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Graph Partitioning
* Undirected graph

 Bi-partitioning task:
— Divide vertices into two disjoint groups

A . ‘B
6
* Questions: ©

— How can we define a “good” partition of ?

— How can we efficiently identify such a
partition?
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Graph Partitioning

 What makes a good partition?

—Maximize the number of within-group
connections

—Minimize the number of between-group

connections |

/
A I B
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Graph Cuts

» Express partitioning objectives as a function of
the “edge cut” of the partition

* Cut: Set of edges with only one vertex in a
group:

B

- cut(A,B) = 2
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Graph Cut Criterion

* Criterion: Minimum-cut
— Minimize weight of connections between
groups
arg min, y cut(A,B)
* Degenerate case:

“Optimal cut”
/ Minimum cut

* Problem:
— Only considers external cluster connections
— Does not consider internal cluster connectivity

J. Leskovec, A. Rajaraman, J. Ullman: Mining
of Massive Datasets, http://www.mmds.org



Graph Cut Criteria

* Criterion: Normalized-cut [Shi-Malik, '97]

— Connectivity between groups relative to the
density of each group

cut(A,B) N cut(A,B)

vol(A) vol(B)
: total weight of the edges with at least

one endpoint in :
m Why use this criterion?
m Produces more balanced partitions
 How do we efficiently find a good partition?
— Problem: Computing optimal cut is NP-hard

ncut(A,B) =
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Spectral Graph Partitioning

* A: adjacency matrix of undirected G

—A,;=11if is an edge, else 0

 xis avector in 1" with components
— Think of it as a label /value of each node of

 What is the meaning of 4- x?
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* Entry y;is a sum of labels x; of neighbors of i
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What is the meaning of Ax?

 j* coordinate of 4-x: [an - a,|[x] [x
—Sum of the x-values : : =4
of neighbors ofj KRR N D N R
—Make this a new value at node j 4***
* Spectral Graph Theory: A={A,A,. A
—Analyze the "spectrum” of matrix , _, _ _,
representing

—Spectrum: Eigenvectors of a graph, ordered
by the magnitude (strength) of their
corresponding eigenvalues :
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Matrix Representations

» Adjacency matrix (A4):
—nx n matrix
—A=[a;], a;=1 if edge between node 7 and j

I

2 |
3 |
4 | 0
5 |
6 | O

* Important properties:
—Symmetric matrix
— Eigenvectors are real and orthogonal
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Matrix Representations

* Degree matrix (D):
—nx n diagonal matrix

—D=[d;], d..= degree of node i
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Matrix Representations

* Laplacian matrix (L):
—nx n symmetric matrix

* What is trivial eigenpair?

* Important properties:
—Eigenvalues are non-negative real numbers
—Eigenvectors are real and orthogonal
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Spectral Clustering: Graph = Matrix

Wiy, = v, “propogates weights from neighbors”
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Spectral Clustering: Graph = Matrix

Wiy, = v, “propagates weights from neighbors”
W:-v = Av:visan eigenvector with eigenvalue A

If Wis connected but roughly
block diagonal with k blocks
then

* the top eigenvectoris a
constant vector

 the next k eigenvectors are
roughly piecewise constant 0%aq
with “pieces” corresponding el
to blocks " |
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Spectral Clustering: Graph = Matrix

Wiy, = v, “propagates weights from neighbors”

W:-v = Av:visan eigenvector with eigenvalue A

If W is connected but
roughly block diagonal with k
blocks then

* the “top” eigenvector is a
constant vector

 the next k eigenvectors are
roughly piecewise constant
with “pieces” corresponding
to blocks

Spectral clustering:

* Find the top k+17
eigenvectors vy,...,V,,

* Discard the “top” one

» Replace every node a
with k-dimensional vector
X, = <Vy(a),...,V.q (@) >

. Cluster with k-means



Spectral Clustering: Graph = Matrix

Wy, = v, “propogates weights from neighbors”

W:v = Av:visan eigenvector with eigenvalue A

* smallest eigenvecs of D-A are largest eigenvecs of A
« smallest eigenvecs of |-W are largest eigenvecs of W
Suppose each y(i)=+1 or -17:

* Then yis a cluster indicator that splits the nodes into

two
« what is y'(D-A)y ?
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NCUT: roughly minimize ratio of transitions between
classes vs transitions within classes



So far...

 How to define a “good” partition of a graph?
— Minimize a given graph cut criterion

* How to efficiently identify such a partition?

