CSCI1 6900: Mining Massive
Datasets

Shannon Quinn

(with content graciously and viciously borrowed from William Cohen’s 10-605
Machine Learning with Big Data and Stanford’s MMDS MOQOC http://www.mmds.org/ )
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Astronomy

* Sloan Digital Sky Survey
— New Mexico, 2000

— 140TB over 10 years

* Large Synoptic Survey
Telescope

— Chile, 2016

— Will acquire 140TB
every five days'

| http://www.economist.com/node/ 15557443



Particle Physics

* Large Hadron Collider (LHC)
— 150 million sensors

— 40 million data points / second
(before filtering)

— 100 collisions of interest (after

filtering)'

— Even after rejecting 199,999 of
every 200,000
collisions, generates 15PB of data
per year!?2

— If all collisions were recorded, LHC
would
generate 500EB of data per day
e ~900EB transmitted over IP
per year?

| http://cds.cern.ch/record/1092437/filessf CERN-Brochure-2008-00 | -Eng.pdf

2 http://www.nature.com/news/201 I/1 101 19/full/469282a.html
3 htep://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/VNI_Hyperconnectivity_ WPhtml



Biology

* Nucleotide sequences from
120,000+ species in
GenBank!

* European Bioinformatics
Institute (EBI)

— 20PB of data (genomic
data doubles in size each
year)?

— A single sequenced human
genome can be around

140GB in size?

* Heterogeneous data, spread
out over many labs

| http://www.nature.com/nature/journal/v455/n7209/full/455047a.html
2 http://www.nature.com/nature/journal/v498/n7453/full/498255a.html

DATA EXPLOSION

The amount of genetic sequencing data stored
at the European Bioinformatics Institute takes
less than a year to double in size.

200

Sequencers begin
giving flurries of data

Terabases

2004 2006 2008 2010 2012



60 to buy a disk drive that can
store all of the world’s music
5 b I I - mobile phones
l |On inuse in 2010
3 O b 2 I I - pieces of content shared
l I O n on Facebook every month

4 O (_y projected growth in
0 global data generated

$5 million vs. $400 970

growth in global
Price of the fastest supercomputer in 1975 IT spending

and an iPhone 4 with equal performance

23 terabytes data collected by 1 5 OUt Of 1 7

the US Library of Congress = Sectors in the United States have
by April 2011 more data stored per company
than the US Library of Congress




Data Mining

* Knowledge discovery
—“Big Data”
—“Predictive

Analysis”

—“Data Science”




Data Scientists in demand

Demand for deep analytical talent in the United States could be
50 to 60 percent greater than its projected supply by 2018

Supply and demand of deep analytical talent by 2018
Thousand people

140-190 440-490

50-60% gap
relative to
2018 supply

2008 Graduates Others! 2018 supply Talentgap 2018 projected
employment  with deep demand
analytical
talent

1 Other supply drivers include attrition (-), immigration (+), and reemploying previously unemployed deep analytical talent (+).
SOURCE: US Bureau of Labor Statistics; US Census; Dun & Bradstreet; company interviews; McKinsey Global Institute analysis



Why is large-scale data mining a thing?

* Why not use the same algorithms on larger data!?



Big ML c. 1993 (Cohen,“Efficient...Rule Learning”, 1JCAI 1993)
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Benchmark

CPU Time

No Pruning REP Grow MDLGrow
kr-vs-kkn 108 + 0.6 18.5 +1.8 132 +£0.6 134 £0.6
bridge-t/d 12.7 0.9 27.6 3.3 10.4 0.9 8.1 0.7
thyroid-hypo 72.6 6.5 56.6 9.4 16.4 6.2 48.1 6.3
bridge-mtrl 22.1 0.6 6.7 9.6 16.5 1.5 10.6 0.6
mushroom 35.6 0.8 78.3 7.8 44.5 1.4 45.3 1.7
thyroid-allbp 144.8 7.7 164.5 12.6 99.5 4.6 100.7 5.8
bridge-span 29.5 0.8 176.2 18.6 31.9 2.3 13.3 0.8
bridge-rel-1 44.1 1.0 294.1 36.9 34.0 2.9 14.1 1.2
bridge-type 38.9 1.1 370.6 25.2 40.5 2.3 21.2 1.0
sonar 561.0 12.9 399.2 15.1 368.2  12.0 3706 12.1
segment 815.7 239 1264.0 86.6 728.2  29.6 733.6 278
mushrooms 217.2 10.1 4081.7 4854 276.7 234 135.1 6.9
kr-vs-kkn# 154.2 11.9 5549.3  1255.3 206.6 235 53.5 4.0
rds 3189.1 84.9 | 15155.2 12824 | 2210.0 52.0 879.9 424
Average for Benchmark Set 2 || 382.03 2695.63 402.00 239.38
Average for Benchmark Set 1 108.4 384.0 105.9 100.5

