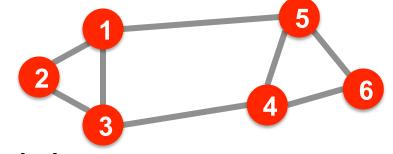
Spectral Clustering

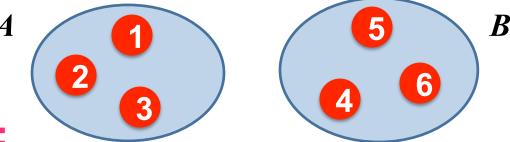
Shannon Quinn

(with thanks to William Cohen of Carnegie Mellon University, and J. Leskovec, A. Rajaraman, and J. Ullman of Stanford University)

Graph Partitioning

- Undirected graph
- Bi-partitioning task:
 - Divide vertices into two disjoint groups

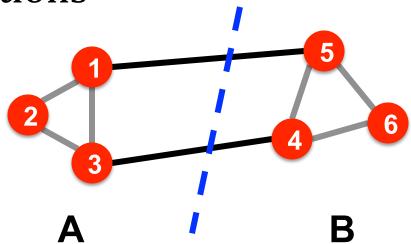




- Questions:
 - How can we define a "good" partition of?
 - How can we efficiently identify such a partition?

Graph Partitioning

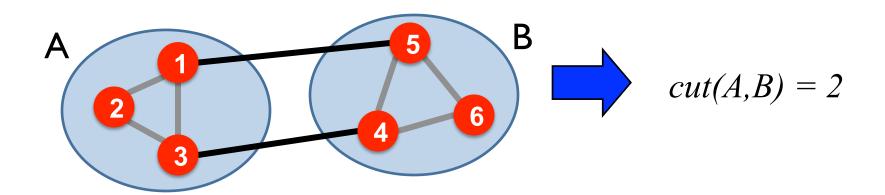
- What makes a good partition?
 - Maximize the number of within-group connections
 - Minimize the number of between-group connections



Graph Cuts

- Express partitioning objectives as a function of the "edge cut" of the partition
- Cut: Set of edges with only one vertex in a group:

 $cut(A,B) = \sum_{i \in A, j \in B} w_{ij}$

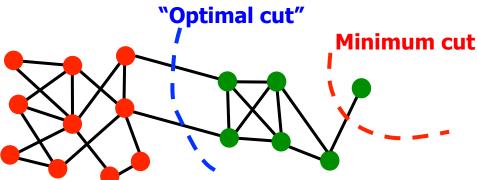


Graph Cut Criterion

- Criterion: Minimum-cut
 - Minimize weight of connections between groups

 $arg min_{A,B} cut(A,B)$

Degenerate case:



- Problem:
 - Only considers external cluster connections
 - Does not consider internal cluster connectivity

Graph Cut Criteria

- Criterion: Normalized-cut [Shi-Malik, '97]
 - Connectivity between groups relative to the density of each group

$$ncut(A,B) = \frac{cut(A,B)}{vol(A)} + \frac{cut(A,B)}{vol(B)}$$
 : total weight of the edges with at least

: total weight of the edges with at least one endpoint in :

- Why use this criterion?
 - Produces more balanced partitions
- How do we efficiently find a good partition?
 - Problem: Computing optimal cut is NP-hard

Spectral Graph Partitioning

- A: adjacency matrix of undirected G
 - $-A_{ij}$ = 1 if is an edge, else 0
- x is a vector in \Re^n with components
 - Think of it as a label/value of each node of
- What is the meaning of $A \cdot x$?

$$\begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & & \vdots \\ a_{n1} & \dots & a_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}$$

$$y_i = \sum_{j=1}^n A_{ij} x j = \sum_{(i,j) \in E} x_j$$

• Entry y_i is a sum of labels x_j of neighbors of i

What is the meaning of Ax?

