
PLANET: Massively Parallel Learning
of Tree Ensembles with MapReduce

Authors: B. Panda, J. S. Herbach, S. Basu, R. J.
Bayardo.

VLDB 2009

CS 422

Decision Trees: Main Components

• Find Best Split

– Choose split point that minimizes weighted
impurity (e.g., variance (regression) and
information gain (classification) are common)

• Stopping Criteria (common ones)

– Maximum Depth

– Minimum number of data points

– Pure data points (e.g., all have the same Y label)

PLANET uses an impurity measure based on variance
(regression trees). The higher the variance in Y values of a
node Æ the greater the node’s impurity.

InMemoryBuildNode: Greedy Top-
Down Algorithm

Most important step

This algorithm does not scale well for large data sets

FindBestSplit

• Continuous attributes:

– Treating a point as a boundary (e.g., <5.0 or >=5.0)

• Categorical attributes

– Membership in a set of values (e.g., is the
attribute value one of {Ford, Toyota, Volvo}?)

FindBestSplit(D): Variance

• Let Var(D) be the variance of the output
attribute Y measured over all records in D (D
refers to the records that are input to a given
node). At each step the tree learning
algorithm picks a split which maximizes:

• Var(D) is the variance of the output attribute Y measured over all records in D

• and are the training records in the left and right subtree after splitting
 D by a predicate

LD RD

SoppingCriteria(D)

• A node in the tree is not expanded if the
number of records in D falls below a
threshold.

FindPrediction(D)

• The prediction at a leaf is simply the average
of all the Y values in D.

Problem Motivation

• Large data sets

– Full scan over the input data is slow (required by
FindBestSplit)

– Large inputs that do not fit in memory (cost of
scanning data from a secondary storage)

– Finding the best split on high dimensional data
sets is slow (possible splits for categorical
attribute with M categories)

M2

Previous Work

• Two previous approaches for scaling up tree learning
algorithms:

– Centralized algorithms for large data sets on disk

– Parallel algorithms on specific parallel computing
architectures

• PLANET is based on the MapReduce platform that
uses commodity hardware for massive-scale parallel
computing

How does PLANET work?

• Controller
– Monitors and controls everything

• MapReduce initialization task
– Identifies all feature values that need to be considered for splits

• MapReduce FindBestSplit task (the main part)
– MapReduce job to find best split when there’s too much

data to fit in memory

• MapReduce inMemoryGrow task
– Task to grow an entire subtree once the data for it fits in

memory (in memory MapReduce job)

• Model File
– A file describing the state of the model

PLANET MapReduce

• Map phase:
– The system partitions D* (the entire training data) into a

set of disjoint units which are assigned to workers, known
as mappers

– In parallel, each mapper scans through its assigned data
and applies a user-specified map function to each record.
The output is a set of <key, value> pairs which are
collected for the Reduce phase.

• Reduce phase:
– The <key, value> pairs are grouped by key and distributed

among workers called reducers
– Each reducer applies a user-specified reduce function and

outputs a final value for a key.

Different MapReduce jobs build different parts of the tree

Main Components: The Controller

• Controls the entire process

• Periodically checkpoints system

• Determine the state of the tree and grows it
– Decides if nodes should be split

– If there’s relatively little data entering a node, launch an
InMemory MapReduce job to grow the entire subtree

– For larger nodes, launches MapReduce to find candidates
for best split

– Collects results from MapReduce jobs and chooses the
best split for a node

– Updates model

Important in real production systems

Main Components: The Model File (M)

• Model File (M)
• The controller constructs a tree using a set of MapReduce

jobs that are working on different parts of the tree. At any
point, the model file contains the entire tree constructed
so far.

The controller checks with the model file the nodes at which
split predicates can be computed next. For example, if M has
nodes A and B, then the controller can compute splits for C
and D.

Tree Construction using PLANET:
Example

Assumptions:
(1) D* with 100 records;
(2) Tree induction stops once the

of training records at a node
falls below 10;

(3) A memory constraint limiting
the algorithm to operating on
inputs of size 25 records or
less.

Using PLANET to construct the tree:
90 records

Split predicate

Two Node Queues

• MapReduceQueue (MRQ)
– Contains nodes for which D is too large to fit in

memory (i.e., >25 in our example)

• InMemoryQueue (InMemQ)
– Contains nodes for which D fits in memory

Two MapReduce Jobs

• MR_ExpandsNodes
– Process nodes from the MRQ. For a given set of

nodes N, computes a candidate of good split
predicate for each node in N.

