A [somewhat] Quick Overview of Probability

Shannon Quinn
CSCI 6900

Probabilistic and Bayesian Analytics

Note to other teachers and users of these slides. Andrew would be delighted if you found this source material useful in giving your own lectures. Feel free to use these slides verbatim, or to modify them to fit your own needs. PowerPoint originals are available. If you make use of a significant portion of these slides in your own lecture, please include this message, or the following link to the source repository of Andrew's tutorials: http://www.cs.cmu.edu/~awm/ tutorials. Comments and corrections gratefully received.

Andrew W. Moore
School of Computer Science
Carnegie Mellon University
www.cs.cmu.edu/~awm awm@cs.cmu.edu

412-268-7599

Probability - what you need to really, really know

- Probabilities are cool

Probability - what you need to really, really know

- Probabilities are cool
- Random variables and events

Discrete Random Variables

- A is a Boolean-valued random variable if
- A denotes an event,
- there is uncertainty as to whether A occurs.
- Examples
- A = The US president in 2023 will be male
- A = You wake up tomorrow with a headache
- A = You have Ebola
- A = the $1,000,000,000,000^{\text {th }}$ digit of π is 7
- Define $P(A)$ as "the fraction of possible worlds in which A is true"
- We're assuming all possible worlds are equally probable

Discrete Random Variables

- A is a Boolean-valued random variable if
- A denotes an event a possible outcome of an "experiment"
- there is uncertainty as to whether A occurs.
the experiment is not deterministic
- Define $\mathrm{P}(\mathrm{A})$ as "the fraction of experiments in which A is true"
- We're assuming all possible outcomes are equiprobable
- Examples
- You roll two 6-sided die (the experiment) and get doubles ($\mathrm{A}=$ doubles, the outcome)
- I pick two students in the class (the experiment) and they have the same birthday ($\mathrm{A}=$ same birthday, the outcome)

Visualizing A

Event space of all possible worlds

Its area is 1

$\mathrm{P}(\mathrm{A})=$ Area of reddish oval

Probability - what you need to really, really know

- Probabilities are cool
- Random variables and events
- There is One True Way to talk about uncertainty: the Axioms of Probability

The Axioms of Probability

- $0<=\mathrm{P}(\mathrm{A})<=1$
- $\mathrm{P}($ True $)=1$
- $\mathrm{P}($ False $)=0$
- $\mathrm{P}(\mathrm{A}$ or B$)=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A}$ and B$)$
"Dice"
"Experiments"

Interpreting the axioms

- $0<=P(A)<=1$
- $\mathrm{P}($ True $)=1$
- P (False) $=0$
- $\mathrm{P}(\mathrm{A}$ or B$)=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A}$ and B$)$

The area of A can't get any smaller than 0

And a zero area would mean no world could ever have A true

Interpreting the axioms

- $0<=P(A)<=1$
- $\mathrm{P}($ True $)=1$
- $\mathrm{P}($ False $)=0$
- $\mathrm{P}(\mathrm{A}$ or B$)=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A}$ and B$)$

The area of A can't get any bigger than 1

And an area of 1 would mean all worlds will have A true

Interpreting the axioms

- $0<=\mathrm{P}(\mathrm{A})<=1$
- $\mathrm{P}($ True $)=1$
- P (False) $=0$
- $P(A$ or $B)=P(A)+P(B)-P(A$ and $B)$

Interpreting the axioms

- $0<=\mathrm{P}(\mathrm{A})<=1$
- $\mathrm{P}($ True $)=1$
- $\mathrm{P}($ False $)=0$
- $\mathrm{P}(\mathrm{A}$ or B$)=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A}$ and B$)$

Simple addition and subtraction

Theorems from the Axioms

- $0<=\mathrm{P}(\mathrm{A})<=1, \mathrm{P}($ True $)=1, \mathrm{P}($ False $)=0$
- $\mathrm{P}(\mathrm{A}$ or B$)=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A}$ and B$)$

$$
\begin{align*}
& \rightarrow \mathrm{P}(\operatorname{not} \mathrm{~A})=\mathrm{P}(\sim \mathrm{~A})=1-\mathrm{P}(\mathrm{~A}) \\
& \mathrm{P}(\mathrm{~A} \text { or } \sim \mathrm{A})=1 \quad \mathrm{P}(\mathrm{~A} \text { and } \sim \mathrm{A})=0 \\
& \mathrm{P}(\mathrm{~A} \text { or } \sim \mathrm{A})=\mathrm{P}(\mathrm{~A})+\mathrm{P}(\sim \mathrm{~A})-\mathrm{P}(\mathrm{~A} \text { and } \sim \mathrm{A}) \\
& 1=\mathrm{P}(\mathrm{~A})+\mathrm{P}(\sim \mathrm{~A})- \tag{0}
\end{align*}
$$

