Randomized / Hashing
Algorithms

Shannon Quinn

(with thanks to William Cohen of Carnegie

Mellon University, and J. Leskovec, A.

Rajaraman, and J. Ullman of Stanford
University)

Outline

 Bloom filters
* Locality-sensitive hashing

Hash Trick - Insights

* Save memory: don't store hash keys
* Allow collisions
—even though it distorts your data some

* Let the learner (downstream) take up the
slack

* Here’s another famous trick that exploits these
insights....

Bloom filters

* Interface to a Bloom filter
— BloomFilter(int maxSize, double p);
—void bf.add(String s); // insert s

—bool bd.contains(String s);
» // If s was added return true;
* // else with probability at least 7-p return false;
 // else with probability at most p return true;

—l.e., a noisy “set” where you can test
membership (and that’s it)

One possible implementation

BloomFilter(int maxSize, double p) {
set up an empty length-m array bits||;

ioid bf.add(String s) { Fr(/p!nprevinserts) =1 _(1 _%)
bits|hash(s) % m]| = 1;

}

bool bd.contains(String s) {
return bits|hash(s) % m]|;

}

How well does this work?

1 X
Pr(fp | x prev inserts) =1 - (1 — _)

m
Graph for 1-0.999”x m=1,000, x~=200, y~=0.18
= x: 204.800529 y: 0.185273657
P> 1
0.51
-1500 -1000 -500 500 1000 1500

054

How well does this work?

1 X
Pr(fp | x prev inserts) =1 - (1 — _)

m
Graph for 1-0.9999"x m=10,000, x~=1,000, y~=0.10
= 1 x: 1037.65601 y: 0.098568108
EIE
— 0.5
110000 5000 5000 10000

0.5+

A better??? implementation

BloomFilter(int maxSize, double p) {
set up an empty length-m array bits||;
}
void bf.add(String s) {
bits|hash1(s) % m] = 1;
bits|hash2(s) % m] = 1;
}
bool bd.contains(String s) {
return bits|hash1(s) % m] && bits|hash2(s) % m]|;

}

1\" 1"
Pr(fplnprevinserts)=1—(1——) :1_(1__2)

How well does this work?

qn

1 2
Pr(fp | n prev inserts) =1 — (1 — —)
m

Graph for 1-(1-(1/1000)2)"x m=1,000, x~=13,000, y~=0.01

X: 13107.2338 y:0.013021714

0.1+

(T

-2x10° -100000 100000 2x10°

-0.14

Bloom filters

* An example application

— Finding items in “sharded” data
* Easy if you know the sharding rule
* Harder if you don’t (like Google n-grams)
e Simple idea:
— Build a BF of the contents of each shard

— To look for key, load in the BF’s one by one, and
search only the shards that probably contain key

— Analysis: you won't miss anything, you might look in
some extra shards

— You'll hit O(1) extra shards if you set p=1/#shards

Bloom filters

* An example application
— discarding rare features from a classifier
— seldom hurts much, can speed up experiments
* Scan through data once and check each w:
— if bfl.contains(w):
* if bf2.contains(w): bf3.add(w)
* else bf2.add(w)
— else bfl.add(w)
* Now:
— bf2.contains(w) <> w appears >= 2X
— bf3.contains(w) & w appears >= 3x
* Then train, ignoring words not in bf3

Bloom filters

* Analysis (m bits, k hashers):
— Assume hash(i,s) is a random function

1 kn
— Look at Pr(bit j is unset after n add’s): (1 — —)
m

— ...and Pr(collision):

o\ K
e (oA e

—fix mand n and minimize k:
1l 1l
k= —In2~0.7—

n T

Bloom filters

* Analysis:
— Plug optimal k=m/n*In(2) back into Pr(collision):

n\ K
p= (1_ {l_ﬂk) ~ (1)

— Now we can fix any two of p, n, m and solve for the 3¢

o 4 ;A (m/nIn2)
p= (1 —e (m/n ln2)n/m)

— E.g.,, the value for min terms of nand p:

ninp
(In2)?

n = -

Bloom filters: demo

* http://www.jasondavies.com/bloomf{ilter/

Locality Sensitive Hashing (LSH)

* Two main approaches
—Random Projection
—Minhashing

LSH: key ideas

* Goal:
—map feature vector x to bit vector bx
—ensure that bx preserves “similarity”

Random Projections

at
- L A - -ow

A

Random projections

To make those
points “close’” we
need to project to
a direction
orthogonal to the
line between

them

Random projections

R Any other
direction will keep
U the distant points
distant.

So if | pick a random r _/

and r.x and r.xX’ are
closer than y then 2y
probably x and x’ were
close to start with.

