Recommendation and Advertising

Shannon Quinn

(with thanks to J. Leskovec, A. Rajaraman, and J. Ullman of Stanford University)

Lecture breakdown

- Part 1: Advertising
 - Bipartite Matching
 - -AdWords

- Part 2: Recommendation
 - Collaborative Filtering
 - Latent Factor Models

I:Advertising on the Web

Example: Bipartite Matching

Nodes: Boys and Girls; Edges: Preferences

Goal: Match boys to girls so that maximum number of preferences is satisfied

Example: Bipartite Matching

M = {(1,a),(2,b),(3,d)} is a matching Cardinality of matching = |M| = 3

Example: Bipartite Matching

M = {(1,c),(2,b),(3,d),(4,a)} is a perfect matching

Perfect matching ... all vertices of the graph are matched **Maximum matching** ... a matching that contains the largest possible number of matches J. Leskovec, A. Rajaraman, J. Ullman: Mining

Matching Algorithm

- Problem: Find a maximum matching for a given bipartite graph
 - A perfect one if it exists
- There is a polynomial-time offline algorithm based on augmenting paths (Hopcroft & Karp 1973, see http://en.wikipedia.org/wiki/Hopcroft-Karp_algorithm)
- But what if we do not know the entire graph upfront?

Online Graph Matching Problem

- Initially, we are given the set boys
- In each round, one girl's choices are revealed
 - -That is, girl's **edges** are revealed
- At that time, we have to decide to either:
 - Pair the girl with a boy
 - Do not pair the girl with any boy
- Example of application:
 Assigning tasks to servers

Greedy Algorithm

- Greedy algorithm for the online graph matching problem:
 - Pair the new girl with any eligible boy
 - If there is none, do not pair girl
- How good is the algorithm?

Competitive Ratio

• For input I, suppose greedy produces matching M_{greedy} while an optimal matching is M_{opt}

min_{all possible inputs I} (|M_{greedy}|/|M_{opt}|)

(what is greedy's worst performance over all possible inputs 1)

Worst-case Scenario

(1,a)

(2,b)

History of Web Advertising

Banner ads (1995-2001)

Initial form of web advertisi

Popular websites charged
 X\$ for every 1,000
 "impressions" of the ad

• Called "CPM" rate (Cost per thousand impression (Cost per thousand impression (Cost per thousand impression) (Cost per th

• Modeled similar to TV, magazine ads CPM...cost per mille Mille...thousand in Latin

- From untargeted to demographically targeted
- Low click-through rates
 - Low ROI for advertisers

Performance-based Advertising

- Introduced by Overture around 2000
 - Advertisers bid on search keywords
 - When someone searches for that keyword,
 the highest bidder's ad is shown
 - Advertiser is charged only if the ad is clicked on
- Similar model adopted by Google with some changes around 2002
 - Called **Adwords**

Ads vs. Search Results

Web

Results 1 - 10 of about 2,230,000 for geico. (0.04 seco

GEICO Car Insurance. Get an auto insurance quote and save today ...

GEICO auto insurance, online car insurance quote, motorcycle insurance quote, online insurance sales and service from a leading insurance company. www.geico.com/ - 21k - Sep 22, 2005 - Cached - Similar pages

Auto Insurance - Buy Auto Insurance

Contact Us - Make a Payment

More results from www.geico.com »

Geico, Google Settle Trademark Dispute

The case was resolved out of court, so advertisers are still left without legal guidance on use of trademarks within ads or as keywords.

www.clickz.com/news/article.php/3547356 - 44k - Cached - Similar pages

Google and GEICO settle AdWords dispute | The Register

Google and car insurance firm GEICO have settled a trade mark dispute over ... Car insurance firm GEICO sued both Google and Yahoo! subsidiary Overture in ...

www.theregister.co.uk/2005/09/09/google_geico_settlement/ - 21k - Cached - Similar pages

GEICO v. Google

... involving a lawsuit filed by Government Employees Insurance Company (GEICO). GEICO has filed suit against two major Internet search engine operators, ... www.consumeraffairs.com/news04/geico_google.html - 19k - Cached - Similar pages

Sponsored Links

Great Car Insurance Rates

Simplify Buying Insurance at Safeco See Your Rate with an Instant Quote www.Safeco.com

Free Insurance Quotes

Fill out one simple form to get multiple quotes from local agents. www.HometownQuotes.com

5 Free Quotes, 1 Form.

Get 5 Free Quotes In Minutes! You Have Nothing To Lose. It's Free sayyessoftware.com/Insurance Missouri