•
$$j^{th}$$
 coordinate of $A \cdot x$:

- Sum of the x -values of neighbors of j

$$\begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & & \vdots \\ a_{n1} & \dots & a_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = \lambda \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$$

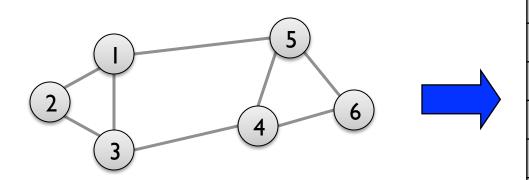
- Make this a new value at node $i^{A \cdot x = \lambda \cdot x}$
- Spectral Graph Theory:

$$\Lambda = \{\lambda_1, \lambda_2, ..., \lambda_n\}$$

- -Analyze the "spectrum" of matrix $\lambda_1 \leq \lambda_2 \leq \ldots \leq \lambda_m$ representing
- -Spectrum: Eigenvectors of a graph, ordered by the magnitude (strength) of their corresponding eigenvalues:

Matrix Representations

- Adjacency matrix (A):
 - $-n \times n$ matrix
 - $-A=[a_{ij}], a_{ij}=1$ if edge between node i and j

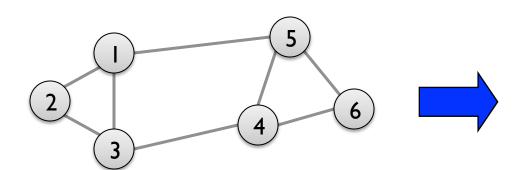


	-1	2	3	4	5	6
_	0			0		0
2		0		0	0	0
3	I	I	0	ı	0	0
4	0	0		0		I
5	I	0	0	I	0	I
6	0	0	0	I	I	0

- Important properties:
 - -Symmetric matrix
 - Eigenvectors are real and orthogonal

Matrix Representations

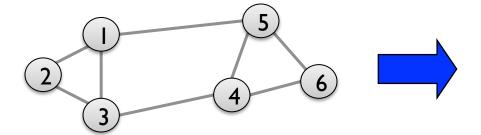
- Degree matrix (D):
 - $-n \times n$ diagonal matrix
 - $-D=[d_{ii}], d_{ii}=$ degree of node i



	I	2	3	4	5	6
ı	3	0	0	0	0	0
2	0	2	0	0	0	0
3	0	0	3	0	0	0
4	0	0	0	3	0	0
5	0	0	0	0	3	0
6	0	0	0	0	0	2

Matrix Representations

- Laplacian matrix (L):
 - $-n \times n$ symmetric matrix

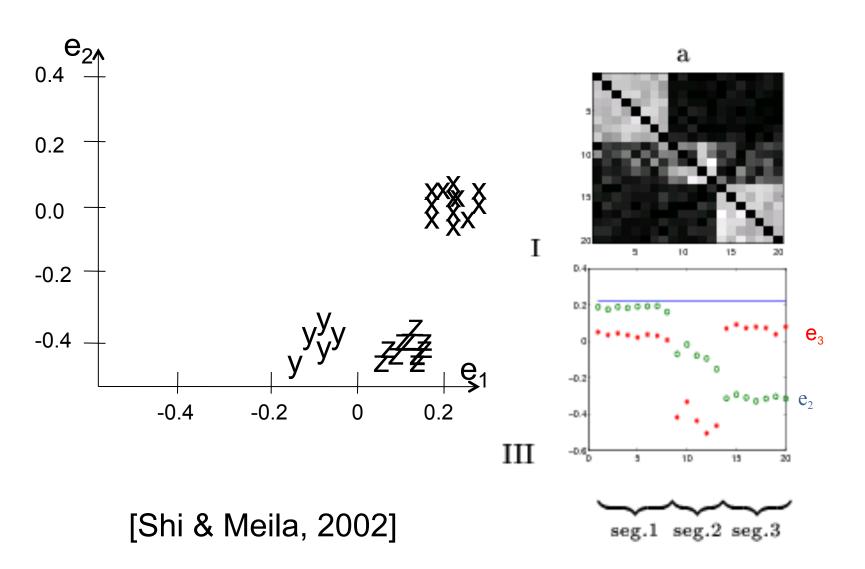


	- 1	2	3	4	5	6
1	3	-	-1	0	-	0
2	-1	2	-1	0	0	0
3	-	-	3	- I	0	0
4	0	0	-	3	- -	-
5	-	0	0	- I	3	- -
6	0	0	0	- I	-	2

L = D - A

- What is trivial eigenpair?
- Important properties:
 - Eigenvalues are non-negative real numbers
 - Eigenvectors are real and orthogonal

