
Q-LEARNING AND REAL-TIME
STRATEGY
CSCI 8360 Data Science Practicum
Spring 2021

VALUE-BASED METHODS FOR RL

Find the optimal policy 𝜋 in state s over all
possible actions A

What is Q?

<latexit sha1_base64="YMoZ1M4ZgDMXeX1bfjZHoapjh2k=">AAACKXicbVDLSgMxFM3UV62vqks3wSK0ImVGRN0IVTcuW7AP6NRyJ03b0ExmSDJiGeZ33PgrbhQUdeuPmD4W2nogcDjnXHLv8ULOlLbtTyu1sLi0vJJezaytb2xuZbd3aiqIJKFVEvBANjxQlDNBq5ppThuhpOB7nNa9wfXIr99TqVggbvUwpC0feoJ1GQFtpHa25IbsLj5M8qqAL7AbiY4JUx0DdpnArg+6T4DHl0kSuyB7RnhIMK5MRo4wFNrZnF20x8DzxJmSHJqi3M6+up2ARD4VmnBQqunYoW7FIDUjnCYZN1I0BDKAHm0aKsCnqhWPL03wgVE6uBtI84TGY/X3RAy+UkPfM8nR6mrWG4n/ec1Id89bMRNhpKkgk4+6Ecc6wKPacIdJSjQfGgJEMrMrJn2QQLTpK2NKcGZPnie146JzWnQqJ7nS1bSONNpD+yiPHHSGSugGlVEVEfSIntEbereerBfrw/qaRFPWdGYX/YH1/QMDd6Xa</latexit>

⇡⇤(s) = argmax
a2A

Q⇤(s, a)

<latexit sha1_base64="PwBlXoTw5gYBCrCoQO6fYujTqCs=">AAACRXicbVBNbxMxEPWmhZbw0bQcuYyIULIiinarquVSqYILxwbyJWVDNOs4qVXbu7K9SNEqf66X3nvjH3DhAEJcwdnsIU15kqU3782M7RenghsbBN+8ys7uo8d7+0+qT589f3FQOzzqmyTTlPVoIhI9jNEwwRXrWW4FG6aaoYwFG8TXH1b+4CvThieqaxcpG0ucKz7jFK2TJrWo8yWPUr5smhagD+cQmUxOctOAiCv4vIRu4bTANHxoftoo3kI0RykRyg3QNA1nrlak3HHf9ye1etAOCsBDEpakTkpcTmp30TShmWTKUoHGjMIgteMcteVUsGU1ygxLkV7jnI0cVSiZGedFCkt445QpzBLtjrJQqJsTOUpjFjJ2nRLtldn2VuL/vFFmZ+/GOVdpZpmi64tmmQCbwCpSmHLNqBULR5Bq7t4K9Ao1UuuCr7oQwu0vPyT943Z42g47J/WL92Uc++QVeU2aJCRn5IJ8JJekRyi5Id/JT/LLu/V+eL+9P+vWilfOvCT34P39B4CKqns=</latexit>

Q⇡(s, a) =
X

s02S

T (s, a, s0)(R(s, a, s0) + �Q⇡(s0, a = ⇡(s0)))

PREVIOUSLY ON: THE PREVIOUS LECTURE
Binary-linear value function v(s, w)
 Binary feature vector x(s): one feature

per chess piece
 Weight vector w: value of each chess

piece
 Position is evaluated by summing weights

of current features

Recall: in a fully observable system, state
simply becomes observation.

Q-LEARNING

For the spreadsheet-o-philes
 Goal of Q-Learning: build a table mapping all possible states to all subsequent estimates of reward

for being in that state

Q-LEARNING

The optimal Q* is the expected discount return when in state s and taking action a
while following the optimal policy 𝜋*

