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Lecture breakdown

* Part 1: Advertising
— Bipartite Matching
—AdWords

e Part 2: Recommendation
—Collaborative Filtering
— Latent Factor Models



| : Advertising on the Web



Example: Bipartite Matching

Nodes: Boys and Girls; Edges: Preferences
Goal: Match boys to girls so that maximum
number of preferences is satisfied
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Example: Bipartite Matching

M ={(1,a),(2,b),(3,d)} is a matching
Cardinality of matching=|M| =3
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Example: Bipartite Matching

M ={(1,c),(2,b),(3,d),(4,a)} is a
perfect matching

Perfect matching ... all vertices of the graph are matched
Maximum matching ... a matching that contains the largest possible number of matches
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Matching Algorithm

* Problem: Find a maximum matching for a
given bipartite graph
— A perfect one if it exists

* There is a polynomial-time offline algorithm
based on augmenting paths (Hopcroft & Karp 1973,
see http://en.wikipedia.org/wiki/ Hopcroft-Karp_algorithm)

 But what if we do not know the entire
graph upfront?
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Online Graph Matching Problem

* Initially, we are given the set boys

* In each round, one girl’s choices are revealed
—Thatis, girl’s edges are revealed

« At that time, we have to decide to either:
— Pair the girl with a boy
— Do not pair the girl with any boy

* Example of application:
Assigning tasks to servers
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Greedy Algorithm

* Greedy algorithm for the online graph
matching problem:

— Pair the new girl with any eligible boy
* If there is none, do not pair girl

* How good is the algorithm?
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Competitive Ratio

* For input J, suppose greedy produces

matching M,,..4, While an optimal

matching is M,

Competitive ratio =

mina]] possible inputs I (/ M greedy// / M opt/)

(what is greedy’s worst performance over all possible inputs 1)
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Worst-case Scenario
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History of Web Advertising
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Performance-based Advertising

* Introduced by Overture around 2000
— Advertisers bid on search keywords

—When someone searches for that keyword,
the highest bidder’s ad is shown

—Advertiser is charged only if the ad is clicked
on

* Similar model adopted by Google with some
changes around 2002

—Called Adwords
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Ads vs. Search Results

Web Results 1 - 10 of about 2,230,000 for geico. {0.04 secct

GEICO Car Insurance. Get an auto insurance guote and save today ...
GEICO auto insurance, online car insurance gquote, motorcycle insurance gquote, online
insurance sales and service from a leading insurance company.
wanw. geico. com/ - 21k - Sep 22, 2005 - Cached - Similar pages

Auto Insurance - Buy Auto Insurance

Contact Us - Make a Payment

More results from www. geico.com »

Geico, Goodle Settle Trademark Dispute

The case was resolved out of court, so advertisers are still left without legal guidance on use of
trademarks within ads or as keywords.

www. clickz. com/news/article. php/3547356 - 44k - Cached - Similar pages

Google and GEICO settle AdWWords dispute | The Register

Google and car insurance firm GEICO have settled a trade mark dispute over ... Car insurance
firm GEICO sued both Google and Yahoo! subsidiary Overture in ...
wwaw.theregister. co. uk/2005/09/09/google_geico_settlement/ - 21k - Cached - Similar pages

GEICO v. Google

... involving a lawsuit filed by Government Employees Insurance Company (GEICO). GEICO
has filed suit against two major Internet search engine operators, ...

www. consumeraffairs. com/news04/geico_google html - 19k - Cached - Similar pages
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Great Car Insurance Rates

Simplify Buying Insurance at Safeco
See Your Rate with an Instant Quote
www, Safeco.com

Free Insurance Quotes

Fill out one simple form to get
multiple gquotes from local agents.
www. HometownQuotes.com

5 Free Quotes. 1 Form.

Get 5 Free Quotes In Minutes!

You Have Nothing To Lose. It's Free
sayyessoftware. com/Insurance
Missour




Web 2.0

* Performance-based advertising works!
— Multi-billion-dollar industry

* Interesting problem:
What ads to show for a given query?

—(Today’s lecture)

e [fI am an advertiser, which search terms
should I bid on and how much should I bid?