— Approximate using information provided
by the eigenvalues and eigenvectors of a
graph

* Spectral Clustering
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Spectral Clustering Algorithms

* Three basic stages:
— 1) Pre-processing
* Construct a matrix representation of the graph
— 2) Decomposition

* Compute eigenvalues and eigenvectors of the
matrix

* Map each point to a lower-dimensional
representation based on one or more eigenvectors

— 3) Grouping

 Assign points to two or more clusters, based on the
new representation
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Example: Spectral Partitioning
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Example: Spectral Partitioning
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Example: Spectral partitioning

Components of x,
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k-Way Spectral Clustering

 How do we partition a graph into k clusters?

* Two basic approaches:

— Recursive bi-partitioning |Hagen et al,, '92]
* Recursively apply bi-partitioning algorithm in a
hierarchical divisive manner
* Disadvantages: Inefficient, unstable

— Cluster multiple eigenvectors |Shi-Malik, "00 ]
 Build a reduced space from multiple eigenvectors
* Commonly used in recent papers
* A preferable approach...

J. Leskovec, A. Rajaraman, J. Ullman: Mining
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Why use multiple eigenvectors?

Approximates the optimal cut |Shi-Malik, '00]

— Can be used to approximate optimal k~-way normalized
cut

Emphasizes cohesive clusters
— Increases the unevenness in the distribution of the data

— Associations between similar points are amplified,
associations between dissimilar points are attenuated

— The data begins to “approximate a clustering”
Well-separated space

— Transforms data to a new “embedded space”,
consisting of k orthogonal basis vectors

Multiple eigenvectors prevent instability due to
information loss

J. Leskovec, A. Rajaraman, J. Ullman: Mining
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Spectral Clustering: Graph = Matrix

Wy, = v, “propogates weights from neighbors”
W:v = Av:visan eigenvector with eigenvalue A

* smallest eigenvecs of D-A are largest eigenvecs of A
« smallest eigenvecs of |-W are largest eigenvecs of W

Q: How do | pick v
to be an eigenvector
for a block-
stochastic matrix?
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Spectral Clustering: Graph = Matrix

Wy, = v, “propogates weights from neighbors”

W:v = Av:visan eigenvector with eigenvalue A

How do | pick v to
be an eigenvector
for a block-

stochastic matrix?

A
FLENN



Spectral Clustering: Graph = Matrix

Wy, = v, “propogates weights from neighbors”
W:v = Av:visan eigenvector with eigenvalue A

* smallest eigenvecs of D-A are largest eigenvecs of A
« smallest eigenvecs of I-W are largest eigenvecs of W
Suppose each y(i)=+1 or -17:
* Then yis a cluster indicator that cuts the nodes into two
« what is y'(D-A)y ? The cost of the graph cut defined by y
« what is yT(I-W)y ? Also a cost of a graph cut defined by y
 How to minimize it?
* Turns out: to minimize y" Xy / (y'y) find smallest eigenvector of X
* But: this will not be +1/-1, so it's a “relaxed” solution




Spectral Clustering: Graph = Matrix

Wy, = v, “propogates weights from neighbors”

W:v = Av:visan eigenvector with eigenvalue A
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Some more terms

* If Ais an adjacency matrix (maybe weighted) and D
is a (diagonal) matrix giving the degree of each node

— Then D-A is the (unnormalized) Laplacian

— W=AD-is a probabilistic adjacency matrix

— [-W is the (normalized or random-walk)
Laplacian

— etc....

* The largest eigenvectors of W correspond to the
smallest eigenvectors of [-W

— So sometimes people talk about “bottom
eigenvectors of the Laplacian”
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Figure 1: Toy example for spectral clustering where the data points have been drawn from a mixture of
four Gaussians on R. Left upper corner: histogram of the data. First and second row: eigenvalues and
eigenvectors of L., and L based on the k-nearest neighbor graph. Third and fourth row: eigenvalues
and eigenvectors of L., and L based on the fully connected graph. For all plots, we used the Gaussian
kernel with ¢ = 1 as similarity function. See text for more details.
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Figure 4: Three data sets, and the smallest 10 eigenvalues of L,,. See text for more details.



Data points epsilon-graph, epsilon=0.3

Figure 3: Different similarity graphs, see text for details.



Spectral Clustering: Pros and Cons

* Elegant, and well-founded mathematically

 Works quite well when relations are
approximately transitive (like similarity)

* Very noisy datasets cause problems

—“Informative” eigenvectors need not be in
top few

—Performance can drop suddenly from good
to terrible

* Expensive for very large datasets
—Computing eigenvectors is the bottleneck



Use cases and runtimes

e K-Means
— FAST

— “Embarrassingly
parallel”

— Not very useful on
anisotropic data

* Spectral clustering

— Excellent quality under
many different data
forms

— Much slower than K-
Means

MiniBatchKMeans SpectralClustering




Further Reading

* Spectral Clustering Tutorial:
http://www.informatik.uni-hamburg.de/ML/
contents/people/luxburg/publications/
Luxburg07_tutorial.pdf