LSH: key ideas

* Goal:
— map feature vector X to bit vector bx
—ensure that bx preserves “similarity”
* Basicidea: use random projections of X

— Repeat many times:
* Pick arandom hyperplane r
* Compute the inner product of r with x

* Record if x is “close to” r (r.x>=0)
— the next bit in bx

* Theory says that is X’ and x have small cosine

distance then bx and bx’ will have small Hamming
distance

LSH: key ideas

* Naive algorithm:
— Initialization:

* For i=1 to outputBits:
— For each feature £

» Draw r(f,i) ~ Normal(0,1)
— (Given an instance x

* For i=1 to outputBits:
LSH[i] =
sum(x[f]*r[i,f] for fwith non-zero weightinx) >071:0
* Return the bit-vector LSH

— Problem:
 the array of r's is very large

Online Generation of Locality
Sensitive Hash Signatures

Benjamin Van Durme and Ashwin Lall

human language technology

eeeeeee f excellence DENISON
7 JOHNS HOPKINS UNIVERSITY

UNTIVER RS SITY

y 4

.

.

_BEs |

(...................................

CACACAT At

Hamming Distance := h =

Signature Length := b

>

1
6\

32 bit signatures 256 bit signatures

=
0.5 e

0.0 e

-0.5

Approximate Cosine
Approximate Cosine

00 02 04 06 08 10 00 02 04 06 08 1.0

True Cosine True Cosine

[Cheap} [Accurate j

Distance Measures

= (Goal: Find near-neighbors in high-dim. space

— We formally define “near neighbors” as
points that are a “small distance” apart

* For each application, we first need to define what
“distance” means

* Today: Jaccard distance/similarity

— The Jaccard similarity of two sets is the size of
their intersection divided by the size of their
union:

sim(C,, C) = [C;NGC,|/|C UG
— Jaccard distance: d(C,, C,) =1 - |C,NC,]|/|C,UC,|

3 in intersection

8 in union

Jaccard similarity= 3/8
). Leskoves &, Raprsmasct Ulmaa-ining Jaccard distance = 5/8

of Massive Datasets, http://www.mmds.org

29

LSH: “pooling” (van Durme)

* Better algorithm:
— Initialization:

* Create a pool:
— Pick arandom seed s
— For i=1 to poolSize:
» Draw pool[i] ~ Normal(0,1)

* For i=1 to outputBits:
— Devise a random hash function hash(i,f):
» E.g.: hash(i,f) = hashcode(f) XOR randomBitString|i]

— Given an instance x
* For i=1 to outputBits:
LSHJi] = sum(
x[f] * pool[hash(i,f) % poolSize] for finx) >071:0
* Return the bit-vector LSH

The Pooling Trick

O

LSH: key ideas: pooling

* Advantages:

—with pooling, this is a compact re-encoding
of the data
* you don’t need to store the r’s, just the pool
—leads to very fast nearest neighbor method
* just look at other items with bx’=bx

* also very fast nearest-neighbor methods for
Hamming distance

—similarly, leads to very fast clustering
* cluster = all things with same bx vector

Finding Similar Documents with
Minhashing

* Goal: Given a large number (in the millions or
billions) of documents, find “near duplicate” pairs
* Applications:
— Mirror websites, or approximate mirrors
* Don’t want to show both in search results

— Similar news articles at many news sites
* Cluster articles by “same story”

 Problems:

— Many small pieces of one document can appear
out of order in another

— Too many documents to compare all pairs

— Documents are so large or so many that they cannot
fit in main meyory. 5 e 3

3 Essential Steps for Similar Docs
1.Shingling: Convert documents to sets

2.Min-Hashing: Convert large sets to short
signatures, while preserving similarity

3. Locality-Sensitive Hashing: Focus on
pairs of signatures likely to be from
similar documents

— Candidate pairs!

J. Leskovec, A. Rajaraman, J. Ullman: Mining
of Massive Datasets, http://www.mmds.org

34

The Big Picture

Docu-
ment

]

The set

of strings
of length k
that appear
in the doc-
ument

Min

Locality-
Sensitive
Hashing

Signatures:
short integer
vectors that
represent the
sets, and
reflect their
similarity

J. Leskovec, A. Rajaraman, J. Ullman: Mining
of Massive Datasets, http://www.mmds.org

Candidate
pairs:

those pairs
of signatures
that we need
to test for
similarity

35

Docu-

The set

of strings
of length k
that appear
in the doc-
ument

»
»

Shingling

Step 1: Shingling: Convert documents to
sets

Define: Shingles

* A k-shingle (or k-gram) for a document is a
sequence of ktokens that appears in the doc

—Tokens can be characters, words or
something else, depending on the
application

—Assume tokens = characters for examples

* Example: k=2; document D, = abcab
Set of 2-shingles: S(D,) = {ab, bc, ca}

— Option: Shingles as a bag (multiset),
count ab twice: S’(D,) = {ab, bc, ca, ab}