Elementary Probability in Pictures

- $\mathrm{P}(\sim \mathrm{A})+\mathrm{P}(\mathrm{A})=1$

Another important theorem

- $0<=\mathrm{P}(\mathrm{A})<=1, \mathrm{P}($ True $)=1, \mathrm{P}($ False $)=0$
- $\mathrm{P}(\mathrm{A}$ or B$)=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A}$ and B$)$

$$
\Rightarrow P(A)=P(A \wedge B)+P(A \wedge \sim B)
$$

$A=A$ and $(B$ or $\sim B)=(A$ and $B)$ or $(A$ and $\sim B)$
$\mathrm{P}(\mathrm{A})=\mathrm{P}(\mathrm{A}$ and B$)+\mathrm{P}(\mathrm{A}$ and $\sim \mathrm{B})-\mathrm{P}((\mathrm{A}$ and B$)$ and $(\mathrm{A}$ and -B$))$ $\mathrm{P}(\mathrm{A})=\mathrm{P}(\mathrm{A}$ and B$)+\mathrm{P}(\mathrm{A}$ and $\sim \mathrm{B})-\mathrm{P}(\mathrm{A}$ and A and B and $\sim \mathrm{D})$

Elementary Probability in Pictures

- $\mathrm{P}(\mathrm{A})=\mathrm{P}\left(\mathrm{A}^{\wedge} \mathrm{B}\right)+\mathrm{P}\left(\mathrm{A}^{\wedge} \sim \mathrm{B}\right)$

Probability - what you need to really, really know

- Probabilities are cool
- Random variables and events
- The Axioms of Probability
- Independence

Independent Events

- Definition: two events A and B are independent if $\operatorname{Pr}(\mathrm{A}$ and B$)=\operatorname{Pr}(\mathrm{A}) * \operatorname{Pr}(\mathrm{~B})$.
- Intuition: outcome of A has no effect on the outcome of B (and vice versa).
- We need to assume the different rolls are independent to solve the problem.
- You frequently need to assume the independence of something to solve any learning problem.

Some practical problems

This is a set of polyhedral dice that will roll high/low numbers. The set consists of 3 six-sided dice (1 high, 1 low, 1 standard), 2 ten-sided dice (1 high, 1 standard), and 2 twenty-sided dice (1 high, 1 standard).

- You're the DM in a D\&D game.
- Joe brings his own d20 and throws 4 critical hits in a row to start off
- DM=dungeon master
- D20 = 20-sided die
- "Critical hit" $=19$ or 20
- What are the odds of that happening with a fair die?
- $\mathrm{Ci}=$ critical hit on trial $\mathrm{i}, \mathrm{i}=1,2,3,4$
- $\mathrm{P}(\mathrm{C} 1$ and $\mathrm{C} 2 \ldots$ and C 4$)=\mathrm{P}(\mathrm{C} 1)^{*} \ldots{ }^{*} \mathrm{P}(\mathrm{C} 4)=(1 / 10)^{\wedge} 4$

Multivalued Discrete Random Variables

- Suppose A can take on more than 2 values
- A is a random variable with arity k if it can take on exactly one value out of $\left\{v_{1}, v_{2}, . . v_{k}\right\}$
- Example: V=\{aaliyah, aardvark,, zymurge, zynga\}
- Example: V=\{aaliyah_aardvark, ..., zynga_zymgurgy\}
- Thus...

$$
\begin{aligned}
& P\left(A=v_{i} \wedge A=v_{j}\right)=0 \text { if } i \neq j \\
& P\left(A=v_{1} \vee A=v_{2} \vee A=v_{k}\right)=1
\end{aligned}
$$

Terms: Binomials and Multinomials

- Suppose A can take on more than 2 values
- A is a random variable with arity k if it can take on exactly one value out of $\left\{v_{1}, v_{2}, . . v_{k}\right\}$
- Example: V=\{aaliyah, aardvark,, zymurge, zynga\}
- Example: V=\{aaliyah_aardvark, ..., zynga_zymgurgy\}
- The distribution $\operatorname{Pr}(\mathrm{A})$ is a multinomial
- For $k=2$ the distribution is a binomial