Table 3: Comparing runtimes
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So in mid 1990s.....

* Experimental datasets were small

* Many commonly used algorithms were
asymptotically “slow”



Big ML c. 2001 (Banko & Brill,“Scaling to Very Very Large...”, ACL 2001)
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Task: distinguish pairs of easily-confused words (“affect” vs
“effect”) in context



Big ML c. 2001 (Banko & Brill,“Scaling to Very Very Large...”, ACL 2001)
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Active Learning with Large Corpora

Initialize: Training data consists of X words
correctly labeled
Iterate :

1) Generate a committee of classifiers using
bagging on the training set

2) Run the committee on unlabeled portion of
the training set

3) Choose M instances from the unlabeled set
for labeling - pick the M/2 with the greatest
vote entropy and then pick another M/2
randomly — and add to training set




So in 2001.....

* We're learning:
— “there’s no data like more data”

—For many tasks, there’s no real substitute for
using lots of data



...and in 2009

Eugene Wigner’s article “The Unreasonable Effectiveness of Mathematics in
the Natural Sciences” examines why so much of physics can be neatly
explained with simple mathematical formulas such as f = ma or e = mc?.
Meanwhile, sciences that involve human beings rather than elementary
particles have proven more resistant to elegant mathematics. Economists
suffer from physics envy over their inability to neatly model human
behavior. An informal, incomplete grammar of the English language runs
over 1,700 pages.

Perhaps when it comes to natural language processing and related fields,
we’re doomed to complex theories that will never have the elegance of
physics equations. But if that’s so, we should stop acting as if our goal is to
author extremely elegant theories, and instead embrace complexity and
make use of the best ally we have: the unreasonable effectiveness of data.

Norvig, Pereira, Halevy,“The Unreasonable Effectiveness of Data”, 2009



...and in 2012

Arthur Gretton. Michael Mahoneyv, Mehrvar Mohri. Ameet Talwalkar

SCAL| N G U P Gatsby Unit, UCL; Stanford; Google Research; UC Berkeley

MAC H | N E Workshop: Low-rank Methods for Large-scale Machine Learning
LEARN | N G 7-:30am - 6:30pm Saturday, December 11, 2010

Joseph Gonzalez, Sameer Singh, Graham Tavlor, James Bergstra., Alice

Parallel and Distributed Approaches Zheng, Misha Bilenko., Yucheng Low, Yoshua Bengio, Michael Franklin,
Carlos Guestrin, Andrew McCallum, Alexander Smola, Michael Jordan,
EDITED BY Sugato Basu
RON BEKKERMAN
MIKHAIL BILENKO Carnegie Mellon University; University of Massachusetts, Amherst; New
JoHN LanGForD York University; Harvard; Microsoft Research; Microsoft Research;

Carnegie Mellon University; University of Montreal; UC Berkeley; Carnegie
Mellon University; UMass Amherst; Yahoo! Research; University of
California; Google Research

Workshop: Big Learning: Algorithms, Systems, and Tools for Learning at Scale

Location: Montebajo: Theater Dec 201 |

SMLA Workshop 2010

29 June - o1 July, 2010, Bradford, UK

International Workshop on
Scalable Machine Learning and Applications (SMLA-10)
In conjunction with CIT 2010




...and in 2013

Forget YOLO: Why 'Big Data' Should Be The Word Of The Year

by GEOFF NUNBERG

December 20, 2012 10:58 AM

Playlist

Listen to the Storv O
One of the biggest emerging stories about the campaign that has ended is how Mr. Obama’s

team used information and technology to outmatch and outwit a galvanized and incredibly

~well-financed opposition.