 $W*v_1 = v_2$ "propogates weights from neighbors"

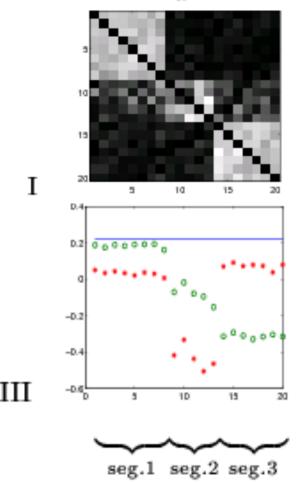


 $W*v_1 = v_2$ "propagates weights from neighbors"

 $\mathbf{W} \cdot \mathbf{v} = \lambda \mathbf{v}$: v is an eigenvector with eigenvalue λ

If Wis connected but roughly block diagonal with *k* blocks then

- the top eigenvector is a constant vector
- the next *k* eigenvectors are roughly piecewise constant with "pieces" corresponding to blocks



 $W*v_1 = v_2$ "propagates weights from neighbors"

 $\mathbf{W} \cdot \mathbf{v} = \lambda \mathbf{v}$: v is an eigenvector with eigenvalue λ

If **W** is connected but roughly block diagonal with *k* blocks then

- the "top" eigenvector is a constant vector
- the next *k* eigenvectors are roughly piecewise constant with "pieces" corresponding to blocks

Spectral clustering:

- Find the top k+1
 eigenvectors v₁,...,v_{k+1}
- Discard the "top" one
- Replace every node a with k-dimensional vector

$$x_a = \langle v_2(a), ..., v_{k+1}(a) \rangle$$

Cluster with k-means

Spectral Clustering: Graph = Matrix W*v₁ = v₂ "propogates weights from neighbors"

- smallest eigenvecs of D-A are largest eigenvecs of A
- smallest eigenvecs of I-W are largest eigenvecs of W Suppose each y(i)=+1 or -1:
- Then y is a cluster indicator that splits the nodes into two
- what is $\mathbf{y}^{\mathsf{T}}(\mathsf{D-A})\mathbf{y}$?

$$\mathbf{y}^{T}(D - A)\mathbf{y} = \mathbf{y}^{T}D\mathbf{y} - \mathbf{y}^{T}A\mathbf{y} = \sum_{i} d_{i}y_{i}^{2} - \sum_{i,j} a_{i,j}y_{i}y_{j}$$

$$= \frac{1}{2} \left[2\sum_{i} d_{i}y_{i}^{2} - 2\sum_{i,j} a_{i,j}y_{i}y_{j} \right]$$

$$= \frac{1}{2} \left[\sum_{i} \left(\sum_{j} a_{ij} \right) y_{i}^{2} + \sum_{j} \left(\sum_{i} a_{ij} \right) y_{j}^{2} - 2\sum_{i,j} a_{i,j}y_{i}y_{j} \right]$$

$$= \frac{1}{2} \left[\sum_{i,j} a_{ij}y_{i}^{2} + \sum_{i,j} a_{ij}y_{j}^{2} - 2\sum_{i,j} a_{i,j}y_{i}y_{j} \right]$$

$$= \frac{1}{2} \left[\sum_{i,j} a_{i,j}(y_{i} - y_{j})^{2} \right] \qquad \text{size of CUT}(\mathbf{y})$$

$$\mathbf{y}^{T}(I-W)\mathbf{y} = \text{size of NCUT}(\mathbf{y})$$

NCUT: roughly minimize ratio of transitions between classes vs transitions within classes

So far...