— (Not focus of today’s lecture)
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Adwords Problem

* (Given:
— 1. A set of bids by advertisers for search queries
— 2. A click-through rate for each advertiser-query
pair
— 3. A budget for each advertiser (say for 1 month)

— 4. A limit on the number of ads to be displayed
with each search query

* Respond to each search query with a set of
advertisers such that:

— 1. The size of the set is no larger than the limit on
the number of ads per query

— 2. Each advertiser has bid on the search query

— 3. Each advertiser has enough budget left to pay
for the ad if it is,clicked.unoD...

e Datasets, http://www.mmds.org




Adwords Problem

* A stream of queries arrives at the search
engine: q, q,, ...
* Several advertisers bid on each query

* When query g; arrives, search engine must

pick a subset of advertisers whose ads are
shown

* Goal: Maximize search engine’s revenues

— Simple solution: Instead of raw bids, use the
“expected revenue per click” (i.e., Bid*CTR)

* Clearly we need an online algorithm!
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The Adwords Innovation

Click through Expected
rate revenue

J. Leskovec, A. Rajaraman, J. Ullman: Mining
of Massive Datasets, http://www.mmds.org



The Adwords Innovation
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Complications: Budget

* Two complications:
—Budget
—CTR of an ad is unknown

* Each advertiser has a limited budget

—Search engine guarantees that the
advertiser
will not be charged more than their daily
budget

J. Leskovec, A. Rajaraman, J. Ullman: Mining
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Complications: CTR

* CTR: Each ad has a different likelihood of being
clicked

— Advertiser 1 bids $2, click probability = 0.1
— Advertiser 2 bids $1, click probability = 0.5

— Clickthrough rate (CTR) is measured
historically

 Very hard problem: Exploration vs. exploitation
Exploit: Should we keep showing an ad for which
we have
good estimates of click-through rate
or
Explore: Shall we show a brand new ad to geta
better sense of its click-through rate

J. Leskovec, A. Rajaraman, J. Ullman: Mining 9]
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BALANCE Algorithm [MSVV]

 BALANCE Algorithm by Mehta, Saberi,
Vazirani, and Vazirani

—For each query, pick the advertiser with the
largest unspent budget

* Break ties arbitrarily (but in a deterministic
way)

J. Leskovec, A. Rajaraman, J. Ullman: Mining
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Example: BALANCE

* Two advertisers A and B
— A bids on query x, B bids on xand y
— Both have budgets of $4

* Query stream: xxxxyyyy

e BALANCE choice:ABABBB __
—Optimal: AAAABBBB

* In general: For BALANCE on 2 advertisers
Competitive ratio = 34

J. Leskovec, A. Rajaraman, J. Ullman: Mining
of Massive Datasets, http://www.mmds.org
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BALANCE: General Result

 In the general case, worst competitive ratio of
BALANCE is 1-1/e = approx. 0.63

—Interestingly, no online algorithm has a
better competitive ratio!

J. Leskovec, A. Rajaraman, J. Ullman: Mining
of Massive Datasets, http://www.mmds.org
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2: Recommender Systems



Recommendations

Examples:

amazoncom.

A)
I'F
..del.icio.us CHEE
Recommendations

\\

Search _
movielens
helping you find the right movies

l I lost-fm Google
Products . we b sites ’ the social music revolution News

blogs, news items, ...
_
(1[I Tube

LIVE
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Sidenote: The Long Tail

6,100

Songs

* available at

. both Wal-Mart
. and Rhapsody

Average number of plays per month on Rhapsody

Songs
available only
on Rhapsody

RHAPSODY

TOTAL INVENTORY: TOTAL INVENTORY: TOTAL INVENTORY:
735,000 songs 2.3 million books 25,000 DVDs

ypieat - el -
Wl Mar Barwes & Nobe  :
Woe 39000 sengs Wieee 130,000 hovba ¢

More than 40,000 documentaries have
been released, according to the Internet

Movie Database. Of those, Amazon.com carries
40 percent, Netflix stocks 3 percent, and the
average Blockbuster just .2 percent.