; S 'W™ #  probably , ape e
~ :Q'@YJ ranencit Was the buzz of Silicon Valley ; i

011 Wifed anu THIG LLUUVINIVITHOL,, AU 1L VWAoo UIT VUL VI vinuwuii VGIIG’ amnmg uavOS. And
if the phrase wasn't as familiar to many people as "Etch A Sketch" and "47
percent," Big Data had just as much to do with President Obama's victory as

they did.

Whether it's explicitly mentioned or not, the Big Data phenomenon has been all
's about intrusions on our

H H n n

it will be around a lot longer than "gangnam style." | sweeps or the ads that
track us as we wander around the Web. It has even turned statistics into a sexy
major. So if you haven't heard the phrase yet, there's still time — it will be around
a lot longer than "gangnam style."



How do we use very large amounts of data?

*
* Working with big data is not about
— code optimization

— learning details of todays hardware/software:
* Graphlab, Hadoop, parallel hardware, ....

* Working with big data is about

— Unc
— Unc

— Und

erstand
erstand

erstand

ing the cost of what you want to do
ing what the tools that are available offer
ing how much can be accomplished with

linear or nearly-linear operations (e.g., sorting, ...)

— Understanding how to organize your computations so
that they effectively use whatever’s fast

— Understanding how to test/debug/verify with large data

*according to William Cohen / Shannon Quinn



Asymptotic Analysis: Basic Principles
Usually we only care about positive f(n), g(n), n here...
f(m)eO0(g(n)) iff dk,n,:Vn>ny, f(x)<k- g(n)
f(n)eQ(g(n)) iff dk,n,:Vn>n,, f(x)=k-g(n)



Asymptotic Analysis: Basic Principles

Less pedantically:

f(n)=0(g(n)) iff dk,n,:Vn>n,, f(x)<k-g(n)
f(n)=Q(g(n)) iff dk,n,:Vn>n,, f(x)=k- g(n)

Some useful rules:

0(714 -+ 7’13) = O(n4) Only highest-order terms matter

0(3}14 + 127}13) — O(n4) Leading constants don’t matter

O(logn®) = O(4-logn)=0(logn)

Degree of something in a log doesn’t matter



(ab+bcd+defg) with 20% noise
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Where do asymptotics break down?

* When the constants are too big
—or n is too small
* When we can’t predict what the program will do

—Eg, how many iterations before convergence!
Does it depend on data size or not!

* When there are different types of operations
with different costs

—We need to understand what we should count



What do we count?

Compilers don’t warn Jeff Dean. Jeff Dean warns compilers.

Jeff Dean builds his code before committing it, but only to
check for compiler and linker bugs.

Jeff Dean writes directly in binary. He then writes the source
code as a documentation for other developers.

Jeff Dean once shifted a bit so hard, it ended up on another
computer.

When Jeff Dean has an ergonomic evaluation, it is for the
protection of his keyboard.

gcc -O4 emails your code to Jeff Dean for a rewrite.

When he heard that Jeff Dean's autobiography would be
exclusive to the platform, Richard Stallman bought a Kindle.

Jeff Dean puts his pants on one leg at a time, but if he had
more legs, you'd realize the algorithm is actually only O(logn)




Numbers (Jeff Dean says) Everyone

Should Know

L1 cache reference

Branch mispredict

L2 cache reference

Mutex lock/unlock

Main memory reference

Compress 1K bytes with Zippy

Send 2K bytes over 1 Gbps network
Read 1 MB sequentially from memory
Round trip within same datacenter
Disk seek

Read 1 MB sequentially from network
Read 1 MB sequentially from disk
Send packet CA->Netherlands->CA
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A typical CPU (not to scale)

K8 core in the AMD Athlon 64 CPU

i Main Memory
Hard disk | <=8GB
(ITb) 128 bigger
. - Other
CPUs
L2 Unified
1 MB 16-way
A A A A
| 6x bigger
L2 ITLB L2 DTLB
512 entries 512 entries
4-way 4-wav
i I 256x bigger
\ J Y + Y
L1 Instruction Cache L1ITLB L1 DTLB | L1 Data Cache
64KB 2-way 4 KB 4/2 MB 4 KB a2 MB 1 | 64KB 2-way 2 ports
32 entries| 8 entries | |32 entries|8 entries
full assoc |full assoc| |full assoc full assoc
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Numbers (Jeff Dean says) Everyone
Should Know

L1 cache reference

Branch mispredict

L2 cache reference

Mutex lock/unlock

Main memory reference

Compress 1K bytes with Zippy

Send 2K bytes over 1 Gbps network
Read 1 MB sequentially from memory
Round trip within same datacenter
Disk seek

Read 1 MB sequentially from network
Read 1 MB sequentially from disk
Send packet CA->Netherlands->CA
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What do we count?