J. Leskovec, A. Rajaraman, J. Ullman: Mining
of Massive Datasets, http://www.mmds.org

37

Working Assumption

* Documents that have lots of shingles in
common have similar text, even if the text
appears in different order

» Caveat: You must pick klarge enough, or most
documents will have most shingles

— k=5 is OK for short documents
— k=10 is better for long documents

J. Leskovec, A. Rajaraman, J. Ullman: Mining

of Massive Datasets, http://www.mmds.org 38

Docu- Min-Hash-

=TT

The set Signatures:
of strings short integer
of length k vectors that
that appear represent the
in the doc- sets, and
ument reflect their
similarity

MinHashing

Step 2: Minhashing: Convert large sets to
short signatures, while preserving
similarity

Encoding Sets as Bit Vectors

* Many similarity problems can be
formalized as finding subsets that
have significant intersection
* Encode sets using 0/1 (bit, boolean) vectors
— One dimension per element in the universal set

* Interpret set intersection as bitwise AND, and
set union as bitwise OR

* Example: C; =10111; C, =10011
— Size of intersection = 3; size of union = 4,
— Jaccard similarity (not distance) = 3/4
— Distance: d(C,,C,) = 1 - (Jaccard similarity) = 1/4

J. Leskovec, A. Rajaraman, J. Ullman: Mining

of Massive Datasets, http://www.mmds.org 40

From Sets to Boolean Matrices

* Rows = elements (shingles)
* Columns = sets (documents)
—1 in row eand column sif and Documents

only if eis a member of s I | |0

— Column similarity is the | 0
Jaccard similarity of the
corresponding sets (rows with , 0
value 1) E; 0
— Typical matrix is sparse! & 0 o

 Each documentis a column:
— Example: sim(C,,C,) =7? | |

e Size of intersection = 3; size of union = 6,
Jaccard similarity (not distance) = 3/6 0 |

« d(C,C)=1- (Jagcagmmmmlﬁuan— 346

e Datasets, http://www.mmds.org

Min-Hashing

* Goal: Find a hash function A(-) such that:
—if sim(C,,C,) is high, then with high prob. h(C,)
=h(C,)
—if sim(C,,C,) is low, then with high prob. h(C,)
h(C,)

* (Clearly, the hash function depends on
the similarity metric:

— Not all similarity metrics have a suitable
hash function

 There is a suitable hash function for
the Jaccard similarity: It is called Min-Hashing

J. Leskovec, A. Rajaraman, J. Ullman: Mining 47
of Massive Datasets, http://www.mmds.org

Min-Hashing

* Imagine the rows of the boolean matrix
permuted under random permutation &

* Define a “hash” function h_(C) = the index of
the first (in the permuted order ®) row in
which column Chas value 1:

h_(C) = min_(C)

* Use several (e.g., 100) independent hash
functions (that is, permutations) to create a
signature of a column

J. Leskovec, A. Rajaraman, J. Ullman: Mining
of Massive Datasets, http://www.mmds.org

43

Docu-
ment

]

The set

of strings
of length k
that appear
in the doc-
ument

Min-Hash-

=

Locality-
Sensitive
Hashing

A

Signatures:
short integer
vectors that
represent the
sets, and
reflect their
similarity

Candidate
pairs:

those pairs
of signatures
that we need
to test for
similarity

Locality Sensitive Hashing

Step 3: Locality-Sensitive Hashing:

Focus on pairs of signatures likely to be from

2 1 4 1

LSH: First Cut 1 2 1 2

2 1 2 1

* Goal: Find documents with Jaccard similarity at
least s (for some similarity threshold, e.g., s=0.8)

* LSH - General idea: Use a function f(x,y) that tells
whether xand yis a candidate pair: a pair of
elements whose similarity must be evaluated

 For Min-Hash matrices:

— Hash columns of signature matrix M to many
buckets

— Each pair of documents that hashes into the
same bucket is a candidate pair

J. Leskovec, A. Rajaraman, J. Ullman: Mining

of Massive Datasets, http://www.mmds.org =

Partition M into b Bands

b bands

AN

Signature matrix M

J. Leskovec, A. Rajaraman, J. Ullman: Mining
of Massive Datasets, http://www.mmds.org

r rows
per band

One
signature

46

Partition M into Bands

 Divide matrix Minto b bands of rrows

* For each band, hash its portion of each
column to a hash table with kbuckets

— Make kas large as possible

* (Candidate column pairs are those that
hash to the same bucket for = 1 band

* Tune b and rto catch most similar pairs,
but few non-similar pairs

J. Leskovec, A. Rajaraman, J. Ullman: Mining
of Massive Datasets, http://www.mmds.org

47

Hashing Bands

Bug

Fx

Columns 2 and 6

kel%\ f¢----"—-~ are probably identical
/

(candidate pair)