typecal

Blockhesmor

shoe: 3000 DV

Netflix Local Blockbuster
OBSCURE PRODUCTS YOU CAN'T GET ANYWHERE BUT ONLINE
TOTAL SAL[S TOTAL SALES TOTAL SALES
100,000 200,000 500,000

Titles ranked by popularity

Sources: Erik Brynjolfsson and Jeffrey Hu, MIT, and Michael Smith, Carnegie Mellon; Barnes & Noble; Netflix; RealNetworks

Source:Chris.Andersan, (2004)
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Formal Model

e X=setof Customers
e §=setof Items

» Utility function u: Xx S R
— R = set of ratings
— Ris a totally ordered set
—e.g., 0-5 stars, real number in [0,1]

J. Leskovec, A. Rajaraman, J. Ullman: Mining
of Massive Datasets, http://www.mmds.org
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Utility Matrix

Alice

Bob

Carol

David

Avatar LOTR Matrix Pirates

1 0.2
0.5 0.3
0.2 1
0.4
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Key Problems

* (1) Gathering “known” ratings for matrix
— How to collect the data in the utility matrix

* (2) Extrapolate unknown ratings from the
known ones

— Mainly interested in high unknown ratings

* We are not interested in knowing what you don’t
like
but what you like

* (3) Evaluating extrapolation methods

— How to measure success/performance of
recommendation methods

J. Leskovec, A. Rajaraman, J. Ullman: Mining
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(1) Gathering Ratings

» Explicit
— Ask people to rate items

—Doesn’t work well in practice - people
can’'t be bothered

* Implicit
— Learn ratings from user actions
* E.g,, purchase implies high rating
—What about low ratings?

J. Leskovec, A. Rajaraman, J. Ullman: Mining
of Massive Datasets, http://www.mmds.org
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(2) Extrapolating Utilities

* Key problem: Utility matrix Uis sparse
— Most people have not rated most items

—Cold start:

* New items have no ratings
* New users have no history

* Three approaches to recommender systems:
—1) Content-based
—2) Collaborative
—3) Latent factor based

J. Leskovec, A. Rajaraman, J. Ullman: Mining
of Massive Datasets, http://www.mmds.org
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Content-based Recommmendations

e Main idea: Recommend items to customer x
similar to previous items rated highly by x

Example:
e Movie recommendations

—Recommend movies with same actor(s),
director, genre, ...

* Websites, blogs, news

— Recommend other sites with “similar”
content

J. Leskovec, A. Rajaraman, J. Ullman: Mining
of Massive Datasets, http://www.mmds.org
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Plan of Action

Item profiles

likes
—> @ A

build

recommend
match Red

. I < Circles
. . Triangles

User profile
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Item Profiles

* For each item, create an item profile

 Profile is a set (vector) of features
— Movies: author, title, actor, director,...
— Text: Set of “important” words in document

* How to pick important features?
— Usual heuristic from text mining is TF-IDF
(Term frequency * Inverse Doc Frequency)
* Term ... Feature
* Document ... Item

J. Leskovec, A. Rajaraman, J. Ullman: Mining 35
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Pros: Content-based Approach

* +: No need for data on other users
—No cold-start or sparsity problems

e 4+: Able to recommend to users with
unique tastes

* +: Able to recommend new & unpopular items
— No first-rater problem
* +: Able to provide explanations

—Can provide explanations of recommended
items by listing content-features that caused
an item to be recommended

J. Leskovec, A. Rajaraman, J. Ullman: Mining
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Cons: Content-based Approach

* —: Finding the appropriate features is hard
—E.g., Images, movies, music

* —: Recommendations for new users
—How to build a user profile?