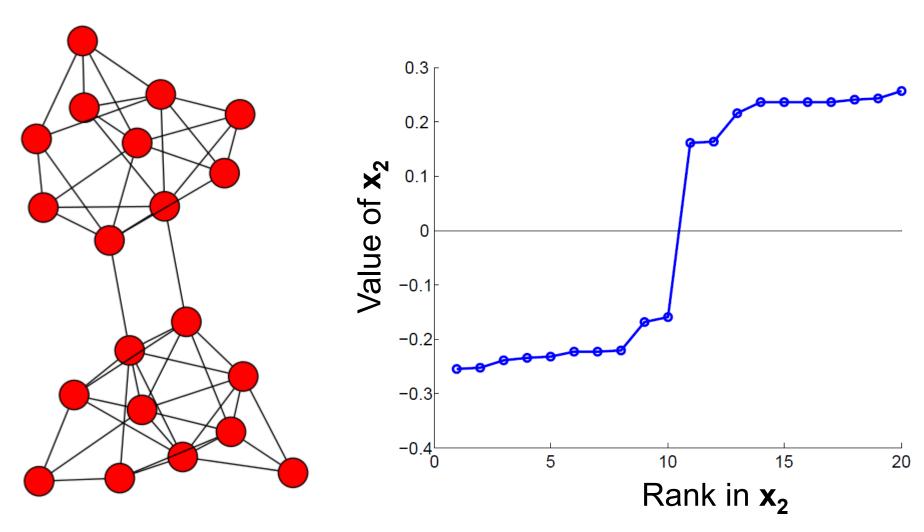
- How to define a "good" partition of a graph?
 - Minimize a given graph cut criterion
 - How to efficiently identify such a partition?
 - Approximate using information provided by the eigenvalues and eigenvectors of a graph
 - Spectral Clustering

Spectral Clustering Algorithms

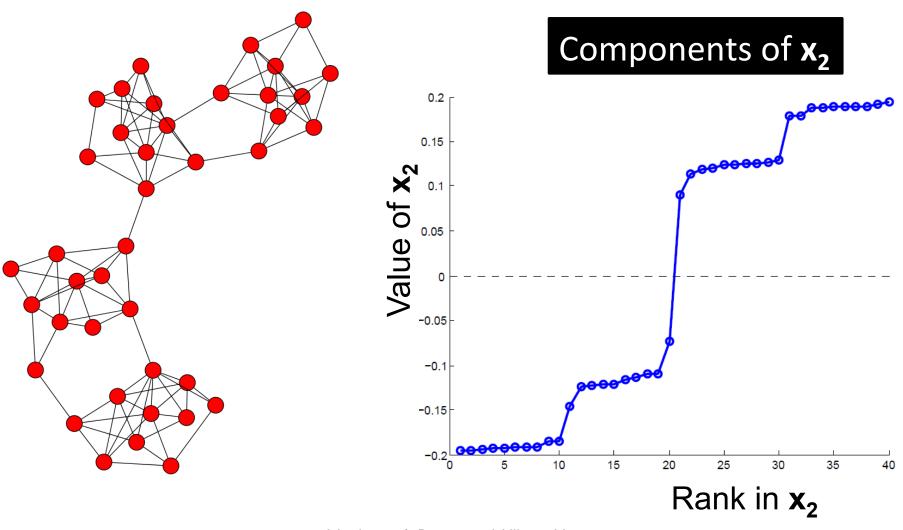
Three basic stages:

- -1) Pre-processing
 - Construct a matrix representation of the graph
- -2) Decomposition
 - Compute eigenvalues and eigenvectors of the matrix
 - Map each point to a lower-dimensional representation based on one or more eigenvectors
- -3) Grouping
 - Assign points to two or more clusters, based on the new representation