• MR_InMemory
– Process nodes from the InMemQ. For a given set

of nodes N, completes tree induction at nodes in
N using the InMemoryBuildNode algorithm.

Walkthrough

1. Initially: M, MRQ, and InMemQ are empty.

– The controller can only expand the root.

– Finding the split for the root requires the entire
training set D* of 100 records (does not fit in
memory).

2. A is pushed onto MRQ; InMemQ stays empty.

A MRQ InMemQ

Scheduling the First MapReduce Job

 MRQ Controller Dequeues A

Job
MR_ExpandNodes({A}, M, D*)

Set of good splits for A + metadata*

* (1) Quality of the split; (2) The predictions in left and right branches); and (3) The # of
training records in the left and right branches.

The Controller Selects the Best Split

Controller M
Best Split for A ({D-L(10), D-R(90)})

 MRQ
Enqueues (right branch >=25) B

B

No new nodes are added to the left branch since it matches the stopping
criteria (10 records)

Expanding C and D

MR_ExpandNodes({C, D}, M, D*}

M
(A,B)

DONE

The controller schedules a single MR_ExpandNodes for C and D that is done in
a single step Æ PLANET expands trees breadth first as opposed to the depth
first process used by the inMemory algorithm.

Breadth First Expanding

Scheduling Jobs Simultaneously

M
(A,B,C,D) Controller

 MRQ

MR_InMemory({E, F, G}),M, D*)

MR_ExpandNodes({H}),M, D*)
 InMemQ

H

E F G

Dequeues H

Dequeues E,F, and G

Once both jobs return, the subtrees
rooted at G, F, and E are complete.
The controller continues the process
with the children of H only.

Main Controller Thread

1. The thread schedules jobs
off of its queues until no
jobs are running and
queues are empty

2. Scheduled MapReduce
jobs are launched in
separate threads so the
controller can send those
in parallel

3. When a MR_ExpandNode
job returns, the queues
are updated with the new
nodes to expand (next
algorithm)

Scheduling
1. Schedules an

MR_ExpandNodes job to
find the best split for the
nodes that were just
dequeued

2. Update the queues with the
new nodes and number of
relevant records

1. MR_InMemory completes
the construction of the
subtree rooted at every
node in M

Updating Queues

1. If the number of records is
smaller than the stopping
threshold, then the branch is
done

2. Otherwise, updates the
appropriate queue (based on
the size of D) with the node
that needs to be scheduled
for a new MapReduce job
(expanding)

MR_ExpandNodes

• Map phase:

– D* is partitioned across a set of mappers

– Each mapper loads into memory the current
model M and the input nodes N

– Every MapReduce job scans the entire training set
applying a Map function to every record

MR_ExpandNodes: Map

Determines if the record is relevant to N

Iterating over the attributes X

Next is to evaluate possible splits for a node

Ordered attributes: the reduction in
variance is computed for every

adjacent pair of values

T is a tables of key-value pairs.
Keys: the split points to be considered for X
Values: tuples of the form -- used by the reducers to evaluate the split }1,,{ 2 ¦¦¦ yy

Unordered attributes: keys correspond to unique values of X

MR_ExpandNodes

• Reduce phase:
– Performs aggregations and computes the quality

of each split being considered for nodes in N

– Each reducer maintains a table S indexed by
nodes. S[n] contains the best split seen by the
reducer for node n

MR_ExpandNodes: Reduce
1. Iterating over all splits

2. For each node, update the

best split found together
with the relevant statistics
collected

InMemoryGrow MapReduce

• Task to grow the entire subtree once the data for
it fits in memory

• Map
– Initialize by loading current model file
– For each record identify the node and id the node

needs to be grown, output <Node_id, Record>

• Reduce
– Initialize by attribute file from Initialization task
– For each <Node_id, List<Record>> run the basic tree

growing algorithm on the records
– Output the best split for each node in the subtree

References

• B. Panda, J. S. Herbach, S. Basu, and R. J. Bayardo. PLANET: Massively
parallel learning of tree ensembles with MapReduce. In Proceedings of the
35th International Conference on Very Large Data Base (VLDB 2009), pages
1426{1437, Lyon, France, 2009.

• Josh Herbach: PLANET, MapReduce, and Decision Trees. The Association
for Computing Machinery.

• T. Mitchell, Machine Learning, McGraw-Hill, New York, 1997.

• G. S. Manku, S. Rajagopalan, and B. G. Lindsay. Random sampling
techniques for space efficient online computation of order statistics of
large datasets. In International Conference on ACM Special Interest Group
on Management of Data (SIGMOD), pages 251–262, 1999.

