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Shannon Quinn 

(with content graciously and viciously borrowed from William Cohen’s 10-605 
Machine Learning with Big Data and Stanford’s MMDS MOOC http://www.mmds.org/ ) 



“Big Data” 



Astronomy 

•  Sloan Digital Sky Survey 
–  New Mexico, 2000 
–  140TB over 10 years 

•  Large Synoptic Survey 
Telescope 
–  Chile, 2016 
–  Will acquire 140TB 

every five days1 

1 http://www.economist.com/node/15557443 



Particle Physics 
•  Large Hadron Collider (LHC) 

–  150 million sensors 
–  40 million data points / second 

(before filtering) 
–  100 collisions of interest (after 

filtering)1 

–  Even after rejecting 199,999 of 
every 200,000 
collisions, generates 15PB of data 
per year1,2 

–  If all collisions were recorded, LHC 
would 
generate 500EB of data per day 
•  ~900EB transmitted over IP 

per year3 

2 http://www.nature.com/news/2011/110119/full/469282a.html 

1 http://cds.cern.ch/record/1092437/files/CERN-Brochure-2008-001-Eng.pdf 

3 http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/VNI_Hyperconnectivity_WP.html 



Biology 
•  Nucleotide sequences from 

120,000+ species in 
GenBank1 

•  European Bioinformatics 
Institute (EBI) 
–  20PB of data (genomic 

data doubles in size each 
year)2 

–  A single sequenced human 
genome can be around 
140GB in size2 

•  Heterogeneous data, spread 
out over many labs 

1 http://www.nature.com/nature/journal/v455/n7209/full/455047a.html 

2 http://www.nature.com/nature/journal/v498/n7453/full/498255a.html 





Data Mining 

•  Knowledge discovery 
– “Big Data” 
– “Predictive 

Analysis” 
– “Data Science” 



Data Scientists in demand 



Why is large-scale data mining a thing? 

•  Why not use the same algorithms on larger data? 



Big ML c. 1993 (Cohen, “Efficient…Rule Learning”,  IJCAI 1993) 





Related 
paper from  
1995… 



So in mid 1990’s….. 

•  Experimental datasets were small 
•  Many commonly used algorithms were 

asymptotically “slow” 



Big ML c. 2001 (Banko & Brill, “Scaling to Very Very Large…”, ACL 2001) 

Task: distinguish pairs of easily-confused words (“affect” vs 
“effect”) in context 



Big ML c. 2001 (Banko & Brill, “Scaling to Very Very Large…”, ACL 2001) 



So in 2001….. 

•  We’re learning: 
–  “there’s no data like more data” 
– For many tasks, there’s no real substitute for 

using lots of data 



…and in 2009 
Eugene Wigner’s article “The Unreasonable Effectiveness of Mathematics in 
the Natural Sciences” examines why so much of physics can be neatly 
explained with simple mathematical formulas such as f = ma or e = mc2. 
Meanwhile, sciences that involve human beings rather than elementary 
particles have proven more resistant to elegant mathematics. Economists 
suffer from physics envy over their inability to neatly model human 
behavior. An informal, incomplete grammar of the English language runs 
over 1,700 pages.  
 
Perhaps when it comes to natural language processing and related fields, 
we’re doomed to complex theories that will never have the elegance of 
physics equations. But if that’s so, we should stop acting as if our goal is to 
author extremely elegant theories, and instead embrace complexity and 
make use of the best ally we have: the unreasonable effectiveness of data. 

Norvig, Pereira, Halevy, “The Unreasonable Effectiveness of Data”, 2009 



…and in 2012 

Dec 2011 



…and in 2013 



How do we use very large amounts of data? 
•  Working with big data is not about  
–  code optimization 
–  learning details of todays hardware/software: 
•  GraphLab, Hadoop, parallel hardware, …. 

•  Working with big data is about  
– Understanding the cost of what you want to do 
– Understanding what the tools that are available offer 
– Understanding how much can be accomplished with 

linear or nearly-linear operations (e.g., sorting, …) 
– Understanding how to organize your computations so 

that they effectively use whatever’s fast 
– Understanding how to test/debug/verify with large data 

*

* according to William Cohen / Shannon Quinn 



Asymptotic Analysis: Basic Principles 
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Usually we only care about positive f(n), g(n), n here… 



Asymptotic Analysis: Basic Principles 
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Less pedantically: 

Some useful rules: 
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Only highest-order terms matter 

Leading constants don’t matter 

Degree of something in a log doesn’t matter 



Empirical 
analysis of 
complexity: 
plot run-time 
on a log-log 
plot and 
measure the 
slope (using 
linear 
regression) 



Where do asymptotics break down? 

•  When the constants are too big 
– or n is too small 

•  When we can’t predict what the program will do 
– Eg, how many iterations before convergence? 

Does it depend on data size or not? 
•  When there are different types of operations 

with different costs 
– We need to understand what we should count 



What do we count? 