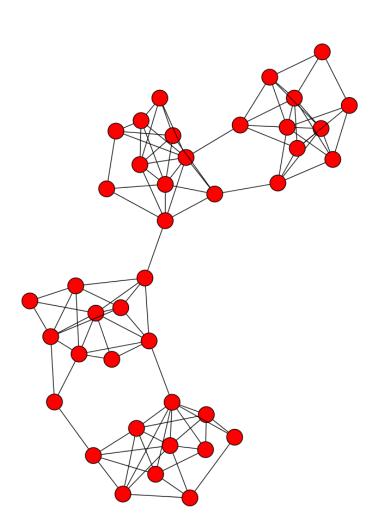
Example: Spectral Partitioning

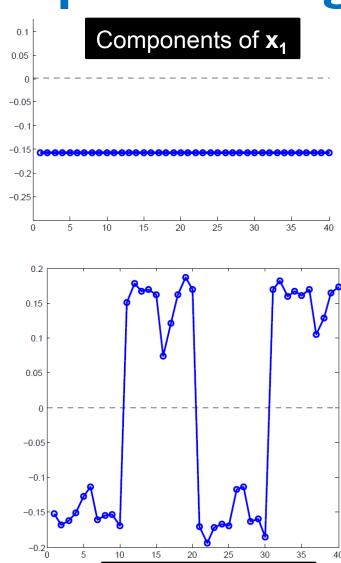


Example: Spectral Partitioning



Example: Spectral partitioning





J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.or

Components of x₃

k-Way Spectral Clustering

- How do we partition a graph into k clusters?
- Two basic approaches:
 - Recursive bi-partitioning [Hagen et al., '92]
 - Recursively apply bi-partitioning algorithm in a hierarchical divisive manner
 - Disadvantages: Inefficient, unstable
 - Cluster multiple eigenvectors [Shi-Malik, '00]
 - Build a reduced space from multiple eigenvectors
 - Commonly used in recent papers
 - A preferable approach...

Why use multiple eigenvectors?

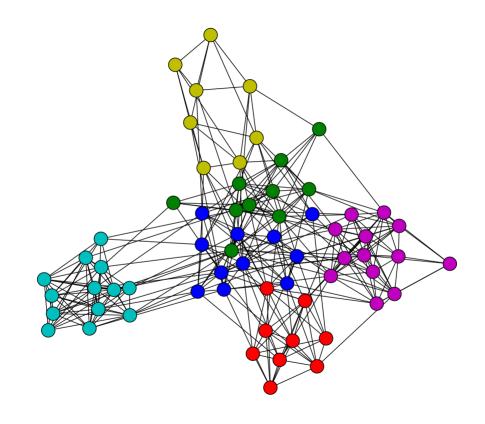
- Approximates the optimal cut [Shi-Malik, '00]
 - Can be used to approximate optimal k-way normalized cut
- Emphasizes cohesive clusters
 - Increases the unevenness in the distribution of the data
 - Associations between similar points are amplified, associations between dissimilar points are attenuated
 - The data begins to "approximate a clustering"
- Well-separated space
 - Transforms data to a new "embedded space", consisting of k orthogonal basis vectors
- Multiple eigenvectors prevent instability due to information loss

 $W*v_1 = v_2$ "propogates weights from neighbors"

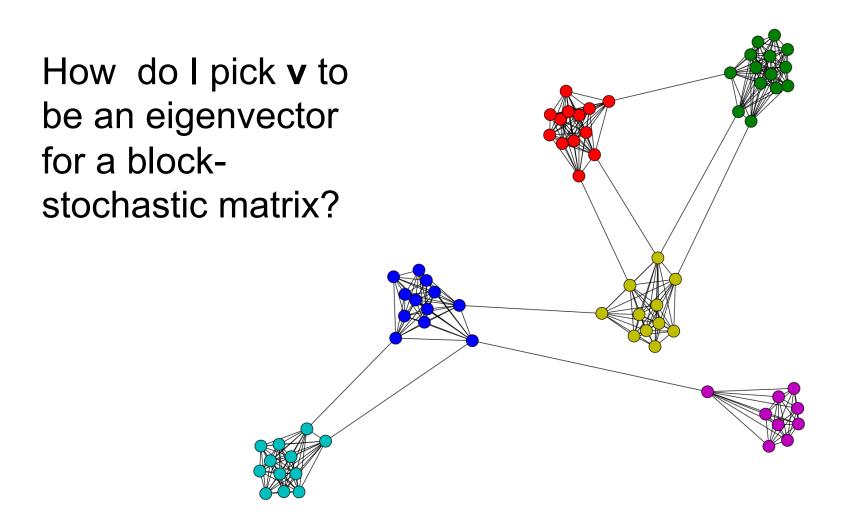
 $\mathbf{W} \cdot \mathbf{v} = \lambda \mathbf{v}$: v is an eigenvector with eigenvalue λ

- smallest eigenvecs of D-A are largest eigenvecs of A
- smallest eigenvecs of I-W are largest eigenvecs of W

Q: How do I pick **v** to be an eigenvector for a block-stochastic matrix?