More about Multivalued Random Variables

- Using the axioms of probability and assuming that A obeys. $P\left(A=v_{i} \wedge A=v_{j}\right)=0$ if $i \neq j$

$$
P\left(A=v_{1} \vee A=v_{2} \vee A=v_{k}\right)=1
$$

- It's easy to prove that

$$
\begin{aligned}
& P\left(A=v_{1} \vee A=v_{2} \vee A=v_{i}\right)=\sum_{j=1}^{i} P\left(A=v_{j}\right)
\end{aligned}
$$

- And thus we can prove

$$
\sum_{j=1}^{k} P\left(A=v_{j}\right)=1
$$

Elementary Probability in Pictures

$\sum_{j=1}^{k} P\left(A=v_{j}\right)=1$

Elementary Probability in Pictures

$\sum_{j=1}^{k} P\left(A=v_{j}\right)=1$

Probability - what you need to really, really know

- Probabilities are cool
- Random variables and events
- The Axioms of Probability
- Independence, binomials, multinomials
- Conditional probabilities

A practical problem

This is a set of polyhedral dice that will roll high/low numbers. The set consists of 3 six-sided dice (1 high, 1 low, 1 standard), 2 ten-sided dice (1 high, 1 standard), and 2 twenty-sided dice (1 high, 1 standard).

- I have lots of standard d20 die, lots of loaded die, all identical.
- Loaded die will give a 19/20 ("critical hit") half the time.
- In the game, someone hands me a random die, which is fair (A) or loaded $(\sim A)$, with $\mathrm{P}(\mathrm{A})$ depending on how I mix the die. Then I roll, and either get a critical hit (B) or not ($\sim B$)
-. Can I mix the dice together so that $\mathrm{P}(\mathrm{B})$ is anything I want say, $p(B)=0.137$?

$$
\begin{array}{rlrl}
P(B)=P(B \text { and } A)+P(B \text { and } \sim A) & & =0.1^{*} \lambda+0.5^{*}(1-\lambda)=0.137 \\
\text { " mixture model" } & \lambda=(0.5-0.137) / 0.4=0.9075
\end{array}
$$

Another picture for this problem

It's more convenient to say

- "if you've picked a fair die then ..." i.e. Pr (critical hit | fair die)=0.1
- "if you've picked the loaded die then...." $\operatorname{Pr}($ critical hit \mid loaded die $)=0.5$

Conditional probability:
$\operatorname{Pr}(\mathrm{B} \mid \mathrm{A})=\mathrm{P}\left(\mathrm{B}^{\wedge} \mathrm{A}\right) / \mathrm{P}(\mathrm{A})$

Definition of Conditional Probability

$$
P(A \mid B)=\frac{P(A \wedge B)}{P(B)}
$$

Corollary: The Chain Rule

$$
P(A \wedge B)=P(A \mid B) P(B)
$$

Some practical problems

"marginalizing out" A

This is a set of polyhedral dice that will roll high/low numbers. The set consists of 3 six-sided dice (1 high, 1 low, 1 standard), 2 ten-sided dice (1 high, 1 standard), and 2 twenty-sided dice (1 high, 1 standard).

- I have 3 standard d20 dice, 1 loaded die.
- Experiment: (1) pick a d20 uniformly at random then (2) roll it. Let $A=d 20$ picked is fair and $B=$ roll 19 or 20 with that die. What is $\mathrm{P}(\mathrm{B})$?

$$
\mathrm{P}(\mathrm{~B})=\mathrm{P}(\mathrm{~B} \mid \mathrm{A}) \mathrm{P}(\mathrm{~A})+\mathrm{P}(\mathrm{~B} \mid \sim \mathrm{A}) \mathrm{P}(\sim \mathrm{~A})=0.1^{*} 0.75+0.5^{*} 0.25=0.2
$$

Bayes, Thomas (1763) An essay towards solving a problem in the doctrine of chances. Philosophical Transactions of the Royal Society of London, 53:370-418
...by no means merely a curious speculation in the doctrine of chances, but necessary to be solved in order to a sure foundation for all our reasonings concerning past facts, and what is likely to be hereafter.... necessary to be considered by any that would give a clear account of the strength of analogical or inductive reasoning...