•  Compilers don’t warn Jeff Dean.  Jeff Dean warns compilers. 
•   Jeff Dean builds his code before committing it, but only to 

check for compiler and linker bugs. 
•  Jeff Dean writes directly in binary. He then writes the source 

code as a documentation for other developers. 
•  Jeff Dean once shifted a bit so hard, it ended up on another 

computer. 
•   When Jeff Dean has an ergonomic evaluation, it is for the 

protection of his keyboard. 
•  gcc -O4 emails your code to Jeff Dean for a rewrite. 
•  When he heard that Jeff Dean's autobiography would be 

exclusive to the platform, Richard Stallman bought a Kindle. 
•  Jeff Dean puts his pants on one leg at a time, but if he had 

more legs, you’d realize the algorithm is actually only O(logn) 



Numbers (Jeff Dean says) Everyone 
Should Know 

 



A typical CPU (not to scale) 
K8 core in the AMD Athlon 64 CPU 

16x bigger 

256x bigger 

Hard disk 
(1Tb) 128x bigger 



A typical disk 



Numbers (Jeff Dean says) Everyone 
Should Know 

 

~= 10x 

~= 15x 

~= 100,000x 

40x 



What do we count? 

•  Compilers don’t warn Jeff Dean.  Jeff Dean warns compilers. 
•  …. 

•  Memory access/instructions are qualitatively 
different from disk access 

•  Seeks are qualitatively different from sequential 
reads on disk 

•  Cache, disk fetches, etc work best when you 
stream through data sequentially 

•  Best case for data processing: stream through 
the data once in sequential order, as it’s found 
on disk. 



Other lessons -? 

* but not important 
enough for this class’s 
assignments…. 

* 



What this course *is* 

•  Overview of the current “field” of data science 
and current frameworks 

•  First-hand experience with developing algorithms 
for large datasets 
– Hadoop, Spark 
– Deployment on Amazon EC2 

•  Emphasis on software engineering principles 



What this course is *not* 

•  Introduction to programming 
– *Must* know Java 

•  Introduction to statistics and linear algebra 
– Self-evaluation on course website 

•  I will help with git and BitBucket 
•  I will help with Hadoop and Spark 
•  I will help with stats and linear algebra 



Administrivia 
•  Office Hours:  [TBD] 
•  Mailing list: csci6900-s15@listserv.cc.uga.edu 

•  Course website: http://cobweb.cs.uga.edu/~squinn/mmd_s15/ 

•  Shannon Quinn (that’s me) 
– 2008: Graduated from Georgia Tech [go Jackets!] 

in Computer Science (B.S.) 
– 2010: Graduated from Carnegie Mellon in 

Computational Biology (M.S.) 
– 2014: Graduated from University of Pittsburgh in 

Computational Biology (Ph.D.) 
– Worked at IBM, Google 



Administrivia 
•  Programming Language:   
– Java and Hadoop 
– Scala / Python / Java and Spark 
– Most assignments will not use anything else 

•  Resources: 
– Your desktop/laptop 
– GSRC Hadoop virtual cluster 
• Getting this set up now…stay tuned 

– Amazon Elastic Cloud 
•  Amazon EC2 [http://aws.amazon.com/ec2/] 
•  Allocation: $100 worth of time per student 



Grading breakdown 
•  40% assignments 
– Triweekly programming assignments 
• Not a lot of lines of code, but it will take you time to 

get them right 
– There are 4 possible assignments, you only need 

to do 3 
•  35% project 
– 5-week project at end of course 
– I strongly encourage groups of 2 

•  25% midterm 
•  10% student research presentations 



Coding 

•  All assignments will be committed to our team 
page on BitBucket 
– https://bitbucket.org/csci6900-s15/ 
– Concurrent versioning system: git 
– I want to see progress! 

•  First two assignments: Java and Hadoop 
•  Second two assignments: Spark 
– Spark has Python, Scala, and Java handles 



Midterm 

•  Come to lecture 
– (that’s not the midterm, but if you come to 

lecture, the midterm will be easy) 



Student research presentations 
•  Each student presents once over the course of 

the semester 
 
Basic idea: 
1.  Pick a paper from the “big data” literature 
2.  Prepare a 30-40 minute presentation 
3.  Lead a 20-30 minute discussion 
4.  ??? 
5.  Profit! 



Project 

•  More later 
– We will add a page with pointers to datasets 

and ideas for projects 
– Lots about scalable ML is still not well-

understood so there’s lots of opportunities for 
a meaningful study 



To-do lists 

YOU! 
•  Install git 
•  Create an account on BitBucket 
•  Email me your account name so I 

can add you to the BitBucket 
team 

•  Check out the “Administration” 
repository on BitBucket, and edit 
the STUDENT_LECTURES.md 
file to sign up for a presentation 
slot 

•  Check the “MAILING_LIST.md” 
file to ensure your information is 
correct 

Me 
•  Post suggested papers for 

student presentations on 
website 

•  Post updated syllabus on 
website 



Questions? 