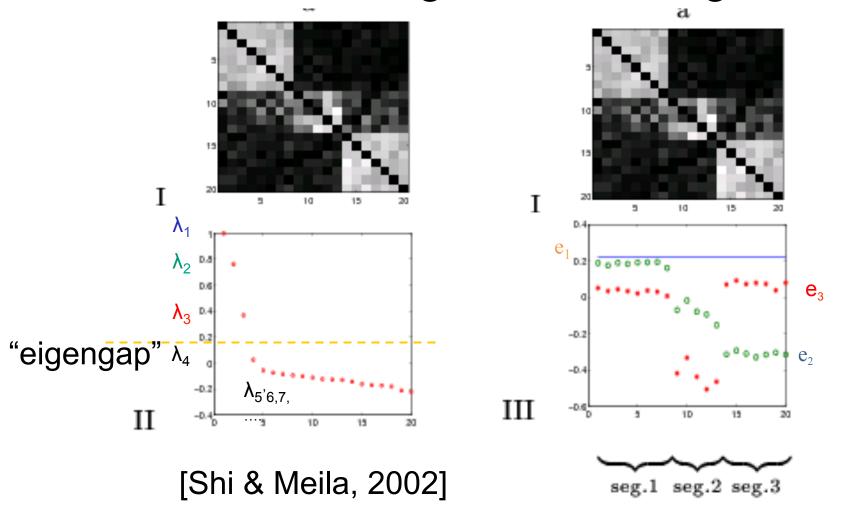
 $W*v_1 = v_2$ "propogates weights from neighbors"



Spectral Clustering: Graph = Matrix W*v₁ = v₂ "propogates weights from neighbors"

- smallest eigenvecs of D-A are largest eigenvecs of A
- smallest eigenvecs of I-W are largest eigenvecs of W Suppose each y(i)=+1 or -1:
- Then y is a cluster indicator that cuts the nodes into two
- what is y^T(D-A)y? The cost of the graph cut defined by y
- what is y^T(I-W)y? Also a cost of a graph cut defined by y
- How to minimize it?
 - Turns out: to minimize $y^T X y / (y^T y)$ find *smallest* eigenvector of X
 - But: this will not be +1/-1, so it's a "relaxed" solution

W*v₁ = v₂ "propogates weights from neighbors"



Some more terms

- If A is an adjacency matrix (maybe weighted) and D is a (diagonal) matrix giving the degree of each node
 - Then D-A is the (unnormalized) Laplacian
 - W=AD⁻¹ is a *probabilistic adjacency matrix*
 - I-W is the (normalized or random-walk)
 Laplacian
 - etc....
- The largest eigenvectors of W correspond to the smallest eigenvectors of I-W
 - So sometimes people talk about "bottom eigenvectors of the Laplacian"