Probability - what you need to really, really know

- Probabilities are cool
- Random variables and events
- The Axioms of Probability
- Independence, binomials, multinomials
- Conditional probabilities
- Bayes Rule

Some practical problems

- Joe throws 4 critical hits in a row, is Joe cheating?
- A = Joe using cheater's die
- $\mathrm{C}=$ roll 19 or $20 ; \mathrm{P}(\mathrm{C} \mid \mathrm{A})=0.5, \mathrm{P}(\mathrm{C} \mid \sim \mathrm{A})=0.1$
- $B=C 1$ and C2 and C3 and C4
- $\operatorname{Pr}(\mathrm{B} \mid \mathrm{A})=0.0625 \quad \mathrm{P}(\mathrm{B} \mid \sim \mathrm{A})=0.0001$

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B \mid A) P(A)+P(B \mid \sim A) P(\sim A)}
$$

$$
P(A \mid B)=\frac{0.0625 * P(A)}{0.0625 * P(A)+0.0001 *(1-P(A))}
$$

What's the experiment and outcome here?

- Outcome A: Joe is cheating
- Experiment:
- Joe picked a die uniformly at random from a bag containing 10,000 fair die and one bad one.
-Joe is a D\&D player picked uniformly at random from set of $1,000,000$ people and n of them cheat with probability $p>0$.
-I have no idea, but I don't like his looks.
Call it $\mathrm{P}(\mathrm{A})=0.1$

Some practical problems

$$
\begin{gathered}
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)} \\
\frac{P(A \mid B)}{P(\neg A \mid B)}=\frac{P(B \mid A) P(A) / P(\beta)}{P(B \mid \neg A) P(\neg A) / P(B)}=\frac{P(B \mid A)}{P(B \mid \neg A)} \times \frac{P(A)}{P(\neg A)} \\
=
\end{gathered}
$$

- Joe throws 4 critical hits in a row, is Joe cheating?
- A = Joe using cheater's die
- $\mathrm{C}=$ roll 19 or $20 ; \mathrm{P}(\mathrm{C} \mid \mathrm{A})=0.5, \mathrm{P}(\mathrm{C} \mid \sim \mathrm{A})=0.1$
- $B=C 1$ and $C 2$ and $C 3$ and $C 4$
- $\operatorname{Pr}(\mathrm{B} \mid \mathrm{A})=0.0625 \quad \mathrm{P}(\mathrm{B} \mid \sim \mathrm{A})=0.0001$

Probability - what you need to really, really know

- Probabilities are cool
- Random variables and events
- The Axioms of Probability
- Independence, binomials, multinomials
- Conditional probabilities
- Bayes Rule
- MLE's, smoothing, and MAPs

Some practical problems

I bought a loaded d20 on EBay... but it didn't come with any specs. How can I find out how it behaves?

1. Collect some data (20 rolls)
2. Estimate $\operatorname{Pr}(\mathrm{i})=\mathrm{C}($ rolls of i$) / \mathrm{C}$ (any roll)

One solution

MLE = maximum likelihood estimate
But: Do I really think it's impossible to roll a 1,2 or 3? Would you bet your house on it?

I bought a loaded d20 on EBay... but it didn't come with any specs. How can I find out how it behaves?

$$
\begin{aligned}
& P(1)=0 \\
& P(2)=0 \\
& P(3)=0 \\
& P(4)=0.1 \\
& \ldots \\
& P(19)=0.25 \\
& P(20)=0.2
\end{aligned}
$$

A better solution

I bought a loaded d20 on EBay... but it didn't come with any specs. How can I find out how it behaves?

0 . Imagine some data (20 rolls, each i shows up 1 x) 1. Collect some data (20 rolls)
2. Estimate $\operatorname{Pr}(\mathrm{i})=\mathrm{C}($ rolls of i$) / \mathrm{C}$ (any roll $)$

A better solution

I bought a loaded d20 on EBay... but it didn't come with any specs. How can I find out how it behaves?

$$
\begin{aligned}
& \mathrm{P}(1)=1 / 40 \\
& \mathrm{P}(2)=1 / 40 \\
& \mathrm{P}(3)=1 / 40 \\
& \mathrm{P}(4)=(2+1) / 40 \\
& \ldots \\
& \mathrm{P}(19)=(5+1) / 40 \\
& \mathrm{P}(20)=(4+1) / 40=1 / 8
\end{aligned}
$$

$$
\hat{\operatorname{Pr}}(i)=\frac{C(i)+1}{C(A N Y)+C(I M A G I N E D)}
$$

0.25 vs. 0.125 - really different! Maybe I should "imagine" less data?

