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Decision Trees: Main Components 

• Find Best Split 

– Choose split point that minimizes weighted 
impurity (e.g., variance (regression) and 
information gain (classification) are common) 

• Stopping Criteria (common ones) 

– Maximum Depth 

– Minimum number of data points 

– Pure data points (e.g., all have the same Y label) 

 

 

PLANET uses an impurity measure based on variance 
(regression trees). The higher the variance in Y values of a 
node Æ the greater the node’s impurity. 



InMemoryBuildNode: Greedy Top-
Down Algorithm 

Most important step 

This algorithm does not scale well for large data sets 



FindBestSplit 

• Continuous attributes: 

– Treating a point as a boundary (e.g., <5.0 or >=5.0) 

• Categorical attributes 

– Membership in a set of values (e.g., is the 
attribute value one of {Ford, Toyota, Volvo}?) 



FindBestSplit(D): Variance 

• Let Var(D) be the variance of the output 
attribute Y measured over all records in D (D 
refers to the records that are input to a given 
node). At each step the tree learning 
algorithm picks a split which maximizes: 

 

• Var(D) is the variance of the output attribute Y measured over all records in D 
 
•       and      are the training records in the left and right subtree after splitting 
   D by a predicate 
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SoppingCriteria(D) 

• A node in the tree is not expanded if the 
number of records in D falls below a 
threshold. 



FindPrediction(D) 

• The prediction at a leaf is simply the average 
of all the Y values in D. 



Problem Motivation 

• Large data sets 

– Full scan over the input data is slow (required by 
FindBestSplit) 

– Large inputs that do not fit in memory (cost of 
scanning data from a secondary storage) 

– Finding the best split on high dimensional data 
sets is slow (      possible splits for categorical 
attribute with M categories) 
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Previous Work 

• Two previous approaches for scaling up tree learning 
algorithms: 

– Centralized algorithms for large data sets on disk  

– Parallel algorithms on specific parallel computing 
architectures  

• PLANET is based on the MapReduce platform that 
uses commodity hardware for massive-scale parallel 
computing 



How does PLANET work? 

• Controller 
– Monitors and controls everything 

• MapReduce initialization task 
– Identifies all feature values that need to be considered for splits 

• MapReduce FindBestSplit task  (the main part) 
– MapReduce job to find best split when there’s too much 

data to fit in memory 

• MapReduce inMemoryGrow task 
– Task to grow an entire subtree once the data for it fits in 

memory (in memory MapReduce job) 

• Model File 
– A file describing the state of the model 



PLANET MapReduce 

• Map phase: 
– The system partitions D* (the entire training data) into a 

set of disjoint units which are assigned to workers, known 
as mappers 

– In parallel, each mapper scans through its assigned data 
and applies a user-specified map function to each record. 
The output is a set of <key, value> pairs which are 
collected for the Reduce phase.  

• Reduce phase: 
– The <key, value> pairs are grouped by key and distributed 

among workers called reducers 
– Each reducer applies a user-specified reduce function and 

outputs a final value for a key. 

Different MapReduce jobs build different parts of the tree 



Main Components: The Controller 

• Controls the entire process 

• Periodically checkpoints system  

• Determine the state of the tree and grows it 
– Decides if nodes should be split 

– If there’s relatively little data entering a node, launch an 
InMemory MapReduce job to grow the entire subtree 

– For larger nodes, launches MapReduce to find candidates 
for best split 

– Collects results from MapReduce jobs and chooses the 
best split for a node 

– Updates model 

Important in real production systems 



Main Components: The Model File (M) 

• Model File (M) 
• The controller constructs a tree using a set of MapReduce 

jobs that are working on different parts of the tree. At any 
point, the model file contains the entire tree constructed 
so far. 

 

 

 

The controller checks with the model file the nodes at which 
split predicates can be computed next. For example, if M has 
nodes A and B, then the controller can compute splits for C 
and D.  



Tree Construction using PLANET: 
Example 

Assumptions: 
(1) D* with 100 records;  
(2) Tree induction stops once the 

# of training records at a node 
falls below 10;  

(3) A memory constraint limiting 
the algorithm to operating on 
inputs of size 25 records or 
less. 

Using PLANET to construct the tree: 
90 records 

Split predicate 



Two Node Queues 

• MapReduceQueue (MRQ)  
– Contains nodes for which D is too large to fit in 

memory (i.e., >25 in our example) 

• InMemoryQueue (InMemQ) 
– Contains nodes for which D fits in memory  



Two MapReduce Jobs 

• MR_ExpandsNodes 
– Process nodes from the MRQ.  For a given set of 

nodes N, computes a candidate of good split 
predicate for each node in N. 