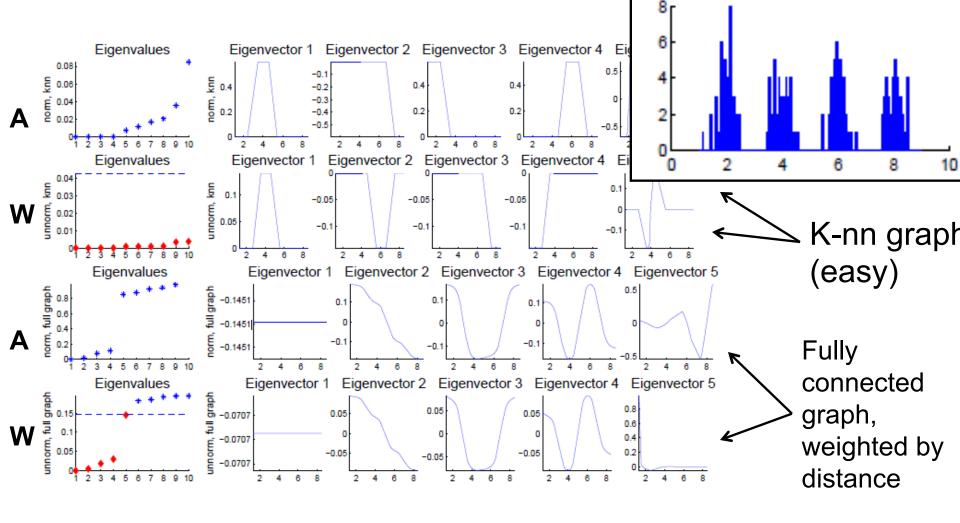


Figure 1: Toy example for spectral clustering where the data points have been drawn from a mixture of four Gaussians on \mathbb{R} . Left upper corner: histogram of the data. First and second row: eigenvalues and eigenvectors of $L_{\rm rw}$ and L based on the k-nearest neighbor graph. Third and fourth row: eigenvalues and eigenvectors of $L_{\rm rw}$ and L based on the fully connected graph. For all plots, we used the Gaussian kernel with $\sigma=1$ as similarity function. See text for more details.

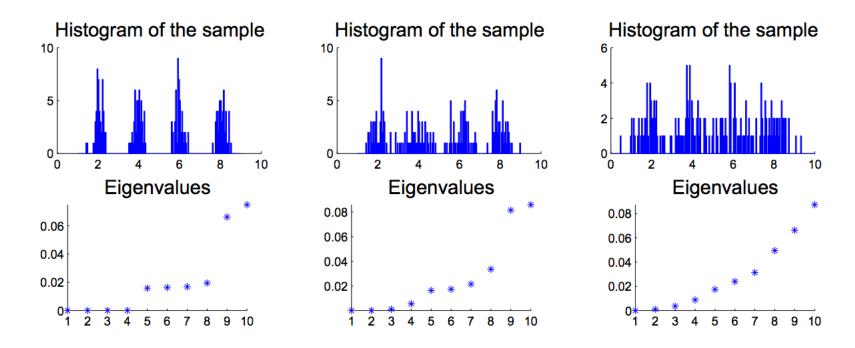


Figure 4: Three data sets, and the smallest 10 eigenvalues of $L_{\rm rw}$. See text for more details.

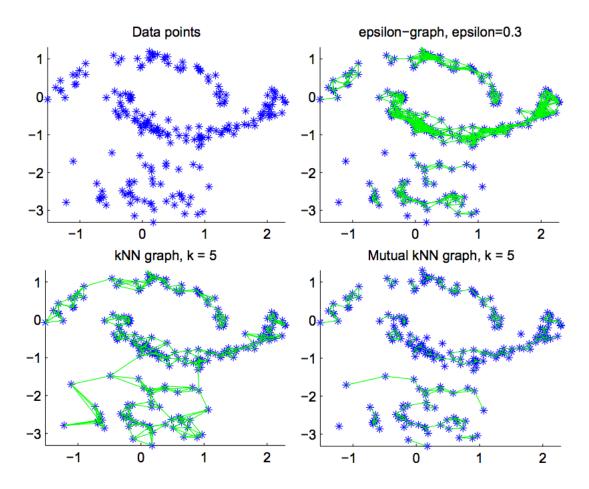


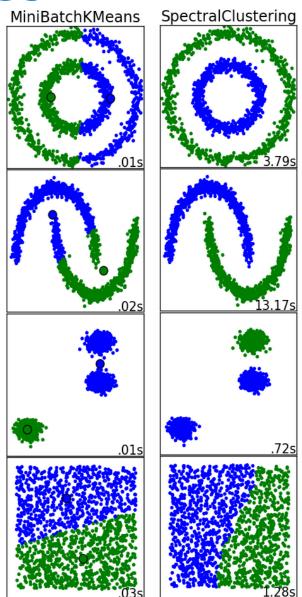
Figure 3: Different similarity graphs, see text for details.

Spectral Clustering: Pros and Cons

- Elegant, and well-founded mathematically
- Works quite well when relations are approximately transitive (like similarity)
- Very noisy datasets cause problems
 - -"Informative" eigenvectors need not be in top few
 - Performance can drop suddenly from good to terrible
- Expensive for very large datasets
 - Computing eigenvectors is the bottleneck

Use cases and runtimes

- K-Means
 - FAST
 - "Embarrassingly parallel"
 - Not very useful on anisotropic data
- Spectral clustering
 - Excellent quality under many different data forms
 - Much slower than K-Means



Further Reading

Spectral Clustering Tutorial:
 http://www.informatik.uni-hamburg.de/ML/contents/people/luxburg/publications/
 Luxburg07_tutorial.pdf