Randomized / Hashing Algorithms

Shannon Quinn
(with thanks to William Cohen of Carnegie Mellon University, and J. Leskovec, A. Rajaraman, and J. Ullman of Stanford University)

Outline

- Bloom filters
- Locality-sensitive hashing
- Stochastic gradient descent
- Stochastic SVD

Already covered

Next Wednesday's lecture

Hash Trick - Insights

- Save memory: don't store hash keys
- Allow collisions
 - even though it distorts your data some
- Let the learner (downstream) take up the slack

Here's another famous trick that exploits these insights....

- Interface to a Bloom filter
 - BloomFilter(int maxSize, double p);
 - void bf.add(String s); // insert s
 - bool bd.contains(String s);
 - // If s was added return true;
 - // else with probability at least 1-p return false;
 - // else with probability at most p return true;
 - I.e., a noisy "set" where you can test membership (and that's it)

One possible implementation

```
BloomFilter(int maxSize, double p) {
   set up an empty length-m array bits[];
void bf.add(String s) { Pr(fp \mid n \text{ prev inserts}) = 1 - \left(1 - \frac{1}{m}\right)^n
   bits[hash(s) \% m] = 1;
bool bd.contains(String s) {
   return bits[hash(s) % m];
```

How well does this work?

$$Pr(fp \mid x \text{ prev inserts}) = 1 - \left(1 - \frac{1}{m}\right)^x$$

Graph for 1-0.999[^]x

How well does this work?

$$Pr(fp \mid x \text{ prev inserts}) = 1 - \left(1 - \frac{1}{m}\right)^x$$

Graph for 1-0.9999^x

A better??? implementation

```
BloomFilter(int maxSize, double p) {
   set up an empty length-m array bits[];
void bf.add(String s) {
   bits[hash1(s) % m] = 1;
   bits[hash2(s) \% m] = 1;
bool bd.contains(String s) {
   return bits[hash1(s) % m] && bits[hash2(s) % m];
```

$$\Pr(fp \mid n \text{ prev inserts}) = 1 - \left(1 - \frac{1}{m}\right)^n \Rightarrow 1 - \left(1 - \frac{1}{m^2}\right)^n$$

How well does this work?

$$\Pr(fp \mid n \text{ prev inserts}) = 1 - \left[\left(1 - \frac{1}{m} \right)^2 \right]^n$$

Graph for 1-(1-(1/1000)^2)^x

- An example application
 - Finding items in "sharded" data
 - Easy if you know the sharding rule
 - Harder if you don't (like Google n-grams)
- Simple idea:
 - Build a BF of the contents of each shard
 - To look for key, load in the BF's one by one, and search only the shards that probably contain key
 - Analysis: you won't miss anything, you might look in some extra shards
 - You'll hit O(1) extra shards if you set p=1/#shards

- An example application
 - discarding rare features from a classifier
 - seldom hurts much, can speed up experiments
- Scan through data once and check each w:
 - if bf1.contains(w):
 - if bf2.contains(w): bf3.add(w)
 - else bf2.add(w)
 - else bf1.add(w)
- Now:
 - bf2.contains(w) \Leftrightarrow w appears $\ge 2x$
 - bf3.contains(w) \Leftrightarrow w appears $\ge 3x$
- Then train, ignoring words not in bf3

- Analysis (m bits, k hashers):
 - Assume hash(i,s) is a random function
 - Look at Pr(bit j is unset after n add's):

$$\left(1 - \frac{1}{m}\right)^{kn}$$

– ... and Pr(collision):

$$p = \left(1 - \left[1 - \frac{1}{m}\right]^{kn}\right)^k \approx \left(1 - e^{-kn/m}\right)^k$$

- fix m and n and minimize k:

$$k = \frac{m}{n} \ln 2 \approx 0.7 \frac{m}{n}$$

- Analysis:
 - Plug optimal k=m/n*ln(2) back into Pr(collision):

$$p = \left(1 - \left[1 - \frac{1}{m}\right]^{kn}\right)^k \approx \left(1 - e^{-kn/m}\right)^k$$

