
CSCI 6900: Mining Massive
Datasets
Shannon Quinn

(with content graciously and viciously borrowed from William Cohen’s 10-605
Machine Learning with Big Data and Stanford’s MMDS MOOC http://www.mmds.org/)

“Big Data”

Astronomy

•  Sloan Digital Sky Survey
–  New Mexico, 2000
–  140TB over 10 years

•  Large Synoptic Survey
Telescope
–  Chile, 2016
–  Will acquire 140TB

every five days1

1 http://www.economist.com/node/15557443

Particle Physics
•  Large Hadron Collider (LHC)

–  150 million sensors
–  40 million data points / second

(before filtering)
–  100 collisions of interest (after

filtering)1

–  Even after rejecting 199,999 of
every 200,000
collisions, generates 15PB of data
per year1,2

–  If all collisions were recorded, LHC
would
generate 500EB of data per day
•  ~900EB transmitted over IP

per year3

2 http://www.nature.com/news/2011/110119/full/469282a.html

1 http://cds.cern.ch/record/1092437/files/CERN-Brochure-2008-001-Eng.pdf

3 http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/VNI_Hyperconnectivity_WP.html

Biology
•  Nucleotide sequences from

120,000+ species in
GenBank1

•  European Bioinformatics
Institute (EBI)
–  20PB of data (genomic

data doubles in size each
year)2

–  A single sequenced human
genome can be around
140GB in size2

•  Heterogeneous data, spread
out over many labs

1 http://www.nature.com/nature/journal/v455/n7209/full/455047a.html

2 http://www.nature.com/nature/journal/v498/n7453/full/498255a.html

Data Mining

•  Knowledge discovery
– “Big Data”
– “Predictive

Analysis”
– “Data Science”

Data Scientists in demand

Why is large-scale data mining a thing?

•  Why not use the same algorithms on larger data?

Big ML c. 1993 (Cohen, “Efficient…Rule Learning”, IJCAI 1993)

Related
paper from
1995…

So in mid 1990’s…..

•  Experimental datasets were small
•  Many commonly used algorithms were

asymptotically “slow”

Big ML c. 2001 (Banko & Brill, “Scaling to Very Very Large…”, ACL 2001)

Task: distinguish pairs of easily-confused words (“affect” vs
“effect”) in context

Big ML c. 2001 (Banko & Brill, “Scaling to Very Very Large…”, ACL 2001)

So in 2001…..

•  We’re learning:
–  “there’s no data like more data”
– For many tasks, there’s no real substitute for

using lots of data

…and in 2009
Eugene Wigner’s article “The Unreasonable Effectiveness of Mathematics in
the Natural Sciences” examines why so much of physics can be neatly
explained with simple mathematical formulas such as f = ma or e = mc2.
Meanwhile, sciences that involve human beings rather than elementary
particles have proven more resistant to elegant mathematics. Economists
suffer from physics envy over their inability to neatly model human
behavior. An informal, incomplete grammar of the English language runs
over 1,700 pages.

Perhaps when it comes to natural language processing and related fields,
we’re doomed to complex theories that will never have the elegance of
physics equations. But if that’s so, we should stop acting as if our goal is to
author extremely elegant theories, and instead embrace complexity and
make use of the best ally we have: the unreasonable effectiveness of data.

Norvig, Pereira, Halevy, “The Unreasonable Effectiveness of Data”, 2009

…and in 2012

Dec 2011

…and in 2013

How do we use very large amounts of data?
•  Working with big data is not about
–  code optimization
–  learning details of todays hardware/software:
•  GraphLab, Hadoop, parallel hardware, ….

•  Working with big data is about
– Understanding the cost of what you want to do
– Understanding what the tools that are available offer
– Understanding how much can be accomplished with

linear or nearly-linear operations (e.g., sorting, …)
– Understanding how to organize your computations so

that they effectively use whatever’s fast
– Understanding how to test/debug/verify with large data

*

* according to William Cohen / Shannon Quinn

Asymptotic Analysis: Basic Principles

)()(,:, iff))(()(00 ngkxfnnnkngOnf ⋅≤>∀∃∈

)()(,:, iff))(()(00 ngkxfnnnkngnf ⋅≥>∀∃Ω∈

Usually we only care about positive f(n), g(n), n here…

Asymptotic Analysis: Basic Principles

)()(,:, iff))(()(00 ngkxfnnnkngOnf ⋅≤>∀∃=

)()(,:, iff))(()(00 ngkxfnnnkngnf ⋅≥>∀∃Ω=

Less pedantically:

Some useful rules:

)O()(434 nnnO =+

)O()1273(434 nnnO =+

)loglog4log 4 nO(n) O() nO(=⋅=

Only highest-order terms matter

Leading constants don’t matter

Degree of something in a log doesn’t matter

Empirical
analysis of
complexity:
plot run-time
on a log-log
plot and
measure the
slope (using
linear
regression)

Where do asymptotics break down?