e —: Overspecialization

—Never recommends items outside user’s
content profile

— People might have multiple interests

—Unable to exploit quality judgments of
other users

J. Leskovec, A. Rajaraman, J. Ullman: Mining
of Massive Datasets, http://www.mmds.org
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Collaborative Filtering

e Consider user x
prefer d P prefer

ence ence

* Find set N of other x similar
users whose ratings

« __= g ” fet
are “similar” to ,ecomme:m\' y

Xx's ratings - N
recommen
REmS search
 Estimate X's ratings
based on ratings database

of usersin N

J. Leskovec, A. Rajaraman, J. Ullman: Mining 38
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Item-Item CF (|N|=2)

movies

users

3 14 (5 |6 |7 [8 |9 [10[11 |12
3 5 5 4
5 |4 4 2 |1 |3

1 |2 3 4 |3 |5
4 5 4 2
4 |3 |4 |2 2 |5
3 3 2 4

- unknown rating

- rating between 1t0 5

J. Leskovec, A. Rajaraman, J. Ullman: Mining
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Item-Item CF (|N|=2)

users
112 [3 |4 |5 |6 |7 |8 |9 |10]11]12
1 |1 3 5 5 4
2 5 |4 4 > [1 |3
g 3 |2 |4 1 |2 3 4 (3 |5
£y > |4 5 4 2
5 4 |13 |4 |2 2 |95
6 |1 3 3 2 4

. - estimate rating of movie 1 by user 5

J. Leskovec, A. Rajaraman, J. Ullman: Mining
of Massive Datasets, http://www.mmds.org
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Item-lItem CF (|N|=2)

users

1 12 |3 (4 | |6 |7 |8 |9 (10|11 |12
sim(1,m)
1 |1 3 5 5 4 1.00
2 5 |4 4 2 (1 (3 | o048
0
]
$ 3|2 |4 1 3 4 (3 |5 41
- 4 2 |4 5 4 2 -0.10
5 4 3 (4 |2 2 (5 | 031
6 |1 3 2 . 0.59
Neighbor selection: s Pesrsn corplten s sl

|ldentify movies similar to m, = (1+3+5+5+4)/5 = 3.6

movie 1, rated-by-user. 5. | Ulimy, Q%7 26 0.-0.6,0,0,17.4,0,0,1.4, 0, 0.4, 0]

of Massive Datasets, http://www. om ute cosine similarities between rows 4|



Item-lItem CF (|N|=2)

users

1 12 |3 (4 |5 |6 |7 (8 |9 |10 11 (12
sim(1,m)
1 11 3 5 5 4 1.00
2 5 |4 4 2 |1 |3 -0.18
0
(<)
-g 3 |2 |4 1 3 4 |3 |5 41
: 4 2 |4 3 4 2 -0.10
3) 4 |3 |4 |2 2 |5 -0.31
6 |1 3 2 4 0.59

Compute similarity weights:
s,3=0.41, s, ;=0.59

J. Leskovec, A. Rajaraman, J. Ullman: Mining 4
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Item-lItem CF (|N|=2)

users

1 |2 |3 4|5 |6 |7 |8 |9 [10]11 |12
K 3 5 5 4
2 5 |4 4 > |1 |3

-§§24 : 3 4 |3 |5
E 7y > |4 5 4 2
5 4 |3 |4 |2 2 |5
6 |1 3 2 4

Predict by taking weighted average: rlix=)jeN(i.x) Tiisliy -

r,s= (0.41*2 + 0.59*3) / (0.41+0.59) = 2.6

J. Leskovec, A. Rajaraman, J. Ullman: Mining
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Befﬁe:
° _ JEN(i;x) 5 ijrxj
CF: Common Practice TS

* Define similarity s; of items iand j
» Select knearest neighbors N(i; x)

—[tems most similar to i that were rated by x
* Estimate rating r,; as the weighted average:

_ EjEN(i;x)Sﬁ.(rxj_bxj)
rxi — Yxi T

Ejezv(im %

overall mean movie rating
rating deviation of user x
= (avg. rating of user x) — u
J: Leskovec, A. Rajagmarfy, Ulmarr &tiingg deviation of movie i

of Massive Datasets, http:/Avww.mmds.org “

baseline estimate for

bixi =p+bIxi+bli

u
b,



Iltem-ltem vs. User-User

Avatar LOTR Matrix Pirates

mice 0.8

0.5 0.3
it 0.9 1 08
1 04

= |n practice, it has been observed that item-item

often works better than user-user
= Why? Items are simpler, users have multiple tastes