– Now we can fix any two of p, n, m and solve for the 3^{rd} :

$$p = \left(1 - e^{-(m/n \ln 2)n/m}\right)^{(m/n \ln 2)}$$

– E.g., the value for m in terms of n and p:

$$m = -\frac{n \ln p}{(\ln 2)^2}.$$

Bloom filters: demo

http://www.jasondavies.com/bloomfilter/

Locality Sensitive Hashing (LSH)

- Two main approaches
 - Random Projection
 - Minhashing

LSH: key ideas

- Goal:
 - map feature vector **x** to bit vector **bx**
 - ensure that bx preserves "similarity"

Random Projections

Random projections

To make those points "close" we need to project to a direction orthogonal to the line between them

Random projections

So if I pick a random **r** and **r.x** and **r.x**' are closer than γ then probably **x** and **x**' were close to start with.

LSH: key ideas

- Goal:
 - map feature vector x to bit vector bx
 - ensure that bx preserves "similarity"
- Basic idea: use random projections of x
 - Repeat many times:
 - Pick a random hyperplane r
 - Compute the inner product of r with x
 - Record if x is "close to" $r(r.x \ge 0)$
 - the next bit in bx
 - Theory says that is x' and x have small cosine distance then bx and bx' will have small Hamming distance

LSH: key ideas

- Naïve algorithm:
 - Initialization:
 - For i=1 to outputBits:
 - For each feature *f*:» Draw r(f,i) ~ Normal(0,1)
 - Given an instance x
 - For i=1 to outputBits:

```
LSH[i] = sum(\mathbf{x}[f]*r[i,f]) for f with non-zero weight in \mathbf{x} > 0 ? 1 : 0
```

- Return the bit-vector LSH
- Problem:
 - the array of r's is very large

Online Generation of Locality Sensitive Hash Signatures

Benjamin Van Durme and Ashwin Lall

DENISON UNIVERSITY

$$\cos(\theta) \approx \cos(\frac{h}{b}\pi)$$
$$= \cos(\frac{1}{6}\pi)$$

32 bit signatures

True Cosine

256 bit signatures

True Cosine

Accurate

Distance Measures

- Goal: Find near-neighbors in high-dim. space
 - We formally define "near neighbors" as points that are a "small distance" apart
- For each application, we first need to define what "distance" means
- Today: Jaccard distance/similarity
 - The Jaccard similarity of two sets is the size of their intersection divided by the size of their union:

$$sim(C_1, C_2) = |C_1 \cap C_2|/|C_1 \cup C_2|$$

- Jaccard distance: $d(C_1, C_2) = 1 - |C_1 \cap C_2|/|C_1 \cup C_2|$

3 in intersection 8 in union Jaccard similarity= 3/8 Jaccard distance = 5/8

LSH: "pooling" (van Durme)

- Better algorithm:
 - Initialization:
 - Create a pool:
 - Pick a random seed s
 - For i=1 to poolSize:
 - » Draw pool[i] ~ Normal(0,1)
 - For i=1 to outputBits:
 - Devise a random hash function hash(i,f):
 - » E.g.: hash(i,f) = hashcode(f) XOR randomBitString[i]
 - Given an instance x
 - For i=1 to outputBits:

```
LSH[i] = sum(
x[f] * pool[hash(i,f) % poolSize] for f in x) > 0 ? 1 : 0
```

Return the bit-vector LSH

The Pooling Trick

LSH: key ideas: pooling

- Advantages:
 - with pooling, this is a compact re-encoding of the data
 - you don't need to store the r's, just the pool
 - leads to very fast nearest neighbor method
 - just look at other items with **bx'=bx**
 - also very fast nearest-neighbor methods for Hamming distance
 - -similarly, leads to very fast clustering
 - cluster = all things with same bx vector

Finding Similar Documents with Minhashing

- Goal: Given a large number (in the millions or billions) of documents, find "near duplicate" pairs
- Applications:
 - Mirror websites, or approximate mirrors
 - Don't want to show both in search results
 - Similar news articles at many news sites
 - Cluster articles by "same story"