Web 2.0

- Performance-based advertising works!
 - Multi-billion-dollar industry
- Interesting problem:
 What ads to show for a given query?
 - (Today's lecture)
- If I am an advertiser, which search terms should I bid on and how much should I bid?
 - (Not focus of today's lecture)

Adwords Problem

• Given:

- 1. A set of bids by advertisers for search queries
- 2. A click-through rate for each advertiser-query pair
- 3. A budget for each advertiser (say for 1 month)
- 4. A limit on the number of ads to be displayed with each search query
- Respond to each search query with a set of advertisers such that:
 - The size of the set is no larger than the limit on the number of ads per query
 - 2. Each advertiser has bid on the search query
 - 3. Each advertiser has enough budget left to pay for the ad if it is clicked upon mining

Adwords Problem

- A stream of queries arrives at the search engine: $q_1, q_2, ...$
- Several advertisers bid on each query
- When query q_i arrives, search engine must pick a subset of advertisers whose ads are shown
- Goal: Maximize search engine's revenues
 - -Simple solution: Instead of raw bids, use the "expected revenue per click" (i.e., Bid*CTR)
- Clearly we need an online algorithm!

The Adwords Innovation

Advertiser	Bid	CTR	Bid * CTR
A	\$1.00	1% 1 cent	
В	\$0.75	2%	1.5 cents
С	\$0.50	2.5%	1.125 cents
		Click through	Expected

rate

revenue

The Adwords Innovation

Advertiser	Bid	CTR	Bid * CTR
В	\$0.75	2%	1.5 cents
С	\$0.50	2.5%	1.125 cents
A	\$1.00	1%	1 cent

Complications: Budget

- Two complications:
 - Budget
 - -CTR of an ad is unknown

- Each advertiser has a limited budget
 - Search engine guarantees that the advertiser
 will not be charged more than their daily budget

Complications: CTR

- CTR: Each ad has a different likelihood of being clicked
 - -Advertiser 1 bids \$2, click probability = 0.1
 - -Advertiser 2 bids \$1, click probability = 0.5
 - Clickthrough rate (CTR) is measured historically
 - Very hard problem: Exploration vs. exploitation Exploit: Should we keep showing an ad for which we have good estimates of click-through rate or

Explore: Shall we show a brand new ad to get a better sense of its click-through rate

BALANCE Algorithm [MSVV]

- BALANCE Algorithm by Mehta, Saberi, Vazirani, and Vazirani
 - For each query, pick the advertiser with the largest unspent budget
 - Break ties arbitrarily (but in a deterministic way)

Example: BALANCE

- Two advertisers A and B
 - $-\mathbf{A}$ bids on query \mathbf{x} , \mathbf{B} bids on \mathbf{x} and \mathbf{y}
 - Both have budgets of \$4
- Query stream: xxxxyyyy
- BALANCE choice: A B A B B B _ _
 - Optimal: A A A A B B B B
- In general: For BALANCE on 2 advertisers Competitive ratio = 3/4

BALANCE: General Result

- In the general case, worst competitive ratio of BALANCE is 1-1/e = approx. 0.63
 - Interestingly, no online algorithm has a better competitive ratio!

2: Recommender Systems

Recommendations

PANDORA

Sidenote: The Long Tail

Sources: Erik Brynjolfsson and Jeffrey Hu, MIT, and Michael Smith, Carnegie Mellon; Barnes & Noble; Netflix; RealNetworks

Formal Model

- *X*= set of Customers
- S = set of Items
- Utility function $u: X \times S \rightarrow R$
 - -R = set of ratings
 - − *R* is a totally ordered set
 - -e.g., **0-5** stars, real number in **[0,1]**

Utility Matrix

	Avatar	LOTR	Matrix	Pirates
Alice	1		0.2	
Bob		0.5		0.3
Carol	0.2		1	
David				0.4

Key Problems

- (1) Gathering "known" ratings for matrix
 - How to collect the data in the utility matrix
- (2) Extrapolate unknown ratings from the known ones
 - Mainly interested in high unknown ratings
 - We are not interested in knowing what you don't like but what you like
- (3) Evaluating extrapolation methods
 - How to measure success/performance of recommendation methods

(I) Gathering Ratings

Explicit

- Ask people to rate items
- Doesn't work well in practice people can't be bothered

Implicit

- Learn ratings from user actions
 - E.g., purchase implies high rating
- What about low ratings?

