability distribution governing X is independent of the value
of Y, given the value of Z

(Ve,y,z)) P(X =x2|]Y =y, Z =2) = P(X =x|Z = 2)

Equivalent to:
P(X,Y | 2)=P(X | 2)P(Y | Z)

e.g., P(Thunder|Rain, Lightning) = P(Thunder|Lightning)
Note: does NOT mean Thunder is independent of Rain



Prediction with Conditional
Independence

Predict Lightening

From two conditionally Independent features

— Thunder

— Rain

# parameters needed to learn likelihood given L
P(T,R|L) (2%-1)2 =6

With conditional independence assumption
P(T,R|L) = P(T|L) P(R|L) (2-1)2 + (2-1)2 =4




Naive Bayes Assumption

— Features are independent given class:
P(X1, X2|Y) = P(X1[X5,Y)P(X2]Y)
= P(X1|Y)P(X2]Y)

— More generally:

d
P(X1..X4lY) = ]| P(X;]Y)
=1



Naive Bayes Classifier

Given:

— Class Prior P(Y)

— d conditionally independent features X given the class Y
— For each X, we have likelihood P(X.|Y)

Decision rule:

fnp(x) = arg max P(x1,...,2q | y)P(y)
d
= arg max 1] P(zily)P(y)
i—1



Naive Bayes Algorithm
Training Data {(X),y()n_, x0) = x| x0)

Maximum Likelihood Estimates
— For Class PriorA

— For Likelihood

P(z;,y) _1#I X(]) = 2;,YU) = y}/n
P(y) (#5: Y0 =y}/n

NB Prediction fortestdata X = (zq1,...,zy)

P(CEZ,y)
Y = P
arg max (y )21:[1 By)




SO, IN OUR CASE...



Bag of Words model

» All About The Company

TOTAL Global Activities

Corporate Structure
TOTAL's Story
Upstream Strategy
Downstream Strategy
Chemicals Strategy
TOTAL Foundation
Homepage

all about the
company

Our energy exploration, production, and distribution
operations span the globe, with activities in more than 100
countries.

At TOTAL, we draw our greatest strength from our
fast-growing oil and gas reserves. Our strategic emphasis
on natural gas provides a strong position in a rapidly

expanding market.

Our expanding refining and marketing operations in Asia
and the Mediterranean Rim complement already solid
positions in Europe, Africa, and the U.3.

Our growing specialty chemicals sector adds balance and
profit to the core energy business.

aardvark

about

all
Africa

apple

anxious
gas

oil
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Naive Bayes for documents

Learning phase:
— Class Prior P(Y)

— P(X;[Y)
Test phase:

— For each document
* Use naive Bayes decision rule

LengthDoc

hnp(x) = argmaxP(y) I Pxily)
1=1



SCALING TO LARGE VOCABULARIES:
WHY
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Numbers (Jeff Dean says) Everyone
Should Know

L1 cache reference

Branch mispredict

L2 cache reference

Mutex lock/unlock

Main memory reference

Compress 1K bytes with Zippy

Send 2K bytes over 1 Gbps network
Read 1 MB sequentially from memory
Round trip within same datacenter
Disk seek

Read 1 MB sequentially from network
Read 1 MB sequentially from disk
Send packet CA->Netherlands->CA

0.5 ns
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Large Vocabularies

* How to implement Naive Bayes

— Assuming the event counters do not fit in memory
* Possible approaches:

— Use a database? (or at least a key-value store)
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Complexity of Naive Bayes

You have a train dataset and a fest dataset
Initialize an “event counter” (hashtable) C

For each example id, y, x3,....,x; in train:
_ C(II Y=ANYII) ++; C(II Y=yll ++

— Forjin 1..d:
« C("Y=y N X=x") ++
 C("Y=y N X=ANY") ++ where:
For each example id, y, x3,....,x; in test: q:=1/| V|
— For each y” in dom(Y): _=1 17| dom(Y) |
« Compute log Pr(y’,x4,....,.x3) = "
C(X=x,AY =y)+mgq CY=y)+mgqg
Elog ~ |+1log )
C(X=ANY AY =y)+m C(Y =ANY)+m

— Return the best y’
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