Problems:

- Many small pieces of one document can appear out of order in another
- Too many documents to compare all pairs
- Documents are so large or so many that they cannot fit in main members of years A. Rajaraman, J. Ullman: Mining fit in main members of years A. Rajaraman, J. Ullman: Mining 33

3 Essential Steps for Similar Docs

- **1. Shingling:** Convert documents to sets
- **2. Min-Hashing:** Convert large sets to short signatures, while preserving similarity
- 3. Locality-Sensitive Hashing: Focus on pairs of signatures likely to be from similar documents
 - Candidate pairs!

The Big Picture

Shingling

Step 1: *Shingling:* Convert documents to sets

Define: Shingles

- A *k*-shingle (or *k*-gram) for a document is a sequence of *k* tokens that appears in the doc
 - Tokens can be characters, words or something else, depending on the application
 - –Assume tokens = characters for examples
- Example: k=2; document D_1 = abcab Set of 2-shingles: $S(D_1)$ = {ab, bc, ca}
 - -Option: Shingles as a bag (multiset), count ab twice: $S'(D_1) = \{ab, bc, ca, ab\}$

Working Assumption

- Documents that have lots of shingles in common have similar text, even if the text appears in different order
- Caveat: You must pick k large enough, or most documents will have most shingles
 - -k=5 is OK for short documents
 - -k=10 is better for long documents

MinHashing

Step 2: *Minhashing:* Convert large sets to short signatures, while <u>preserving</u> similarity

Encoding Sets as Bit Vectors

 Many similarity problems can be formalized as finding subsets that have significant intersection

- Encode sets using 0/1 (bit, boolean) vectors
 - One dimension per element in the universal set
- Interpret set intersection as bitwise AND, and set union as bitwise OR
- Example: $C_1 = 101111$; $C_2 = 100111$
 - Size of intersection = 3; size of union = 4,
 - Jaccard similarity (not distance) = 3/4
 - Distance: $d(C_1,C_2) = 1$ (Jaccard similarity) = 1/4

From Sets to Boolean Matrices

- Rows = elements (shingles)
- Columns = sets (documents)
 - -1 in row *e* and column *s* if and only if *e* is a member of *s*
 - Column similarity is the Jaccard similarity of the corresponding sets (rows with value 1)
 - Typical matrix is sparse!
- Each document is a column:
 - Example: $sim(C_1, C_2) = ?$
 - Size of intersection = 3; size of union = 6, Jaccard similarity (not distance) = 3/6
 - $d(C_1,C_2) = 1 (Jaccard similarity) = 3/6$

Documents

Min-Hashing

- Goal: Find a hash function $h(\cdot)$ such that:
 - if $sim(C_1, C_2)$ is high, then with high prob. $h(C_1) = h(C_2)$
 - if $sim(C_1, C_2)$ is low, then with high prob. $h(C_1) \neq h(C_2)$
- Clearly, the hash function depends on the similarity metric:
 - Not all similarity metrics have a suitable hash function
- There is a suitable hash function for the Jaccard similarity: It is called Min-Hashing

Min-Hashing

- Imagine the rows of the boolean matrix permuted under random permutation π
- Define a "hash" function $h_{\pi}(C)$ = the index of the first (in the permuted order π) row in which column C has value 1:

$$h_{\pi}(\mathbf{C}) = \min_{\pi} \pi(\mathbf{C})$$

• Use several (e.g., 100) independent hash functions (that is, permutations) to create a signature of a column

Locality Sensitive Hashing

Step 3: *Locality-Sensitive Hashing:*Focus on pairs of signatures likely to be from

LSH: First Cut

2	1	4	1
1	2	1	2
2	1	2	1

- Goal: Find documents with Jaccard similarity at least *s* (for some similarity threshold, e.g., *s*=0.8)
- LSH General idea: Use a function f(x,y) that tells whether x and y is a candidate pair: a pair of elements whose similarity must be evaluated
- For Min-Hash matrices:
 - Hash columns of signature matrix M to many buckets
 - Each pair of documents that hashes into the same bucket is a candidate pair