(2) Extrapolating Utilities

- Key problem: Utility matrix *U* is sparse
 - Most people have not rated most items
 - -Cold start:
 - New items have no ratings
 - New users have no history
- Three approaches to recommender systems:
 - -1) Content-based
 - -2) Collaborative
 - -3) Latent factor based

Content-based Recommendations

 Main idea: Recommend items to customer x similar to previous items rated highly by x

Example:

- Movie recommendations
 - Recommend movies with same actor(s), director, genre, ...
- Websites, blogs, news
 - Recommend other sites with "similar" content

Plan of Action

User profile

Item Profiles

- For each item, create an item profile
- Profile is a set (vector) of features
 - Movies: author, title, actor, director,...
 - Text: Set of "important" words in document
- How to pick important features?
 - Usual heuristic from text mining is TF-IDF
 (Term frequency * Inverse Doc Frequency)
 - Term ... Feature
 - Document ... Item

Pros: Content-based Approach

- +: No need for data on other users
 - No cold-start or sparsity problems
- +: Able to recommend to users with unique tastes
- +: Able to recommend new & unpopular items
 - No first-rater problem
- +: Able to provide explanations
 - Can provide explanations of recommended items by listing content-features that caused an item to be recommended

Cons: Content-based Approach

- -: Finding the appropriate features is hard
 - -E.g., images, movies, music
- -: Recommendations for new users
 - How to build a user profile?
- -: Overspecialization
 - Never recommends items outside user's content profile
 - People might have multiple interests
 - Unable to exploit quality judgments of other users

Collaborative Filtering

Consider user x

Find set N of other users whose ratings are "similar" to x's ratings

 Estimate x's ratings based on ratings of users in N

	1	2	3	4	5	6	7	8	9	10	11	12
1	1		3			5			5		4	
2			5	4			4			2	1	3
3	2	4		1	2		3		4	3	5	
4		2	4		5			4			2	
5			4	3	4	2					2	5
6	1		3		3			2			4	

- unknown rating

- rating between 1 to 5

							user	3					
		1	2	3	4	5	6	7	8	9	10	11	12
	1	1		3		?	5			5		4	
	2			5	4			4			2	1	3
movies	3	2	4		1	2		3		4	3	5	
Ε	4		2	4		5			4			2	
	5			4	3	4	2					2	5
	6	1		3		3			2			4	

HISPIS

- estimate rating of movie 1 by user 5

	\sim	
	_	
Po 1		

		1	2	3	4	5	6	7	8	9	10	11	12	sim(1,m
	1	1		3		?	5			5		4		1.00
	2			5	4			4			2	1	3	-0.18
movies	<u>3</u>	2	4		1	2		3		4	3	5		<u>0.41</u>
2	4		2	4		5			4			2		-0.10
	5			4	3	4	2					2	5	-0.31
	<u>6</u>	1		3		3			2			4		<u>0.59</u>

Neighbor selection:

Identify movies similar to

Here we use Pearson correlation as similarity:

1) Subtract mean rating m_i from each movie i $m_1 = (1+3+5+5+4)/5 = 3.6$

movie 1, rate despyeus era5man, J. Ullman: Mining 1: [-2.6, 0, -0.6, 0, 0, 1.4, 0, 0, 1.4, 0, 0.4, 0] of Massive Datasets, http://www.mmds.org

	•	-
ш	е	

		1	2	3	4	5	6	7	8	9	10	11	12	S
	1	1		3		?	5			5		4		
(0	2			5	4			4			2	1	3	-
movies	3	2	4		1	2		3		4	3	5		
E	4		2	4		5			4			2		-
	5			4	3	4	2					2	5	-
	<u>6</u>	1		3		3			2			4		

sim(1,m)

1.00

-0.18

0.41

-0.10

-0.31

0.59

Compute similarity weights:

$$s_{1,3}$$
=0.41, $s_{1,6}$ =0.59

users

		1	2	3	4	5	6	7	8	9	10	11	12
	1	1		3		2.6	5			5		4	
•	2			5	4			4			2	1	3
	<u>3</u>	2	4		1	2		3		4	3	5	
	4		2	4		5			4			2	
	5			4	3	4	2					2	5
	<u>6</u>	1		3		3			2			4	

Predict by taking weighted average:

 $r \downarrow ix = \sum j \in N(i;x) \uparrow s \downarrow ij \cdot i$

$$r_{1.5} = (0.41*2 + 0.59*3) / (0.41+0.59) = 2.6$$

J. Leskovec, A. Rajaraman, J. Ullman: Mining

of Massive Datasets, http://www.mmds.org

CF: Common Practice

Before:

$$r_{xi} = \frac{\sum_{j \in N(i;x)} S_{ij} r_{xj}}{\sum_{j \in N(i;x)} S_{ij}}$$