J. Leskovec, A. Rajaraman, J. Ullman: Mining
of Massive Datasets, http://www.mmds.org
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Pros/Cons of Collaborative Filtering

+ Works for any kind of item

— No feature selection needed

- Cold Start:

— Need enough users in the system to find a match
- Sparsity:

— The user/ratings matrix is sparse

— Hard to find users that have rated the same items
e - Firstrater:

— Cannot recommend an item that has not been
previously rated

— New items, Esoteric items
- Popularity bias:
— Cannot recommend items to someone with
unique taste

— Tends to recom;m;jggm}%mgems 4



Hybrid Methods

* Implement two or more different
recommenders and combine predictions

—Perhaps using a linear model

 Add content-based methods to
collaborative filtering

—Item profiles for new item problem

—Demographics to deal with new user
problem

J. Leskovec, A. Rajaraman, J. Ullman: Mining
of Massive Datasets, http://www.mmds.org
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Problems with Error Measures

* Narrow focus on accuracy sometimes
misses the point

—Prediction Diversity
—Prediction Context
—Order of predictions

 In practice, we care only to predict high
ratings:
—RMSE might penalize a method that does

well
for high ratings and badly for others

J. Leskovec, A. Rajaraman, J. Ullman: Mining
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Collaborative Filtering: Complexity

* Expensive step is finding k most similar
customers: O(|X])

* Too expensive to do at runtime
— Could pre-compute
* Naive pre-computation takes time O(k -|X|)

— X ... set of customers
 We already know how to do this!

— Near-neighbor search in high dimensions
(LSH)

— Clustering
— Dimensionality reduction

J. Leskovec, A. Rajaraman, J. Ullman: Mining 49
of Massive Datasets, http://www.mmds.org



Tip:Add Data

* Leverage all the data

—Don’t try to reduce data size in an
effort to make fancy algorithms work

—Simple methods on large data do best

* Add more data
—e.g., add IMDB data on genres

* More data beats better algorithms

http://anand. typepad.com/datawocky/2008/03/more-data-usual.html

J. Leskovec, A. Rajaraman, J. Ullman: Mining
of Massive Datasets, http://www.mmds.org
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The Netflix Prize

* Training data
— 100 million ratings, 480,000 users, 17,770 movies
— 6 years of data: 2000-2005

* Testdata
— Last few ratings of each user (2.8 million)

— Evaluation criterion: Root Mean Square Error
(RMSE)

— Netflix's system RMSE: 0.9514
* Competition
— 2,700+ teams
— $1 million prize for 10% improvement on Netflix

J. Leskovec, A. Rajaraman, J. Ullman: Mining
of Massive Datasets, http://www.mmds.org
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The Netflix Utility Matrix R

480,000 users

<

Matrix R

17,700
movies

J. Leskovec, A. Rajaraman, J. Ullman: Mining
of Massive Datasets, http://www.mmds.org
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BellKor Recommender System

* The winner of the Netflix Challenge!

* Multi-scale modeling of the data:
Combine top level, “regional” Global effects
modeling of the data, with
a refined, local view:

— Global: Factorization
* Overall deviations of users/movi
" Collaborative

— Factorization: olla
 Addressing “regional” effects / I\ "ng

— Collaborative filtering: hd b 4 g
» Extract local patterns

J. Leskovec, A. Rajaraman, J. Ullman: Mining

of Massive Datasets, http://www.mmds.org >3



Modeling Local & Global Effects

* Global:
—Mean movie rating: 3.7 stars
— The Sixth Senseis 0.5 stars abov

—Joe rates 0.2 stars below avg.
=> Baseline estimation:
Joe will rate The Sixth Sense 4 stars

* Local neighborhood (CF/NN):
— Joe didn't like related movie Signs

—=> Final estimate:
Joe will rate The Sixth Sense 3.8 stars

J. Leskovec, A. Rajaraman, J. Ullman: Mining
of Massive Datasets, http://www.mmds.org
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Modeling Local & Global Effects

 In practice we get better estimates if we model
deviations:

;”\ =bH . + EJ'EN(i;x)Sij. "y _bx')

