
DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF GEORGIA

CSCI6900 Assignment 2: K-Means on Hadoop

DUE: Monday, February 23 by 11:59:59pm

Out Wednesday, February 4, 2015

1 OVERVIEW

K-Means iteratively improves the partition of the data into k sets:

• Predefine the number of clusters, k.

• Initialize k cluster centroids.

• Iterate until the centroids no longer change.

– Associate each data instance with the nearest centroid (we consider them in a
Euclidean space for this assignment).

– Recalculate centroids as an average of the associated data instances.

2 K-MEANS CLUSTERING ON MAPREDUCE

To parallelize K-Means on MapReduce, we are going to share some small information, i.e.
the cluster centroids, across the iterations. This will result in a duplication, but very minimal
comparing with the large amount of data.

Therefore, before starting, a file is created accessible to all processors (through FileSystem
in Configuration) that contains the initial k cluster centroids. This file will be updated after
each iteration to contain the latest cluster centroids calculated by Reducer. Then

1. The Mapper reads this file to get the centroids from last iteration. It then reads the
input data and calculates the Euclidean distance to each centroid. It associates each
instance with the closest centroid, and outputs (data instance id, cluster id).
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2. Since this is a lot of data, we use a Combiner to reduce the size before sending it to
Reducer. The Combiner calculates the average of the data instances for each cluster
id, along with the number of the instances. It outputs (cluster id, (intermediate cluster
centroid, number of instances)).

3. The Reducer calculates the weighted average of the intermediate centroids, and out-
puts (cluster id, cluster centroid).

The main function runs multiple iteration jobs using the above Mapper + Combiner + Re-
ducer. You can use the following sample codes to implement the multiple iterations in main:

int iteration = 0;

// counter from the previous running job
long counter = job.getCounters().findCounter(Reducer.Counter.CONVERGED).getValue();

iteration++;
while (counter > 0) {

conf = new Configuration();
conf.set("loops.iter", iteration + "");
job = new Job("KMeans " + iteration, conf);

// ...
// job.set Mapper, Combiner, Reducer
// ...

// Take the output from the last iteration as the input to the next iteration.
in = new Path("files/kmeans/iter_" + (iteration - 1) + "/");
out = new Path("files/kmeans/iter_" + iteration);

// ...
// job.set Input, Output
// ...

// Run the job and update the counter.
job.waitForCompletion(true);
iteration++;
counter = job.getCounters().findCounter(Reducer.Counter.CONVERGED).getValue();

}

You can define an enum counter (as you did in the previous homework), and update the
counter in the Reducer if a centroid is updated:

context.getCounter(Counter.CONVERGED).increment(1);
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3 DATA

For this assignment, we are using a truly "big" dataset: 20 million small images 1, procured
from the web and used in several recent publications 2 3. Each image is RGB 32×32 pixels.

As the analysis of images is its own area of research, this assignment simplifies the process of
quantitative image description by providing you with the feature vectors that will effectively
represent each of the 80 million images in your algorithm. We use the “gist” vectors, 384-
dimensional codes that you can consider locality-sensitive hashes of each image. Put simply,
if the images are “similar,” then their gist vectors will also be similar. This relationship will
enable us to cluster the gist vectors and to discover groups of images depicting similar events.

The data appears at s3://uga-mmd/tinyimages/. Each row is a single data instance, written
as a key-value pair: the key is an integer representing the image ID, and the value is a comma-
separated list of the 384 dimensions of the gist vector describing that image. The key and
value are separated by the tab "\t" character. Like your previous assignment, a much smaller
toy dataset is provided for debugging.

gist.small.txt
gist.full.txt

NOTE: These files are BIG. Even the small dataset, which contains 0.01% of the original data,
is still 2,000 images. 2,000×384 is still nearly 1 million floating-point values. The full dataset,
20,000,000×384, is over 7.6 billion floating point values. Furthermore, the 20 million images
used in this homework is only a quarter of the full, original dataset of 80 million images!

For convenience of grading, the initial cluster centroids for k = 10 and k = 50 were already
randomly generated. Please use the following files as your starting points. Each row indi-
cates a single cluster centroid as a key-value pair. The key is the cluster ID, and the value is
a comma-separated list of the 384 dimensions. The key and value are separated by the tab
character.

centroids10.small.txt
centroids50.small.txt
centroids10.full.txt
centroids50.full.txt

Rather than upload all 200+GB of images to S3, I’ve made the image dataset available on
my local webserver, ridcully. You can view them at the following link from any machine
connected to the UGA campus network: http://ridcully.cs.uga.edu/assignment2/ .
You will need this link to answer the questions in the next section.

1The Tiny Images Dataset: http://horatio.cs.nyu.edu/mit/tiny/data/index.html
2Small Codes and Large Image Databases for Recognition: http://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.229.3256&rep=rep1&type=pdf

3Spectral Hashing: http://papers.nips.cc/paper/3383-spectral-hashing.pdf
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4 DELIVERABLES

When grading your assignments, I will use the most recent commit in your repository prior
to the submission deadline. I should be able to clone your repository, change to the direc-
tory containing this assignment, and run your code. If my BitBucket username is magsol, my
assignment should be in magsol/assignment2.

Please include a README file with 1) the command you issued to run your code, and 2) any
known bugs you were unable to fix before the deadline. In addition, please provide answers
to the following questions.

1. Run k = 10 and k = 50 clusters on the small data. Report the number of iterations for
convergence and the wall time respectively. Within each cluster, identify the image ID
that is closest to the centroid of the cluster.

2. Run k = 10 and k = 50 clusters on the full data. Report the number of iterations for
convergence and the wall time respectively. Within each cluster, identify the image ID
is closest to the centroid of the cluster.

For each iteration, we compared each instance to each possible centroid, which may
result in a large computation cost. We can reduce the number of distance comparison
by applying the Canopy Selection, which we touched on in lecture and is described in
http://www.kamalnigam.com/papers/canopy-kdd00.pdf. Please read the paper,
and answer:

3. What distance metric would you choose for the canopy clustering? Why?

4. Can you implement the Canopy Selection on MapReduce? If yes, please describe the
workflow.

5. Describe the workflow to combine the Canopy Selection with K-Means on MapReduce.

Bonus Question: Implement the Canopy Selection with K-Means on MapReduce. Run k = 10
on both small and full data. Report the number of iterations for convergence and the wall
time respectively. Within each cluster, identify the image ID that is closest to the centroid of
the cluster.

Finally, also include your controller and syslog files from running your AWS jobs.

5 MARKING BREAKDOWN

• Code correctness (commit messages, program output, and the code itself) [45 points]

• Question 1, 2 [10 + 10 points]
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• Question 3, 4, 5 [5 + 15 + 15 points]

• Bonus Question [25 pointes]

6 OTHER STUFF

You may consider using the GenericOptionsParser for passing command line arguments.
It parses all arguments that have the form -D name=value and turns them into name/value
pairs in your Configuration object.

Now that Assignment 1 is behind you and you’re all experts in Hadoop hacking, this assign-
ment will likely feel much easier. Nevertheless, do try to start early again, if only to get a feel
for where the “hard parts” of the programming assignment are; for instance, you will almost
certainly have to make use of the DistributedCache in this assignment to pass around the
intermediate cluster centroids. Furthermore, creating a robust loop in the main driver class
that reads from the output of the previous iteration can also be very tricky. So do try to start
early.
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