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Semi-supervised learning 
•  A  pool  of  labeled  examples  L
•  A  (usually  larger)  pool  of  unlabeled  examples  U
•  Can  you  improve  accuracy  somehow  using  U?
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Semi-Supervised Bootstrapped 
Learning via Label Propagation 
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Semi-Supervised Bootstrapped 
Learning via Label Propagation 
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Semi-Supervised Learning as Label 
Propagation on a (Bipartite) Graph 
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•  Propagate labels to nearby nodes 
•  X is “near” Y if there is a high 
probability of reaching X from Y 
with a random walk where each 
step is either (a)  move to a random 
neighbor or (b) jump back to start 
node Y, if you’re at an NP node 

•  rewards multiple paths 
•  penalizes long paths 
•  penalizes high-fanout paths  I like  arg1 

beer 

Propagation methods:  
“personalized PageRank” (aka 
damped PageRank, random-walk-
with-reset) 



ASONAM-2010 (Advances in Social 
Networks Analysis and Mining) 



Network Datasets with Known Classes 

• UBMCBlog 
• AGBlog 
• MSPBlog 
• Cora 
• Citeseer 



RWR - fixpoint of: 

Seed selection 
1.  order by PageRank, degree, or randomly 
2.  go down list until you have at least k examples/class 



CoEM/HF/wvRN 
•  One  deFinition  [MacSkassy  &  Provost,  JMLR  2007]:…  



CoEM/HF/wvRN 
•  Another  deFinition  in  [X.  Zhu,  Z.  Ghahramani,  and  J.  
Lafferty,  ICML  2003]
–  A  harmonic  Field  –  the  score  of  each  node  in  the  graph  
is  the  harmonic,  or  linearly  weighted,  average  of  its  
neighbors’  scores  (harmonic  Field,  HF)



CoEM/HF/wvRN 
•  Another  
justiFication  of  
the  same  
algorithm….

•  …  start  with  
co-‐training  
with  a  naïve  
Bayes  learner









How to do this minimization? 
First, differentiate to find min is at  
 
 
Jacobi method: 
•  To solve Ax=b for x 
•  Iterate: 

•  … or: 

 
 



















From SemiSupervised to 
Unsupervised Learning 



Spectral Clustering: Graph = 
Matrix 

M*v1 = v2 “propogates weights from neighbors” 
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Repeated averaging with neighbors as a clustering 
method 

•  Pick a vector v0 (maybe at random) 

•  Compute v1 = Wv0 

–  i.e., replace v0[x] with weighted average of v0[y] for the 
neighbors y of x 

•  Plot v1[x] for each x 
•  Repeat for v2, v3, … 

•  Variants widely used for semi-supervised learning 
–  clamping of labels for nodes with known labels 

•  Without clamping, will converge to constant vt 

•  What are the dynamics of this process? 



Repeated averaging with neighbors on a sample 
problem… 

•  Create a graph, connecting 
all points in the 2-D initial 
space to all other points 

•  Weighted by distance 
•  Run power iteration for 10 
steps 
•  Plot node id x vs v10(x) 

•  nodes are ordered by 
actual cluster number 
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Repeated averaging with neighbors on a sample 
problem… 
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Repeated averaging with neighbors on a sample 
problem… 
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Repeated averaging with neighbors on a sample 
problem… 
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PIC: Power Iteration Clustering 
run power iteration (repeated averaging w/ neighbors) 

with early stopping 

–  V0: random start, or “degree matrix” D, or … 
–  Easy to implement and efficient 
–  Very easily parallelized 

–  Experimentally, often better than traditional spectral methods 

–  Surprising since the embedded space is 1-dimensional! 