* Compilers don’t warn Jeff Dean. Jeff Dean warns compilers.

* Memory access/instructions are qualitatively
different from disk access

* Seeks are quadlitatively different from sequential
reads on disk

* Cache, disk fetches, etc work best when you
stream through data sequentially

* Best case for data processing: stream through
the data once in sequential order, as it’s found
on disk.



Other lessons -?

—ncoding Your Data

« CPUs are fast, memory/bandwidth are precious, ergo...
— Variable-length encodings
— Compression
— Compact in-memory representations

« Compression very importanfk aspect of many systems
— Inverted index posting list formats
— storage systems for persistent data  * but not important
enough for this class’s
assignments....



What this course *is*™

e QOverview of the current “field”’ of data science
and current frameworks

* First-hand experience with developing algorithms
for large datasets

—Hadoop, Spark
—Deployment on Amazon EC2

* Emphasis on software engineering principles



What this course is *not™

* Introduction to programming
—*Must* know Java
* Introduction to statistics and linear algebra

— Self-evaluation on course website

* | will help with git and BitBucket

* | will help with Hadoop and Spark

* | will help with stats and linear algebra



Administrivia

* Office Hours: [TBD]

o Mailing list: csci6900-s | 5@listserv.cc.uga.edu

e Course website: http://cobweb.cs.uga.edu/~squinn/mmd s|5/
* Shannon Quinn (that’s me)

— 2008: Graduated from Georgia Tech [go Jackets!]
in Computer Science (B.S.)

—2010: Graduated from Carnegie Mellon in
Computational Biology (M.S.)

— 2014: Graduated from University of Pittsburgh in
Computational Biology (Ph.D.)

— Worked at IBM, Google




Administrivia

* Programming Language:

—Java and Hadoop

—Scala / Python / Java and Spark

— Most assignments will not use anything else
* Resources:

— Your desktop/laptop

— GSRC Hadoop virtual cluster
* Getting this set up now...stay tuned

— Amazon Elastic Cloud
* Amazon EC2 [http://aws.amazon.com/ec2/]
* Allocation: $100 worth of time per student




Grading breakdown

* 40% assignments

— Triweekly programming assignments

* Not a lot of lines of code, but it will take you time to
get them right

— There are 4 possible assignments, you only need
to do 3

* 35% project
— 5-week project at end of course
— | strongly encourage groups of 2
* 25% midterm
* |10% student research presentations



Coding

* All assignments will be committed to our team
page on BitBucket

— https://bitbucket.org/csci6900-s | 5/

— Concurrent versioning system: git

—| want to see progress!
* First two assignments: Java and Hadoop
* Second two assignments: Spark

—Spark has Python, Scala, and Java handles



Midterm

e Come to lecture

— (that’s not the midterm, but if you come to
lecture, the midterm will be easy)



Student research presentations

* Each student presents once over the course of
the semester

Basic idea:
Pick a paper from the “big data” literature
Prepare a 30-40 minute presentation

Lead a 20-30 minute discussion
27

L b W IND —

Profit!



Project

* More later

—We will add a page with pointers to datasets
and ideas for projects

—Lots about scalable ML is still not well-
understood so there’s lots of opportunities for
a meaningful study



To-do lists

YOU! Me
Install git  Post suggested papers for
Create an account on BitBucket student presentations on
Email me your account name so | :
can add you to the BitBucket website
team * Post updated syllabus on
Check out the “Administration” website

repository on BitBucket, and edit
the STUDENT _LECTURES.md
file to sign up for a presentation
slot

Check the “MAILING_LIST.md”
file to ensure your information is

correct



Questions?
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