• MR_InMemory 
– Process nodes from the InMemQ. For a given set 

of nodes N, completes tree induction at nodes in 
N using the InMemoryBuildNode algorithm.  



Walkthrough 

1. Initially: M, MRQ, and InMemQ are empty. 

– The controller can only expand the root. 

– Finding the split for the root requires the entire 
training set D* of 100 records (does not fit in 
memory).  

2. A is pushed onto MRQ; InMemQ stays empty. 

 
A    MRQ   InMemQ 



Scheduling the First MapReduce Job 

   MRQ Controller Dequeues  A 

Job 
MR_ExpandNodes({A}, M, D*) 

Set of good splits for A + metadata* 

* (1) Quality of the split; (2) The predictions in left and right branches);  and (3) The # of 
training records in the left and right branches. 



The Controller Selects the Best Split 

Controller M 
Best Split for A ( {D-L(10), D-R(90)} )  

   MRQ 
Enqueues          (right branch >=25) B 

B 

No new nodes are added to the left branch since it matches the stopping 
criteria (10 records) 



Expanding C and D 

MR_ExpandNodes( {C, D}, M, D*}  

M 
(A,B) 

DONE 

The controller schedules a single MR_ExpandNodes for C and D that is done in 
a single step Æ PLANET expands trees breadth first as opposed to the depth 
first process used by the inMemory algorithm. 

Breadth First Expanding 





Scheduling Jobs Simultaneously 

M 
(A,B,C,D) Controller 

   MRQ 

MR_InMemory({E, F, G}),M, D*) 

MR_ExpandNodes({H}),M, D*) 
   InMemQ 

H 

E F G 

Dequeues H 

Dequeues E,F, and G 

Once both jobs return, the subtrees 
rooted at G, F, and E are complete. 
The controller continues the process 
with the children of H only.  



Main Controller Thread 

1. The thread schedules jobs 
off of its queues until no 
jobs are running and 
queues are empty 
 

2. Scheduled MapReduce 
jobs are launched in 
separate threads so the 
controller can send those 
in parallel 
 

3. When a MR_ExpandNode 
job returns, the queues 
are updated with the new 
nodes to expand (next 
algorithm) 



Scheduling 
1. Schedules an 

MR_ExpandNodes job to 
find the best split for the 
nodes that were just 
dequeued  
 

2. Update the queues with the 
new nodes and number of 
relevant records 

1. MR_InMemory completes 
the construction of the 
subtree rooted at every 
node in M 



Updating Queues 

1. If the number of records is 
smaller than the stopping 
threshold, then the branch is 
done 
 

2. Otherwise, updates the 
appropriate queue (based on 
the size of D) with the node 
that needs to be scheduled 
for a new MapReduce job 
(expanding)   



MR_ExpandNodes 

• Map phase: 

– D* is partitioned across a set of mappers 

– Each mapper loads into memory the current 
model M and the input nodes N 

– Every MapReduce job scans the entire training set 
applying a Map function to every record 



MR_ExpandNodes: Map 

Determines if the record is relevant to N 

Iterating over the attributes X 

Next is to evaluate possible splits for a node 

Ordered attributes:  the reduction in 
variance is computed for every 

adjacent pair of values 

T is a tables of key-value pairs.  
Keys: the split points to be considered for X 
Values:  tuples of the form                        -- used by the reducers to evaluate the split }1,,{ 2 ¦¦¦ yy

Unordered attributes: keys correspond to unique values of X 



MR_ExpandNodes 

• Reduce phase: 
– Performs aggregations and computes the quality 

of each split being considered for nodes in N 

– Each reducer maintains a table S indexed by 
nodes. S[n] contains the best split seen by the 
reducer for node n 



MR_ExpandNodes: Reduce 
1. Iterating over all splits 

 
2. For each node, update the 

best split found together 
with the relevant statistics 
collected 
 



InMemoryGrow MapReduce 

• Task to grow the entire subtree once the data for 
it fits in memory 

• Map 
– Initialize by loading current model file 
– For each record identify the node and id the node 

needs to be grown, output <Node_id, Record> 

• Reduce 
– Initialize by attribute file from Initialization task 
– For each <Node_id, List<Record>> run the basic tree 

growing algorithm on the records 
– Output the best split for each node in the subtree 
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