Partition M into b Bands

Signature matrix MJ. Leskovec, A. Rajaraman, J. Ullman: Mining

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Partition M into Bands

- Divide matrix *M* into *b* bands of *r* rows
- For each band, hash its portion of each column to a hash table with k buckets
 - Make *k* as large as possible
- Candidate column pairs are those that hash to the same bucket for ≥ 1 band
- Tune b and r to catch most similar pairs, but few non-similar pairs

Hashing Bands

Example of Bands

2	1	4	1
1	2	1	2
2	1	2	1

Assume the following case:

- Suppose 100,000 columns of *M* (100k docs)
- Signatures of 100 integers (rows)
- Therefore, signatures take 40Mb
- Choose b = 20 bands of r = 5 integers/band
- **Goal:** Find pairs of documents that are at least s = 0.8 similar

C₁, C₂ are 80% Similar

2	1	4	1
1	2	1	2
2	1	2	1

- Find pairs of $\geq s=0.8$ similarity, set b=20, r=5
- **Assume:** $sim(C_1, C_2) = 0.8$
 - Since $sim(C_1, C_2) \ge s$, we want C_1, C_2 to be a candidate pair: We want them to hash to at least 1 common bucket (at least one band is identical)
- Probability C_1 , C_2 identical in one particular band: $(0.8)^5 = 0.328$
- Probability C_1 , C_2 are *not* similar in all of the 20 bands: $(1-0.328)^{20} = 0.00035$
 - i.e., about 1/3000th of the 80%-similar column pairs are false negatives (we miss them)
 - We would find 99.965% pairs of truly similar documents

C₁, C₂ are 30% Similar

2	1	4	1
1	2	1	2
2	1	2	1

- Find pairs of $\geq s=0.8$ similarity, set b=20, r=5
- **Assume:** $sim(C_1, C_2) = 0.3$
 - Since $sim(C_1, C_2) < s$ we want C_1, C_2 to hash to NO common buckets (all bands should be different)
- Probability C_1 , C_2 identical in one particular band: $(0.3)^5 = 0.00243$
- Probability C_1 , C_2 identical in at least 1 of 20 bands: $1 (1 0.00243)^{20} = 0.0474$
 - In other words, approximately 4.74% pairs of docs with similarity 0.3% end up becoming candidate pairs
 - They are false positives since we will have to examine them (they are candidate pairs) but then it will turn out their similarity is below threshold s

LSH Involves a Tradeoff

2	1	4	1
1	2	1	2
2	1	2	1

- Pick:
 - The number of Min-Hashes (rows of *M*)
 - The number of bands \boldsymbol{b} , and
 - The number of rows r per band
 to balance false positives/negatives
- Example: If we had only 15 bands of 5 rows, the number of false positives would go down, but the number of false negatives would go up

Analysis of LSH - What We Want

Similarity $t = sim(C_1, C_2)$ of two sets ———

b bands, r rows/band

- Columns C₁ and C₂ have similarity t
- Pick any band (rrows)
 - Prob. that all rows in band equal = t^r
 - Prob. that some row in band unequal = $1 t^r$
- Prob. that no band identical = $(1 t^{r})^{b}$
- Prob. that at least 1 band identical = $1 (1 t^r)^b$

What b Bands of r Rows Gives You

Example: b = 20; r = 5

- Similarity threshold s
- Prob. that at least 1 band is identical:

S	1-(1-s ^r) ^b
.2	.006
.3	.047
.4	.186
.5	.470
.6	.802
.7	.975
8 J. Leskove	c, A. Rajaraman, J. Ullman: Mining

of Massive Datasets, http://www.mmds.org

Picking r and b:The S-curve

- Picking r and b to get the best S-curve
 - -50 hash-functions (r=5, b=10)

Red area: False Negative rate
Purple area: False Positive rate