A better solution?

Pearl Purple Cheaters Dice

$$
\begin{aligned}
& \mathrm{P}(1)=1 / 40 \\
& \mathrm{P}(2)=1 / 40 \\
& \mathrm{P}(3)=1 / 40 \\
& \mathrm{P}(4)=(2+1) / 40 \\
& \ldots \\
& \mathrm{P}(19)=(5+1) / 40 \\
& \mathrm{P}(20)=(4+1) / 40=1 / 8
\end{aligned}
$$

$$
\hat{\operatorname{Pr}}(i)=\frac{C(i)+1}{C(A N Y)+C(I M A G I N E D)}
$$

0.25 vs. 0.125 - really different! Maybe I should "imagine" less data?

A better solution?

Q: What if I used m rolls with a probability of $q=1 / 20$ of rolling any i ?

$$
\begin{aligned}
\operatorname{Pr}(i) & =\frac{C(i)+1}{C(A N Y)+C(\text { IMAGINED })} \\
& \Longleftrightarrow \hat{\operatorname{Pr}}(i)=\frac{C(i)+m q}{C(A N Y)+m}
\end{aligned}
$$

I can use this formula with $m>20$, or even with $m<20 \ldots$ say with $m=1$

A better solution

Q: What if I used m rolls with a probability of $q=1 / 20$ of rolling any i ?

$$
\begin{aligned}
\hat{\operatorname{Pr}}(i)= & \frac{C(i)+1}{C(A N Y)+C(\text { IMAGINED })} \\
& \Longleftrightarrow \hat{\operatorname{Pr}}(i)=\frac{C(i)+m q}{C(A N Y)+m}
\end{aligned}
$$

If $m \gg C(A N Y)$ then your imagination q rules If $m \ll C(A N Y)$ then your data rules BUT you never ever ever end up with $\operatorname{Pr}(i)=0$

Terminology - more later

This is called a uniform Dirichlet prior
$\mathrm{C}(\mathrm{i}), \mathrm{C}(\mathrm{ANY})$ are sufficient statistics

$$
\hat{\operatorname{Pr}}(i)=\frac{C(i)+m q}{C(A N Y)+m}
$$

$M L E=$ maximum likelihood estimate
$\mathrm{MAP}=\underline{\text { maximum }}$
a posteriori estimate

Probability - what you need to really, really know

- Probabilities are cool
- Random variables and events
- The Axioms of Probability
- Independence, binomials, multinomials
- Conditional probabilities
- Bayes Rule
- MLE's, smoothing, and MAPs
- The joint distribution

Some practical problems

This is a set of polyhedral dice that will roll high/low numbers. The set consists of 3 six-sided dice (1 high, 1 low, 1 standard), 2 ten-sided dice (1 high, 1 standard), and 2 twenty-sided dice (1 high, 1 standard).

- I have 1 standard d6 die, 2 loaded d6 die.
- Loaded high: $P(X=6)=0.50$ Loaded low: $P(X=1)=0.50$
- Experiment: pick one d6 uniformly at random (A) and roll it. What is more likely - rolling a seven or rolling doubles?

Three combinations: HL, HF, FL

$$
\begin{aligned}
\mathrm{P}(\mathrm{D}) & =\mathrm{P}\left(\mathrm{D}^{\wedge} \mathrm{A}=\mathrm{HL}\right)+\mathrm{P}\left(\mathrm{D}^{\wedge} \mathrm{A}=\mathrm{HF}\right)+\mathrm{P}\left(\mathrm{D}^{\wedge} \mathrm{A}=\mathrm{FL}\right) \\
& =\mathrm{P}(\mathrm{D} \mid \mathrm{A}=\mathrm{HL})^{*} \mathrm{P}(\mathrm{~A}=\mathrm{HL})+\mathrm{P}(\mathrm{D} \mid \mathrm{A}=\mathrm{HF})^{*} \mathrm{P}(\mathrm{~A}=\mathrm{HF})+\mathrm{P}(\mathrm{~A} \mid \mathrm{A}=\mathrm{FL})^{*} \mathrm{P}(\mathrm{~A}=\mathrm{FL})
\end{aligned}
$$

Some practical problems

This is a set of polyhedral dice that will roll high/low numbers. The set consists of 3 six-sided dice (1 high, 1 low, 1 standard), 2 ten-sided dice (1 high, 1 standard), and 2 twenty-sided dice (1 high, 1 standard).