Learning process
<latexit sha1_base64="k5WcCCxjlH9oEc0zsTF0BumZcFY=">AAACXXicbZFLb9NAFIXHhkIb+gh00UU3IyKkVC2RjSpgWZUNy0YibaU4ta4n18moM2Nr5rolsvIn2cGGv8I48aIPrjTS0XfunceZrFTSURT9DsIXLzdevd7c6rzZ3tnd6759d+mKygociUIV9joDh0oaHJEkhdelRdCZwqvs9lvjX92hdbIwP2hR4kTDzMhcCiCP0i4Nb2qD98u+S+mEQ0pHPFGYE1hb3PPhA3zME1DlHNZ+n9uUGjYDrT3T8DOFVX/d4HjZTn18tEdi5WxOR2m3Fw2iVfHnIm5Fj7V1kXZ/JdNCVBoNCQXOjeOopEkNlqRQuOwklcMSxC3McOylAY1uUq/SWfIPnkx5Xli/DPEVfThRg3ZuoTPfqYHm7qnXwP9544ryr5NamrIiNGJ9UF4pTgVvouZTaVGQWngBwkp/Vy7mYEGQ/5CODyF++uTn4vLTIP48iIenvbPzNo5Ndsjesz6L2Rd2xr6zCzZigv0JWLAVdIK/4Ua4He6uW8Ogndlnjyo8+Aft7a+j</latexit>

Qnew(st, at) Q(st, at) + ↵
⇣
rt + �max

a
Q(st+1, at)�Q(st, at)

⌘

<latexit sha1_base64="PwBlXoTw5gYBCrCoQO6fYujTqCs=">AAACRXicbVBNbxMxEPWmhZbw0bQcuYyIULIiinarquVSqYILxwbyJWVDNOs4qVXbu7K9SNEqf66X3nvjH3DhAEJcwdnsIU15kqU3782M7RenghsbBN+8ys7uo8d7+0+qT589f3FQOzzqmyTTlPVoIhI9jNEwwRXrWW4FG6aaoYwFG8TXH1b+4CvThieqaxcpG0ucKz7jFK2TJrWo8yWPUr5smhagD+cQmUxOctOAiCv4vIRu4bTANHxoftoo3kI0RykRyg3QNA1nrlak3HHf9ye1etAOCsBDEpakTkpcTmp30TShmWTKUoHGjMIgteMcteVUsGU1ygxLkV7jnI0cVSiZGedFCkt445QpzBLtjrJQqJsTOUpjFjJ2nRLtldn2VuL/vFFmZ+/GOVdpZpmi64tmmQCbwCpSmHLNqBULR5Bq7t4K9Ao1UuuCr7oQwu0vPyT943Z42g47J/WL92Uc++QVeU2aJCRn5IJ8JJekRyi5Id/JT/LLu/V+eL+9P+vWilfOvCT34P39B4CKqns=</latexit>

Q⇡(s, a) =
X

s02S

T (s, a, s0)(R(s, a, s0) + �Q⇡(s0, a = ⇡(s0)))

Next training
iteration

Current
estimate

Current
estimate

Learning
rate

Reward

Discount
factor

Estimate of
optimal future

value

<latexit sha1_base64="c20N/eJLtHGmfsdYoxUzpCryTGU=">AAACFXicbZA9SwNBEIb3/DZ+RS1tFoMgKOFORC1FG8sIJgq5GOY2c7q4t3fszhnCkT9h41+xsVDEVrDz37iJKfx6YeHlmRlm540yJS35/oc3Nj4xOTU9M1uam19YXCovrzRsmhuBdZGq1FxEYFFJjXWSpPAiMwhJpPA8ujke1M9v0ViZ6jPqZdhK4ErLWAogh9rl7e5lofgWD/o8VBgTGJN2+QD2HQ2RgIcaIgWOqXa54lf9ofhfE4xMhY1Ua5ffw04q8gQ1CQXWNgM/o1YBhqRQ2C+FucUMxA1cYdNZDQnaVjG8qs83HOnwODXuaeJD+n2igMTaXhK5zgTo2v6uDeB/tWZO8UGrkDrLCbX4WhTnilPKBxHxjjQoSPWcAWGk+ysX12BAkAuy5EIIfp/81zR2qsFeNTjdrRwejeKYYWtsnW2ygO2zQ3bCaqzOBLtjD+yJPXv33qP34r1+tY55o5lV9kPe2yd2+p3F</latexit>