•  When the constants are too big
– or n is too small

•  When we can’t predict what the program will do
– Eg, how many iterations before convergence?

Does it depend on data size or not?
•  When there are different types of operations

with different costs
– We need to understand what we should count

What do we count?

•  Compilers don’t warn Jeff Dean. Jeff Dean warns compilers.
•  Jeff Dean builds his code before committing it, but only to

check for compiler and linker bugs.
•  Jeff Dean writes directly in binary. He then writes the source

code as a documentation for other developers.
•  Jeff Dean once shifted a bit so hard, it ended up on another

computer.
•  When Jeff Dean has an ergonomic evaluation, it is for the

protection of his keyboard.
•  gcc -O4 emails your code to Jeff Dean for a rewrite.
•  When he heard that Jeff Dean's autobiography would be

exclusive to the platform, Richard Stallman bought a Kindle.
•  Jeff Dean puts his pants on one leg at a time, but if he had

more legs, you’d realize the algorithm is actually only O(logn)

Numbers (Jeff Dean says) Everyone
Should Know

A typical CPU (not to scale)
K8 core in the AMD Athlon 64 CPU

16x bigger

256x bigger

Hard disk
(1Tb) 128x bigger

A typical disk

Numbers (Jeff Dean says) Everyone
Should Know

~= 10x

~= 15x

~= 100,000x

40x

What do we count?

•  Compilers don’t warn Jeff Dean. Jeff Dean warns compilers.
•  ….

•  Memory access/instructions are qualitatively
different from disk access

•  Seeks are qualitatively different from sequential
reads on disk

•  Cache, disk fetches, etc work best when you
stream through data sequentially

•  Best case for data processing: stream through
the data once in sequential order, as it’s found
on disk.

Other lessons -?

* but not important
enough for this class’s
assignments….

*

What this course *is*

•  Overview of the current “field” of data science
and current frameworks

•  First-hand experience with developing algorithms
for large datasets
– Hadoop, Spark
– Deployment on Amazon EC2

•  Emphasis on software engineering principles

What this course is *not*

•  Introduction to programming
– *Must* know Java

•  Introduction to statistics and linear algebra
– Self-evaluation on course website

•  I will help with git and BitBucket
•  I will help with Hadoop and Spark
•  I will help with stats and linear algebra

Administrivia
•  Office Hours: [TBD]
•  Mailing list: csci6900-s15@listserv.cc.uga.edu

•  Course website: http://cobweb.cs.uga.edu/~squinn/mmd_s15/

•  Shannon Quinn (that’s me)
– 2008: Graduated from Georgia Tech [go Jackets!]

in Computer Science (B.S.)
– 2010: Graduated from Carnegie Mellon in

Computational Biology (M.S.)
– 2014: Graduated from University of Pittsburgh in

Computational Biology (Ph.D.)
– Worked at IBM, Google

Administrivia
•  Programming Language:
– Java and Hadoop
– Scala / Python / Java and Spark
– Most assignments will not use anything else

•  Resources:
– Your desktop/laptop
– GSRC Hadoop virtual cluster
• Getting this set up now…stay tuned

– Amazon Elastic Cloud
•  Amazon EC2 [http://aws.amazon.com/ec2/]
•  Allocation: $100 worth of time per student

Grading breakdown
•  40% assignments
– Triweekly programming assignments
• Not a lot of lines of code, but it will take you time to

get them right
– There are 4 possible assignments, you only need

to do 3
•  35% project
– 5-week project at end of course
– I strongly encourage groups of 2

•  25% midterm
•  10% student research presentations

Coding

•  All assignments will be committed to our team
page on BitBucket
– https://bitbucket.org/csci6900-s15/
– Concurrent versioning system: git
– I want to see progress!

•  First two assignments: Java and Hadoop
•  Second two assignments: Spark
– Spark has Python, Scala, and Java handles

Midterm

•  Come to lecture
– (that’s not the midterm, but if you come to

lecture, the midterm will be easy)

Student research presentations
•  Each student presents once over the course of

the semester

Basic idea:
1.  Pick a paper from the “big data” literature
2.  Prepare a 30-40 minute presentation
3.  Lead a 20-30 minute discussion
4.  ???
5.  Profit!

Project

•  More later
– We will add a page with pointers to datasets

and ideas for projects
– Lots about scalable ML is still not well-

understood so there’s lots of opportunities for
a meaningful study

To-do lists

YOU!
•  Install git
•  Create an account on BitBucket
•  Email me your account name so I

can add you to the BitBucket
team

•  Check out the “Administration”
repository on BitBucket, and edit
the STUDENT_LECTURES.md
file to sign up for a presentation
slot

•  Check the “MAILING_LIST.md”
file to ensure your information is
correct

Me
•  Post suggested papers for

student presentations on
website

•  Post updated syllabus on
website

Questions?

