INnfroduction to
Reinforcement

Learning

CSCI 8360 DATA SCIENCE PRACTHEEHNA
SPRING 2021

Machine Learning

» Supervised learning

» Learn a function f such that it maps input X to
labels Y

> f(X)->Y
» Unsupervised learning
» Finding patterns in data without labels

» Clustering, compression, dimensionality
reduction

» Reinforcement learning

» Sequential decision-making

» Combines aspects of supervised and
unsupervised learning

Supervised
Learning

Unsupervised
Learning

Machine
Learning

Reinforcement
Learning

Reinforcement Learning (RL)

» Key point: learns through trial-and-error interaction with the
surrounding environment

While performing the task,

e
Attempt task you need to record
everything the agent

observes and decides.

Y

[Improve agent J [Evaluate suocess]

!

G_eperate
training data

Jargon

Agent

» The “thing” that's learning the optimal behavior through frial-and-error interaction with the surrounding environment
Environment

» The explicit limiting circumstances (spafial, temporal, interactive) in which your agent can freely probe in order to learn
States

» Information the agent uses fo determine what to do next

» A function of history, where history is the sequence of observations, actions, and rewards up to the current time
Actions

» Possible decisions an agenf can make at step t

» Actions will influence reward
Reward

» Ascalar feedback signal fo the agent indicating how well it's doing af step t

» Or“return” on a policy
Policy

» Defines how an agent selects actions to perform

» Deterministic (direct mapping from action to state) or stochastic (probabilistic mapping)

Godal ol

» Select actions fo maximize total future reward

» (can we know the future reward?)

» Actions may have long-term consequences
» Reward may be delayed

» May be better to sacrifice immediate reward to gain more long-
term reward

» Financial investments

» Blocking opponent moves

Godal ol

» The agent-environment interaction in reinforcement learning

’_l Agent I

action
A,

s

Environment |=

Examples of Reward

Flying a drone These can be VERY
» +reward for following desired trajectory long-term rewards!

» -reward for crashing
Defeat world champion at chess Dependency between
» +reward for winning a game ogn(z/r?nedic\)/tiJc;Sglmn? O?/gogs
» -reward for losing a game ambiguous.
Control a power station
» +reward for producing power
» -reward for exceeding safety thresholds
Play different Atari video games
» +reward for increasing score
» -reward for lower scores

Agent and Environment

» Select actions fo maximize total future reward

» Acftions may have long-term consequences
» Reward may be delayed

» May be better to sacrifice immediate reward
to gain more long-term reward

» Financial investments

» Blocking opponent moves

Model-based or model-free

» The agent may have an internal model of the environment
» Contains estimated transition function and estimated reward function

» Combines these with a planning algorithm

» Model-free agents optimize the reward function directly

Experlence

Model K‘\
Acting
learmng
Model—free

Model Value i pohcy

Planmng

Types of Environments

» Deterministic, non-deterministic
» Fully-known, hidden (or partially hidden)

Deterministic

Perfect information Go, chess

Hidden information Battleship, Stratego

Nondeterministic

Backgammon

Poker, Scrabble

More on Environments

» Full observability: agent directly observes environment state

Markov Decision Process
(MDP)

» Partial observability: agent indirectly observes environment state
» Arobot's camera vision does not have absolute positional information

» Trading agent only sees current markerprices
Partially Observable

Markov Decision Process
(POMDRP)

» Poker agent only observes public / revealed cards

More on Environments

» In POMDPs, agent must construct its own state representation S¢

» Complete history 5? — Ht

» Beliefs of environment state Sa = (P[Se = S] P[Se —= S])
» Recurrent neural network St‘_a — 0'(5?_1 Ws = Ot Wo)

Value Function

Prediction of future reward by the agent

Used to evaluate the goodness/badness of states, and therefore 1o
select between actions

Vﬂ-(S) =]Eﬂ- [RH-]- + ’YRt—|-2 + ’72Rt—|—3 == s | St = S]

. current policy
5. agent’s state
y. discount factor (why?)