- Define similarity s_{ij} of items i and j
- Select k nearest neighbors N(i; x)
 - Items most similar to *i*, that were rated by *x*
- Estimate rating r_{xi} as the weighted average:

$$r_{xi} = b_{xi} + \frac{\sum_{j \in N(i;x)} S_{ij} \cdot (r_{xj} - b_{xj})}{\sum_{j \in N(i;x)} S_{ij}}$$

baseline estimate for

$$b \downarrow x i = \mu + b \int x^i + b \downarrow i$$

• μ = overall mean movie rating

•
$$b_x$$
 = rating deviation of user x
= $(avg. rating of user x) - \mu$

Item-Item vs. User-User

	Avatar	LOTR	Matrix	Pirates
Alice	1		0.8	
Bob		0.5		0.3
Carol	0.9		1	0.8
David			1	0.4

- In practice, it has been observed that <u>item-item</u>
 often works better than user-user
- Why? Items are simpler, users have multiple tastes

Pros/Cons of Collaborative Filtering

- + Works for any kind of item
 - No feature selection needed
- Cold Start:
 - Need enough users in the system to find a match
- - Sparsity:
 - The user/ratings matrix is sparse
 - Hard to find users that have rated the same items
- First rater:
 - Cannot recommend an item that has not been previously rated
 - New items, Esoteric items
- Popularity bias:
 - Cannot recommend items to someone with unique taste
 - Tends to recommend popularitems

Hybrid Methods

- Implement two or more different recommenders and combine predictions
 - Perhaps using a linear model
- Add content-based methods to collaborative filtering
 - Item profiles for new item problem
 - Demographics to deal with new user problem

Problems with Error Measures

- Narrow focus on accuracy sometimes misses the point
 - Prediction Diversity
 - Prediction Context
 - Order of predictions
- In practice, we care only to predict high ratings:
 - RMSE might penalize a method that does well
 - for high ratings and badly for others

Collaborative Filtering: Complexity

- Expensive step is finding k most similar customers: O(|X|)
- Too expensive to do at runtime
 - Could pre-compute
- Naïve pre-computation takes time $O(k \cdot |X|)$
 - X ... set of customers
- We already know how to do this!
 - Near-neighbor search in high dimensions (LSH)
 - Clustering
 - Dimensionality reduction

Tip:Add Data

- Leverage all the data
 - Don't try to reduce data size in an effort to make fancy algorithms work
 - -Simple methods on large data do best
- Add more data
 - -e.g., add IMDB data on genres
- More data beats better algorithms

http://anand.typepad.com/datawocky/2008/03/more-data-usual.html

The Netflix Prize

- Training data
 - 100 million ratings, 480,000 users, 17,770 movies
 - 6 years of data: 2000-2005
- Test data
 - Last few ratings of each user (2.8 million)
 - Evaluation criterion: Root Mean Square Error (RMSE)
 - Netflix's system RMSE: 0.9514
- Competition
 - -2,700+ teams
 - \$1 million prize for 10% improvement on Netflix

The Netflix Utility Matrix R

480,000 users

Matrix R

17,700 movies

					\longrightarrow
1	3	4			
	3	5			5
		4	5		5
		3			
		3			
2			2		2
				5	
	2	1			1
	3			3	
1					

BellKor Recommender System

The winner of the Netflix Challenge!

Multi-scale modeling of the data:

Combine top level, "regional" modeling of the data, with a refined, local view:

- Global:

Overall deviations of users/movies/

- Factorization:

Addressing "regional" effects

– Collaborative filtering:

Extract local patterns

Global effects

Modeling Local & Global Effects

Global:

- Mean movie rating: 3.7 stars
- The Sixth Sense is **0.5** stars above avg.