- I have 1 standard d6 die, 2 loaded d6 die.
- Loaded high: $P(X=6)=0.50$ Loaded low: $P(X=1)=0.50$
- Experiment: pick one d 6 uniformly at random (A) and roll it. What is more likely - rolling a seven or rolling doubles?

Roll 1
Three combinations: HL, HF, FL

	1	2	3	4	5	6	
1	D					7	
2		D			7		
	3			D	7		
			7	D			
		7			D		
7					D		

A brute-force solution

A	Roll 1	Roll 2	P	Comment
FL	1	1	1/3 * $1 / 6$ * $1 / 2$	doubles
FL	A joint probability table shows $\mathrm{P}(\mathrm{X} 1=\mathrm{x} 1$ and \ldots and $\mathrm{Xk}=\mathrm{xk})$ for every possible combination of values $x 1, x 2, \ldots, x k$			
FL				
...				
FL	With this you can compute any $\mathrm{P}(\mathrm{A})$ where A is any			
FL	boolean combination of the primitive events ($\mathrm{Xi}=\mathrm{Xk}$), e.g.			
...	- P(doubles)			
FL	- P(seven or eleven) es			
HL	- P (total is higher than 5)			
HL	-			
...				
HF				es
\cdots				

The Joint Distribution

Example: Boolean variables A, B, C

Recipe for making a joint distribution of M variables:

The Joint Distribution

Recipe for making a joint distribution of M variables:

1. Make a truth table listing all combinations of values of your variables (if there are M Boolean variables then the table will have 2^{M} rows). B, C

\mathbf{A}	\mathbf{B}	\mathbf{C}
0	0	0
0	0	1
0	1	0
0	1	1
1	0	0
1	0	1
1	1	0
1	1	1

The Joint Distribution

Example: Boolean variables A, B, C

Recipe for making a joint distribution of M variables:

1. Make a truth table listing all combinations of values of your variables (if there are M Boolean variables then the table will have 2^{M} rows).
2. For each combination of values, say how probable it is.

\mathbf{A}	\mathbf{B}	\mathbf{C}	Prob
0	0	0	0.30
0	0	1	0.05
0	1	0	0.10
0	1	1	0.05
1	0	0	0.05
1	0	1	0.10
1	1	0	0.25
1	1	1	0.10

The Joint Distribution

Example: Boolean variables A, B, C

Recipe for making a joint distribution of M variables:

1. Make a truth table listing all combinations of values of your variables (if there are M Boolean variables then the table will have 2^{M} rows).
2. For each combination of values, say how probable it is.
3. If you subscribe to the axioms of probability, those numbers must sum to 1.

\mathbf{A}	\mathbf{B}	\mathbf{C}	Prob
0	0	0	0.30
0	0	1	0.05
0	1	0	0.10
0	1	1	0.05
1	0	0	0.05
1	0	1	0.10
1	1	0	0.25
1	1	1	0.10

Using the Joint

| gender | hours_worked | wealth | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Female | v0:40.5- | poor | 0.253122 | |
| | | rich | 0.0245895 | \square |
| | v1:40.5+ | poor | 0.0421768 | \square |
| | | rich | 0.0116293 | |
| Male | v0:40.5- | poor | 0.331313 | \square |
| | | rich | 0.0971295 | \square |
| | v1:40.5+ | poor | 0.134106 | \square |
| | | rich | 0.105933 | |

One you have the JD you can ask for the probability of any logical expression involving

$$
P(E)=\sum_{\text {rows matching } E} P(\text { row })
$$ your attribute

Abstract: Predict whether income exceeds $\$ 50 \mathrm{~K} / \mathrm{yr}$ based on census data. Also known as "Census Income" dataset. [Kohavi, 1996]
Number of Instances: 48,842
Number of Attributes: 14 (in UCI's copy of dataset); 3 (here)

Using the Joint

gender	hours_worked	wealth	
Female	v0:40.5-	poor	0.253122
		rich	0.0245895
	v1:40.5+	poor	0.0421768
		rich	0.0116293
Male	v0:40.5-	poor	0.331313
	rich	0.0971295	
	v1:40.5+	poor	0.134106
	rich	0.105933	