Value vs Reward

Value Reward
Prediction Ground truth
Evaluated in advance Provided after the fact

Derived by the agent using the Given by the environment once
information it has on hand the ultimate consequences of the
agent’s actions are known

General RL schema

Function

Learning
algorithms

Approximators

« Convolutions
¢ Recurrent cells

Value-based RL
Policy-based RL
Model-based RL

Controllers
¢ train/validation

and test phases
e hyperparameters

management

1

1

1
N~

Replay memory

Policies

Exploration/Exploitation
dilemma

ENVIRONMENT

Maze Example

» Rewards: -1 per step

» Actions: Up, Down, Left, Right

» States: agent’s location

Maze Example

» Arrows represent policy n(s) for
Sdlen siate s

Maze Example

» Numbers represent value function
v (s) of each state s

Maze Example

Agent may have an internal
model of the environment

Dynamics: how actions change
state

Rewards: how much reward from
each state

Model may be imperfect!

Grid layout represents transition
model

Numbers represent immediate
reward from each state

RL agent faxonomy

Value Function

Sequential decision making

Reinforcement Learning Planning

» Environment initially unknown >

» Agentinteracts with environment

» Agentimproves its policy .

Model of environment is known
(albeit possibly imperfect)

Agent performs computations with
its model (no external interactions)

» Agentimproves its policy

Deliberation, reasoning,
infrospection, pondering, thought,
FeEllieh, efc

Atari Example: RL

R UIes of the game could be
initially unknown

Learn rules directly from interactive
game-play

Pick actions on joystick, see pixels
and scores

Atari Example: Planning

Rules of the game are known

Can query the emulator

» In this case, a perfect model inside
agent’s brain

If | take action a from state s:

» What would the next state be?

» What would the score be?
Plan ahead to find optimal policy

» E.g. lreeiseaiici

Two key strategies

Exploration

» Finds more information about the
environment

» Try a new restaurant
» Show a new ad

Play an experimental move

Exploitation

» Exploits known information to
maximize reward

Go to your favorite restaurant
» Show most successful ad

Play the move you know works
best

It is usually very important to
do both, but one often comes
at the expense of the other

Exploration and Exploitation

» RLis like frial-and-error learning

» Agent should discover a good policy via its experiences interacting
with the environment

» ...without losing too much reward along the way

Games for RL

Why games?¢

[often] simple rules, but deep E:'i‘::‘s’:ta"":'o:‘; =

concepts from this position

Very large observation and/or
action spaces

Long planning horizons / sparse
rewards

Fun!

Core approach: minimax

You have two players with two distinct policies

Assume each player enacts their optimal policy (i.e., they're good
players)

Players adapt to each other

Therefore, players have opposite rewards (what is good for one
player must, therefore, be bad for the other): zero-sum rewards

Sound at all familiare

MINnIMax

» Nash equilibria

» We see this in GANs!

» Value function now defines expected total reward given joint

policies r = (m!, m?)
VW(S) =]Eﬂ- [Gt | St = 5]

» Redefine a player’s value function as a minimax value function

vi(s) = max min Vr(s Subscripts will be swapped
™on depending on which player’s
value function we're referring to

MINnIMax

» How to find the minimax?
» Depth-first game-iree search

» Donel! ...right?

MINnIMax

Search tree grows exponentially

Impractical to search 1o the enchoiine
game

Instead, use value approximator

Minimax search to fixed depth
Estimate minimax value af leaf nodes

opponent's move

our move

opponent's move

our move

opponent's move

our move

starting position

Minimax Example: Chess

» Binary-linear value function
v(s, w)

» Binary feature vector x(s):
one feature per chess
piece

» Weight vector w: value of
each chess piece

» Position is evaluated by
summing weights of current
features

v(s,w)=5+3-5=3

Next week

» More RL game examples

» Rule-based agents and MDPs
» Introduction to Deep RL

» DeepMind’s RL framework

Questions?

= -
o) -
k|
A
i 3

References

DeepMind’s intro to RL videos and slides
>

Deep Learning and the Game of Go
>
» Code examples:

Reinforcement Learning: An Introduction

» Richard Sutton and Andrew Barto (2nd ed),

“An Introduction to Deep Reinforcement Learning”
>

https://deepmind.com/learning-resources/-introduction-reinforcement-learning-david-silver
https://www.manning.com/books/deep-learning-and-the-game-of-go
https://github.com/maxpumperla/deep_learning_and_the_game_of_go
https://web.stanford.edu/class/psych209/Readings/SuttonBartoIPRLBook2ndEd.pdf
https://arxiv.org/abs/1811.12560