X1 X1 S
E]EN (i;x) U

baseline estimate for Problems/Issues:

blxi=p+blxi+bli 1) Similarity measures are “arbitrary”
2) Pairwise similarities neglect
interdependencies among users

p = overall mean rating 3) Taking a weighted average can be
b, = rating deviation of user x e

= (avg. rating of user x) — u rEStr'thg
b, = (avg. rating of movie i) — Solution: Instead of s; use w;; that

J. Leskovec,A. Raiaraman’)hr@@ﬁ’gimate directly from data

of Massive Datasets, http://www.mmds.org



Recommendations via Optimization

* Goal: Make good recommendations

— Quantify goodness using RMSE:
Lower RMSE = better recommendations

— Want to make good recommendations on items
that user has not yet seen. Can’t really do this!

— Let’s set build a system such that it works well
on known (user, item) ratings
And hope the system will also predict well the
unknown ratings

J. Leskovec, A. Rajaraman, J. Ullman: Mining

of Massive Datasets, http://www.mmds.org o6



Recommendations via Optimization

* Idea: Let’s set values wsuch that they work well
on known (user, item) ratings

e How to find such values w?

* Idea: Define an objective function
and solve the optimization problem

* Find wj that minimize SSE on tralnlng data!

blxj ) |- rlxz )72

True
rating

Predicted rating

* Think of was aJ Ly@c‘g(;r of numbers

mni

e Datasets, http://www.mmds.org 57



Latent Factor Models (e.g., SVD)
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Latent Factor Models
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Back to Our Problem

« Want to minimize SSE for unseen test data
* Idea: Minimize SSE on training data

— Want large k (# of factors) to capture all the
signals

— But, SSE on test data begins to rise for k> 2

* This is a classical example of overfitting:

— With too much freedom (too many free
parameters) the model starts fitting noise

* That is it fits too well the training data and thus
not generalizing well to unseen test data

J. Leskovec, A. Rajaraman, J. Ullman: Mining
of Massive Datasets, http://www.mmds.org
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Dealing with Missing Entries

* To solve overfitting we introduce
regularization:

— Allow rich model where there are sufficient
data

—Shrink aggressively where data are scarce .

min N i=ap) + | A3 e+ A el

trazmng
J W J

Y

error “‘length”

Ay, A, ... user set regularization parameters

Note: We do not care about the “raw” value of the objective function,
but we care in P,Q thatiachieve:the minimuwm of the objective .
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The Effect of Regularization

serious T Braveheart
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The Effect of Regularization
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The Effect of Regularization
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The Effect of Regularization

PO trainin
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Stochastic Gradient Descent

 Want to find matrices Pand Q:

min ¥ (i =q,p.)" + ﬂqupx

trainin

+A E‘
. Gradlent decent:
— Initialize Pand Q (using SVD, pretend missing ratings are

9

0)
_ DO radient descent. How to compute gradient of
5 ] a matrix?
e Pe— P- n VP Compute gradient of every
element independently!
* Q<= Q-n-VQ
* where VQis gradient/derivative of matrix Q:

and
— Here is entry fof row g; of matrix Q

— Observation; Computing gradients is slow!
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Fitting the New Model

e Solve:

min ('”xl- —(u+b, +b,+gq, px))z
Q,P ‘

(X, goodness of fit

(a3l +23
A is selected via grid-

@G5 ehAstit' gtfadient decent to find parameters

— Note: Both biases b,, b; as well as interactions
g, D, are treated as parameters (we estimate
them)

9 Px

regularlzatlon
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Performance of Various Methods

*=CF (no time bias)

=+==Basic Latent Factors

=#*=| atent Factors w/ Biases

10
Millions of parameters
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Performance of Various Methods

Global average: 1.1296

User average: 1.0651
Movie average: 1.0533

Netflix: 0.9514

Basic Collaborative filtering: 0.94

Collaborative filtering++: 0.91
Latent factors: 0.90

Latent factors+Biases: 0.89

Grand Prize: 0.8563

J. Leskovec, A Rajaraman, J. Ullman: Mining
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