Semi-Supervised Learning With Graphs

Shannon Quinn

(with thanks to William Cohen at CMU)

Semi-supervised learning

- A pool of labeled examples L
- A (usually larger) pool of unlabeled examples U
- Can you improve accuracy somehow using U?

Semi-Supervised Bootstrapped Learning/Self-training

Extract cities:

Semi-Supervised Bootstrapped Learning via Label Propagation

Semi-Supervised Bootstrapped Learning via Label Propagation

Semi-Supervised Learning as Label Propagation on a (Bipartite) Graph

Propagation methods:
 "personalized PageRank" (aka damped PageRank, random-walk-San Francisc
 with-reset)

- Propagate labels to *nearby* nodes
 X is "near" Y if there is a high probability of reaching X from Y with a random walk where each step is either (a) move to a random neighbor or (b) jump back to start node Y, if you' re at an NP node
 - rewards multiple paths
 - penalizes long paths
 - penalizes high-fanout paths

Semi-Supervised Classification of Network Data Using Very Few Labels

Frank Lin Carnegie Mellon University, Pittsburgh, Pennsylvania Email: frank@cs.cmu.edu William W. Cohen Carnegie Mellon University, Pittsburgh, Pennsylvania Email: wcohen@cs.cmu.edu

ASONAM-2010 (Advances in Social Networks Analysis and Mining)

Network Datasets with Known Classes

- •UBMCBlog
- •AGBlog
- •MSPBlog
- •Cora
- •Citeseer

Given: A graph G = (V, E), corresponding to nodes in G are instances X, composed of unlabeled instances X^U and labeled instances X^L with corresponding labels Y^L , and a damping factor d. **Returns:** Labels Y^U for unlabeled nodes X^U .

For each class c

1) Set
$$\mathbf{u}_i \leftarrow 1, \forall Y_i^L = c$$

- 2) Normalize **u** such that $||\mathbf{u}||_1 = 1$
- 3) Set $R_c \leftarrow RandomWalk(G, \mathbf{u}, d)$

For each instance *i*

• Set
$$X_i^U \leftarrow argmax_c(R_{ci})$$

Fig. 1. The MultiRankWalk algorithm.

Seed selection

- I. order by PageRank, degree, or randomly
- 2. go down list until you have at least k examples/class

RWR - fixpoint of: $\mathbf{r} = (1 - d)\mathbf{u} + dW\mathbf{r}$

CoEM/HF/wvRN

• One definition [MacSkassy & Provost, JMLR 2007]:...

Definition. Given $v_i \in \mathbf{V}^U$, the weighted-vote relational-neighbor classifier (wvRN) estimates $P(x_i | \mathcal{N}_i)$ as the (weighted) mean of the class-membership probabilities of the entities in \mathcal{N}_i :

$$P(x_i = c | \mathcal{N}_i) = \frac{1}{Z} \sum_{v_j \in \mathcal{N}_i} w_{i,j} \cdot P(x_j = c | \mathcal{N}_j),$$

CoEM/HF/wvRN

- Another definition in [X. Zhu, Z. Ghahramani, and J. Lafferty, ICML 2003]
 - A harmonic field the score of each node in the graph is the harmonic, or linearly weighted, average of its neighbors' scores (harmonic field, HF)

CoEM/HF/wvRN

- Another justification of the same algorithm....
- ... start with co-training with a naïve Bayes learner

- Inputs: An initial collection of labeled documents and one of unlabeled documents.
- Loop while there exist documents without class labels:
 - Build classifier A using the A portion of each document.
 - Build classifier B using the B portion of each document.
 - For each class C, pick the unlabeled document about which classifier A is most confident that its class label is C and add it to the collection of labeled documents.
 - For each class C, pick the unlabeled document about which classifier B is most confident that its class label is C and add it to the collection of labeled documents.
- Output: Two classifiers, A and B, that predict class labels for new documents. These predictions can be combined by multiplying together and then renormalizing their class probability scores.

Table 1: The co-training algorithm described in Section 3.3.