wl+1 wl + ⌘rwl

Q-LEARNING

Example: Mountain Car

Actions
 0: apply left force
 1: do nothing
 2: apply right force

Environment
 State[0]: position
 State[1]: velocity

Car does not have enough force to climb the hill entirely on its own

Q-LEARNING

Example: Mountain Car

You could certainly hard-code this!
 If velocity = 0, apply force in a random direction
 If velocity > 0, apply force in the direction

of movement

Q-LEARNING

Example: Mountain Car

You could simply hard-code this!
 If velocity = 0, apply force in a random direction
 If velocity > 0, apply force in the direction

of movement

Q-LEARNING

Example: Mountain Car

…but we’d like something a little more
generalizable

Start by discretizing state space
 Binning position/velocity

Randomly initialize Q table

Iterate!
<latexit sha1_base64="k5WcCCxjlH9oEc0zsTF0BumZcFY=">AAACXXicbZFLb9NAFIXHhkIb+gh00UU3IyKkVC2RjSpgWZUNy0YibaU4ta4n18moM2Nr5rolsvIn2cGGv8I48aIPrjTS0XfunceZrFTSURT9DsIXLzdevd7c6rzZ3tnd6759d+mKygociUIV9joDh0oaHJEkhdelRdCZwqvs9lvjX92hdbIwP2hR4kTDzMhcCiCP0i4Nb2qD98u+S+mEQ0pHPFGYE1hb3PPhA3zME1DlHNZ+n9uUGjYDrT3T8DOFVX/d4HjZTn18tEdi5WxOR2m3Fw2iVfHnIm5Fj7V1kXZ/JdNCVBoNCQXOjeOopEkNlqRQuOwklcMSxC3McOylAY1uUq/SWfIPnkx5Xli/DPEVfThRg3ZuoTPfqYHm7qnXwP9544ryr5NamrIiNGJ9UF4pTgVvouZTaVGQWngBwkp/Vy7mYEGQ/5CODyF++uTn4vLTIP48iIenvbPzNo5Ndsjesz6L2Rd2xr6zCzZigv0JWLAVdIK/4Ua4He6uW8Ogndlnjyo8+Aft7a+j</latexit>

Qnew(st, at) Q(st, at) + ↵
⇣
rt + �max

a
Q(st+1, at)�Q(st, at)

⌘

Q-LEARNING

Example: Mountain Car

We’d get a Q table that looks something like this
 Note the discretization of position and velocity

into 10 bins
 p0 is far left, p9 far right
 v0 is not moving, v9 is max velocity (magnitude)

After training, values in the table indicate the action
that should be taken in a given state
 Yielded the greatest reward in training
 0: move left, 1: do nothing, 2: move right

DEEP Q-LEARNING

Uses a deep neural network
 Aka, universal function approximator

Also addresses the problem of
continuous state values

Input: state

Output: action

PAUSE FOR QUESTIONS

REAL-TIME STRATEGY RL in video games

A FEW QUESTIONS

Have you heard of “real-time strategy” in the context of video games?

Have you heard of StarCraft (or StarCraft II)?

A FEW ANSWERS

Real-time Strategy (RTS)

Real-time
 As opposed to turn-based
 Time moves forward continuously, without human

input (i.e., if you take no action, your in-game
avatar will take no action; there’s often no option
for ”pausing”)

 First coined to describe Dune II in early 1990s
 Really came of age in the late 1990s with Red

Alert, WarCraft, and StarCraft

Strategy
 Management of limited resources (including time!)
 Exploitation vs exploration
 Can involve not just military strategy (army

composition, unit production, attack vs defense
strategies) but also diplomacy, propaganda,
economics, culture, or religion

 Video games like Civilization or board games like
Risk and Settlers of Catan

A FEW ANSWERS

StarCraft II
 Released in three phases: 2010, 2013, and 2015
 Sequel to 1998 StarCraft original and Brood War expansion

Interstellar war between three factions
 Terrans (humans)
 Protoss (aliens)
 Zerg (aliens)

LEGACY OF STARCRAFT

StarCraft featured three wholly and distinctly unique factions with their own strengths and weaknesses