Columns 6 and 7 are

e--""" surely different.

atmix M\ A
T b band
r rows ands

J. Leskovec, A. Rajarar]

nan, J. Ullman: Mining

of Massive Datasets, h

ttp://www.mmds.org

48

Example of Bands 1 2 1 2

Assume the following case:

e Suppose 100,000 columns of M (100k docs)
* Signatures of 100 integers (rows)

* Therefore, signatures take 40Mb

* Choose b= 20 bands of r= 5 integers/band

* Goal: Find pairs of documents that
are at least s = 0.8 similar

J. Leskovec, A. Rajaraman, J. Ullman: Mining 49
of Massive Datasets, http://www.mmds.org

C,, C, are 80% Similar 1 2 1 2
2 12 1

Find pairs of = s=0.8 similarity, set b=20, r=5
* Assume: sim(C,, C,) =0.8
— Since sim(C;, C2ﬁ > s, we want C;, C, to be a candidate

pair: We want them to hash to at least 1 common
bucket (at least one band is identical)

Probability C,, C, identical in one particular
band: (0.8)> = 0.328

Probability C;, C, are not similar in all of the 20 bands:
(1-0.328)4Y = 0.00035

— i.e., about 1/3000th of the 80%-similar column pairs
are false negatives (we miss them)

— We would find 99.965% pairs of truly similar
documents

J. Leskovec, A. Rajaraman, J. Ullman: Mining

of Massive Datasets, http://www.mmds.org 20

C,, C, are 30% Similar 1 2 1 2
2 12 1

Find pairs of = s=0.8 similarity, set b=20, r=5
* Assume: sim(C,, C,) = 0.3

— Since sim(C,, C,) < s we want C,, C, to hash to NO
common buckets (all bands should be different)

* Probability C;, C, identical in one particular band:
(0.3)> =0.00243

* Probability C,, C% identical in at least 1 of 20 bands:
1-(1-0.00243)%°=0.0474

— In other words, approximately 4.74% pairs of
docs with similarity 0.3% end up becoming
candidate pairs

* They are false positives since we will have to
examine them (they are candidate pairs) but then it
will turn out their similarity is below threshold s

J. Leskovec, A. Rajaraman, J. Ullman: Mining
of Massive Datasets, http://www.mmds.org

51

LSH

e Pick:

m

a2l

[he number of rows rper band

Involves a Tradeoff 1 2

'he number of Min-Hashes (rows of M)

Ty

T'he number of bands b, and

to balance false positives/negatives

» Example: If we had only 15 bands of 5 rows,

the number of false positives would go
down, but the number of false negatives
would go up

J. Leskovec, A. Rajaraman, J. Ullman: Mining
of Massive Datasets, http://www.mmds.org

52

Analysis of LSH - What We Want

Probability
of sharing
a bucket

/

Probability = 1

ey ift>s
o
®)
~
O
No chance =
ift<s E
©
£
p)

Similarity t =sim(C,, C,) of two sets ——

J. Leskovec, A. Rajaraman, J. Ullman: Mining
of Massive Datasets, http://www.mmds.org

53

b bands, r rows/band

* Columns C; and C, have similarity ¢
* Pick any band (rrows)
—Prob. that all rows in band equal = £

—Prob. that some row in band unequal =1 - ¢

* Prob. that no band identical = (1 - t)?

 Prob. that atleast 1 band identical =
1-(1-¢t)b

J. Leskovec, A. Rajaraman, J. Ullman: Mining

of Massive Datasets, http://www.mmds.org >

What b Bands of r Rows Gives You

Probability
of sharing
a bucket

s ~ (1/b)l/r

H./

_/

—

Similarity t=sim(C,, C,) of two sets ——

J. Leskovec, A. Rajaraman, J. Ullman: Mining
of Massive Datasets, http://www.mmds.org

'g‘aéeg:t] q No bands
identical

identical /

\

1-1-tn)P

All rows
SOme roW of 5 pand

ofaband g4 equal
unequal

55

Example:b =20;r =5

 Similarity threshold s

* Prob. that atleast 1 band is identical:

1-(1-s")®
.0006
047
.186
470

.802
975

skovele, A. R| ama 9@ an: Mining

assive Datasets, http://www.mmds.org

»

o Noo|~lwN

o -

<

Picking r and b: The S-curve

* Picking rand b to get the best S-curve
— 50 hash-functions (r=5, b=10)

Prob. sharing a bucket

0.9}

0.8}

0.7}

0.6}

0.5}

0.4}

0.3}

0.2}

0.1}

(o] L r I r o
0O 01t 02 03 04 05 06 07 08 09 1

Red area: False Negative rate
Purple area: False Positive rate

Similarity

J. Leskovec, A. Rajaraman, J. Ullman: Mining

of Massive Datasets, http://www.mmds.org o7