Notations

 $\hat{Y}_{v,l}$: score of estimated label I on node v

 $Y_{v,l}$: score of seed label I on node v

 $R_{v,l}$: regularization target for label I on node v

S : seed node indicator (diagonal matrix)

 W_{uv} : weight of edge (u, v) in the graph

LP-ZGL (Zhu et al., ICML 2003)

$$\begin{split} & \arg\min_{\hat{Y}} \left[\sum_{l=1}^{m} W_{uv} (\hat{Y}_{ul} - \hat{Y}_{vl})^2 \right] = \sum_{l=1}^{m} \hat{Y}_l^T L \hat{Y}_l \\ & \text{such that } \left[Y_{ul} = \hat{Y}_{ul}, \ \forall S_{uu} = 1 \right] \\ & \text{Match Seeds (hard)} \end{split}$$

- Smoothness
 - two nodes connected by an edge with high weight should be assigned similar labels
- Solution satisfies harmonic property

Modified Adsorption (MAD)

[Talukdar and Crammer, ECML 2009]

$$rgmin_{\hat{m{Y}}} \sum_{l=1}^{m+1} \left[\|m{S}\hat{m{Y}}_l - m{S}m{Y}_l\|^2 + \mu_1 \sum_{u,v} m{M}_{uv} (\hat{m{Y}}_{ul} - \hat{m{Y}}_{vl})^2 + \mu_2 \|\hat{m{Y}}_l - m{R}_l\|^2
ight]^2 + \mu_2 \|\hat{m{Y}}_l - m{R}_l\|^2
ight]^2$$

- m labels, +1 dummy label
- $\boldsymbol{M} = \boldsymbol{W}^{\dagger} + \boldsymbol{W}^{\prime}$ is the symmetrized weight matrix
- \hat{Y}_{vl} : weight of label l on node v
- \boldsymbol{Y}_{vl} : seed weight for label l on node v
- S: diagonal matrix, nonzero for seed nodes
- \mathbf{R}_{vl} : regularization target for label l on node v

Modified Adsorption (MAD)

[Talukdar and Crammer, ECML 2009]

$$rgmin_{\hat{m{Y}}} \sum_{l=1}^{m+1} \left[\|m{S}\hat{m{Y}}_l - m{S}m{Y}_l\|^2 + \mu_1 \sum_{u,v} m{M}_{uv} (\hat{m{Y}}_{ul} - \hat{m{Y}}_{vl})^2 + \mu_2 \|\hat{m{Y}}_l - m{R}_l\|^2
ight]^2
ight]^2$$

How to do this minimization? First, differentiate to find min is at

$$(\mu_1 \mathbf{S} + \mu_2 \mathbf{L} + \mu_3 \mathbf{I}) \ \hat{\mathbf{Y}}_l = (\mu_1 \mathbf{S} \mathbf{Y}_l + \mu_3 \mathbf{R}_l)$$

Jacobi method:

• To solve Ax=b for x

• Iterate:
$$\mathbf{x}^{(k+1)} = D^{-1}(\mathbf{b} - R\mathbf{x}^{(k)}).$$

• ... or:
$$x_i^{(k+1)} = \frac{1}{a_{ii}} \left(b_i - \sum_{j \neq i} a_{ij} x_j^{(k)} \right), \quad i = 1, 2, \dots, n.$$

Inputs $\boldsymbol{Y}, \boldsymbol{R} : |V| \times (|L|+1), \boldsymbol{W} : |V| \times |V|, \boldsymbol{S} : |V| \times |V|$ diagonal $\hat{\boldsymbol{Y}} \leftarrow \boldsymbol{Y}$ $\boldsymbol{M} = \boldsymbol{W}' + \boldsymbol{W}^{\dagger}$ $Z_v \leftarrow \boldsymbol{S}_{vv} + \mu_1 \sum_{u \neq v} \boldsymbol{M}_{vu} + \mu_2 \quad \forall v \in V$ repeat for all $v \in V$ do $\hat{\boldsymbol{Y}}_v \leftarrow \frac{1}{Z_v} \left((\boldsymbol{S}\boldsymbol{Y})_v + \mu_1 \boldsymbol{M}_{v} \cdot \hat{\boldsymbol{Y}} + \mu_2 \boldsymbol{R}_v \right)$ end for until convergence