- ⇒ Baseline estimation:
 Joe will rate The Sixth Sense 4 stars
- Local neighborhood (CF/NN):
 - Joe didn't like related movie Signs
 - -⇒ Final estimate: Joe will rate The Sixth Sense 3.8 stars

Modeling Local & Global Effects

 In practice we get better estimates if we model deviations:

$$\hat{r}_{xi} = b_{xi} + \frac{\sum_{j \in N(i;x)} S_{ij} \cdot (r_{xj} - b_{xj})}{\sum_{j \in N(i;x)} S_{ij}}$$

baseline estimate for

$$b \downarrow xi = \mu + b \int x^{i} + b \downarrow i$$

 μ = overall mean rating

 b_x = rating deviation of user x

= $(avg. rating of user x) - \mu$

 $b_i = (avg. rating of movie i) - \mu$

Problems/Issues:

- 1) Similarity measures are "arbitrary"
- 2) Pairwise similarities neglect interdependencies among users
- **3)** Taking a weighted average can be restricting

Solution: Instead of s_{ij} use w_{ij} that

Recommendations via Optimization

- Goal: Make good recommendations
 - Quantify goodness using RMSE:
 Lower RMSE ⇒ better recommendations
 - Want to make good recommendations on items that user has not yet seen. Can't really do this!
 - Let's set build a system such that it works well on known (user, item) ratings
 And hope the system will also predict well the unknown ratings

Recommendations via Optimization

- Idea: Let's set values w such that they work well on known (user, item) ratings
- How to find such values w?
- Idea: Define an objective function and solve the optimization problem
- Find w_{ij} that minimize SSE on training data!

$$J(w) = \sum x, i \uparrow m ([b \downarrow xi + \sum j \in N(i;x) \uparrow m \psi \downarrow ij (r \downarrow xj - b \downarrow xj)] - r \downarrow xi) \uparrow 2$$

Predicted rating

True rating

• Think of was a vector of numbers

Latent Factor Models (e.g., SVD)

J. Leskovec, A. Ramman, Ullman: Mining of Massive Datasets, http://www.mmds.org

Latent Factor Models

J. Leskovec, A. Ramanany Ullman: Mining of Massive Datasets, http://www.mmds.org

Back to Our Problem

- Want to minimize SSE for unseen test data
- Idea: Minimize SSE on training data
 - Want large k (# of factors) to capture all the signals
 - But, SSE on test data begins to rise for k > 2
- This is a classical example of overfitting:
 - With too much freedom (too many free parameters) the model starts fitting noise
 - That is it fits too well the training data and thus not generalizing well to unseen test data

Dealing with Missing Entries

 To solve overfitting we introduce regularization:

- -Allow rich model where there are sufficient data

-Shrink aggressively where data are scarce
$$\min_{P,Q} \sum_{training} (r_{xi} - q_i p_x)^2 + \left| \lambda_1 \sum_{x} \|p_x\|^2 + \lambda_2 \sum_{i} \|q_i\|^2 \right|$$
"error" "length"

 $\lambda_1, \lambda_2 \dots$ user set regularization parameters

Note: We do not care about the "raw" value of the objective function, but we care in P,Q that achieve the minimum of the objective 61 of Massive Datasets, http://www.mmds.org

Stochastic Gradient Descent

Want to find matrices P and Q:

$$\min_{\substack{P,Q \text{ training} \\ \text{Gradient decent:}}} (r_{xi} - q_i p_x)^2 + \left[\lambda_1 \sum_{x} \|p_x\|^2 + \lambda_2 \sum_{i} \|q_i\|^2 \right]$$

- - Initialize \emph{P} and \emph{Q} (using SVD, pretend missing ratings are
 - Do gradient descent:
 - $P \leftarrow P \eta \cdot \nabla P$
 - $Q \leftarrow Q \eta \cdot \nabla Q$

How to compute gradient of a matrix?

Compute gradient of every element independently!

- where ∇Q is gradient/derivative of matrix Q: and
 - Here is entry f of row q_i of matrix Q
- Observation: Computing gradients is slow!

Fitting the New Model

Solve:

$$\min_{Q,P} \sum_{(x,i)\in R} (r_{xi} - (\mu + b_x + b_i + q_i p_x))^2$$
goodness of fit

$$+ \left(\frac{\lambda_{1}}{1} \sum_{i} \|q_{i}\|^{2} + \lambda_{2} \sum_{x} \|p_{x}\|^{2} + \lambda_{3} \sum_{x} \|b_{x}\|^{2} + \lambda_{4} \sum_{i} \|b_{i}\|^{2} \right)$$
regularization

 λ is selected via grid-

search to chalistic gradient decent to find parameters

- Note: Both biases b_x , b_i as well as interactions q_i , p_x are treated as parameters (we estimate them)

Performance of Various Methods

Performance of Various Methods

Global average: 1.1296

User average: 1.0651

Movie average: 1.0533

Netflix: 0.9514

Basic Collaborative filtering: 0.94

Collaborative filtering++: 0.91

Latent factors: 0.90

Latent factors+Biases: 0.89

Grand Prize: 0.8563