TERRAN

Strengths

Mobile and adaptable

Excel at trench warfare

Weaknesses

Tend to break when bent

PROTOSS

Strengths

Hyper-advanced technology

All units have heavy shielding

Weaknesses

Incredibly expensive

ZERG

Strengths

Cheap units swarm and overwhelm in
sheer numbers

Subtle battlefield control abilities that
can shift the tide of war

Weaknesses

Requires heavy “micromanagement”

RESOURCES

Two main resources / currencies

Minerals
 Appear in “fields”
 Can have lots of workers mine them simultaneously
 Used for building the basic units of all three factions

Vespene gas
 Must be extracted from geysers
 Can only have 1 worker inside a geyser at a time
 Needed for the upper-tier / advanced units of all three factions

(especially Protoss)

CORE STRATEGY (“MACRO”)

Gather resources
 Basic workers gather minerals and vespene

Construct buildings
 Unlocks construction of other buildings and new units
 Some buildings have defensive capabilities (turrets, pillboxes)
 May include expanding to new resource locations to increase rate of income and/or seize certain strategic areas of the map

Build units
 Both for defense and attack
 Want a well-balanced force (air and ground)
 Also want it as fast as possible and as powerful as possible (advanced units, lots of upgrades)

Attack / defend until only one player remains
 Attacks can be well-planned massive sieges or fast hit-and-run raids
 Wait to build up sizeable army, or attack fast (called “rushing”) and knock out opponent before they mount a defense

TRADE-OFFS

Unit production
 Build the less powerful unit now, or save up for

the more expensive one later?
 Build more units, or upgrade current ones?
 Research new abilities / units or build more of

current ones?

Exploration vs Exploitation
 Expand to a new site (more minerals + vespene)

or focus on defending current base?
 Attack enemy or grow army?
 Post units at strategic chokepoints on map or

focus on base defense?

DIFFICULTY CURVE

Steep
 For new players: relatively straightforward to get started
 For experts: very, very long and steep climb to the top

Action space is effectively infinite
 Any number of actions you could take at any moment (Build? Mine? Upgrade? Research? Scout? Attack?

Defend?)

Relatively long game duration dilutes effects of reward on any specific action
 1v1 games can be as quick as 2-3 minutes, but can go much longer between well-matched players
 FFA (free for all) with 3+ players can last hours

Constant evaluation and re-evaluation of trade-offs
 Game conditions are partially-observable (“fog of war”) so best course of action is not always clear
 Often hedging one’s bets by pursuing multiple strategies, though this also dilutes effect of any one

Factions are unique, but each has a counter for any strategy the others use
 Requires scouting, resource management, and prioritization to effectively counter

MINI GAMES

Google DeepMind (creators of AlphaStar StarCraft II RL bot) created SC2 “mini
game” environments for narrow subtasks of SC2

Examples include:
 Build Marines (basic Terran unit)
 Collect minerals and gas
 Defeat Roaches (pernicious Zerg unit)
 Defeat Zerglings and Banelings (core of Zerg overwhelm tactics)
 Move to beacon
 Find and defeat Zerglings

PROJECT 3

Out on Thursday, April 1 (I promise that’s not a harbinger of anything)
 More details to come

In other news:
 P2 peer reviews are due Tuesday, March 30
 P2 Lightning Talks are on Wednesday, March 31 (same format as P1)
 If anyone needs anything, please let me know

QUESTIONS?

REFERENCES

Introduction to Q-Learning for Game Play
https://www.youtube.com/watch?v=A3sYFcJY3lA

Keras Q-Learning in the OpenAI Gym
https://www.youtube.com/watch?v=qy1SJmsRhvM

Atari Games with Keras TF-Agents
https://www.youtube.com/watch?v=co0SwPWoZh0

PyTorch Reinforcement Learning DQN Tutorial
https://pytorch.org/tutorials/intermediate/reinforcement_q_learning.html#dqn-
algorithm

https://www.youtube.com/watch?v=A3sYFcJY3lA
https://www.youtube.com/watch?v=qy1SJmsRhvM
https://www.youtube.com/watch?v=co0SwPWoZh0
https://pytorch.org/tutorials/intermediate/reinforcement_q_learning.html