- Extends Adsorption with well-defined optimization
- Importance of a node can be discounted
- Easily Parallelizable: Scalable

MapReduce Implementation of MAD

- Map
 - Each node send its current label assignments to its neighbors
- Reduce
 - Each node updates its own label assignment using messages received from neighbors, and its own information (e.g., seed labels, reg. penalties etc.)
- Repeat until convergence

Code in Junto Label Propagation Toolkit (includes Hadoop-based implementation) <u>http://code.google.com/p/junto/</u>

Text Classification

PRBEP (macro-averaged) on WebKB Dataset, 3148 test instances

Sentiment Classification

Precision on 3568 Sentiment test instances

Class-Instance Acquisition

Assigning class labels to WebTable instances

Score (musician, Johnny Cash) = 0.87

New (Class, Instance) Pairs Found

Class	A few non-seed Instances found by Adsorption
Scientific Journals	Journal of Physics, Nature, Structural and Molecular Biology, Sciences Sociales et sante, Kidney and Blood Pressure Research, American Journal of Physiology-Cell Physiology,
NFL Players	Tony Gonzales, Thabiti Davis, Taylor Stubblefield, Ron Dixon, Rodney Hannan,
Book Publishers	Small Night Shade Books, House of Ansari Press, Highwater Books, Distributed Art Publishers, Cooper Canyon Press,

From SemiSupervised to Unsupervised Learning

Spectral Clustering: Graph = Matrix

 $M^*v_1 = v_2$ "propogates weights from neighbors"

	A	В	С	D	Ε	F	G	Η	I	J								\bigcap	١		
A	_	1	1			1						A	3	Α	5			$\sum_{i=1}^{n}$, \		
В	1		1								1	B	2	B	6		\square		A		
С	1	1										С	3	С	5		B) `		+	7
			_		1	1								D					\downarrow		
				-	•	-								Ε					\frown		
E				1	_	1						2		F				\rightarrow	F	\ \	
F				1	1	_					F	F		G						\mathbf{F}	
G							_		1	1		G		Н							
Η								_	1	1	ł	Н		I							
Ι							1	1	_	1	1			J							
J							1	1	1			J									

Repeated averaging with neighbors as a clustering method

- Pick a vector v⁰ (maybe at random)
- Compute $v^1 = Wv^0$
 - i.e., replace v⁰[x] with weighted average of v⁰[y] for the neighbors y of x
- Plot v¹[x] for each x
- Repeat for v^2 , v^3 , ...
- Variants widely used for semi-supervised learning
 clamping of labels for nodes with known labels
- Without clamping, will converge to constant $v^{\scriptscriptstyle \mathsf{T}}$
- What are the *dynamics* of this process?

- Create a graph, connecting all points in the 2-D initial space to all other points
 - Weighted by distance
- Run power iteration for 10 steps
- Plot node id x vs v¹⁰(x)
 - nodes are ordered by actual cluster number

PIC: Power Iteration Clustering run power iteration (repeated averaging w/ neighbors) with early stopping

- 1. Pick an initial vector \mathbf{v}^0 .
- 2. Set $\mathbf{v^{t+1}} \leftarrow \frac{W\mathbf{v^t}}{\|W\mathbf{v^t}\|_1}$ and $\delta^{t+1} \leftarrow |\mathbf{v^{t+1}} \mathbf{v^t}|$.
- 3. Increment t and repeat above step until $|\delta^t \delta^{t-1}| \simeq 0$.
- 4. Use k-means to cluster points on v^t and return clusters $C_1, C_2, ..., C_k$.
- V⁰: random start, or "degree matrix" D, or ...
- Easy to implement and efficient
- Very easily parallelized
- Experimentally, often better than traditional spectral methods
- Surprising since the embedded space is 1-dimensional!