$\mathrm{P}($ Poor Male $)=0.4654$

$$
P(E)=\sum_{\text {rows matching } E} P(\text { row })
$$

Using the Joint

gender	hours_worked	wealth	
Female	v0:40.5-	poor	0.253122
		rich	0.0245895
	v1:40.5+	poor	0.0421768
	rich	0.0116293	
Male	v0:40.5-	poor	0.331313
		rich	0.0971295
	v1:40.5+	poor	0.134106
	rich	0.105933	

$\mathrm{P}($ Poor $)=0.7604$

$$
P(E)=\sum_{\text {rows matching } E} P(\text { row })
$$

Probability - what you need to really, really know

- Probabilities are cool
- Random variables and events
- The Axioms of Probability
- Independence, binomials, multinomials
- Conditional probabilities
- Bayes Rule
- MLE's, smoothing, and MAPs
- The joint distribution
- Inference

Inference with the Joint

gender	hours_worked	wealth			
Female	v0:40.5-	poor	0.253122		
		rich	0.0245895	\square	
	v1:40.5+	poor	0.0421768	\square	
		rich	0.0116293	\square	
Male	v0:40.5-	poor	0.331313	\square	
		rich	0.0971295	\square	
		v1:40.5+	poor	0.134106	\square
		rich	0.105933		

$$
P\left(E_{1} \mid E_{2}\right)=\frac{P\left(E_{1} \wedge E_{2}\right)}{P\left(E_{2}\right)}=\frac{\text { rows matching } E_{1} \text { and } E_{2}}{\sum_{\text {rows matching } E_{2}} P(\text { row })}
$$

Inference with the Joint

gender	hours_worked	wealth	
Female	v0:40.5-	poor	0.253122
	rich	0.0245895	
	v1:40.5+	poor	0.0421768
	rich	0.0116293	
Male	v0:40.5-	poor	0.331313
		rich	0.0971295
	v1:40.5+	poor	0.134106
	rich	0.105933	

$$
P\left(E_{1} \mid E_{2}\right)=\frac{P\left(E_{1} \wedge E_{2}\right)}{P\left(E_{2}\right)}=\frac{\sum_{\text {rows matching } E_{1} \text { and } E_{2}} P(\text { row })}{\sum_{\text {rows matching } E_{2}} P(\text { row })}
$$

$$
\mathrm{P}(\text { Male } \mid \text { Poor })=0.4654 / 0.7604=0.612
$$

Estimating the joint distribution

- Collect some data points
- Estimate the probability $\mathrm{P}\left(\mathrm{E} 1=\mathrm{e} 1^{\wedge} \ldots \wedge\right.$ En=en) as \#(that row appears)/\#(any row appears)

Gender	Hours	Wealth
g1	h1	w1
g2	h2	w2
..	\ldots	\ldots
gN	hN	wN

gender	hours_worked	wealth			
Female	v0:40.5-	poor	0.253122		
		rich	0.0245895		
	v1:40.5+	poor	0.0421768		
		rich	0.0116293		
Male	v0:40.5-	poor	0.331313		
		rich	0.0971295		
		v1:40.5+	poor	0.134106	
		rich	0.105933		

Estimating the joint distribution

- For each combination of values r: Complexity? $\mathrm{O}\left(2^{+}\right)$
- Total = C[r] = 0
- For each data row $\mathbf{r}_{\mathbf{i}}$
$-\mathrm{C}\left[\mathrm{r}_{\mathrm{i}}\right]++$
- Total ++

Gender	Hours	Wealth
g1	h1	w1
g2	h2	w2
..	\ldots	\ldots
gN	hN	wN

d = \#attributes (all binary)
Complexity? $\mathrm{O}(\mathrm{n})$
$\mathrm{n}=$ total size of input data

gender	hours_worked	wealth	
Female	v0:40.5-	poor	0.253122
		rich	0.0245895
	v1:40.5+	poor	0.0421768
		rich	0.0116293
Male	v0:40.5-	$\mathrm{p}_{\mathrm{r}_{\mathrm{i}}}$	"female,4
		rich	0.0971295
	v1:40.5+	poor	0.134106
		rich	0.105933

Estimating the joint distribution

- For each combination of values \mathbf{r} :

Complexity? $o\left(\prod_{i-1}^{d} k_{i}\right)$

- Total $=\mathrm{C}[\mathbf{r}]=0$
- For each data row $\mathbf{r}_{\mathbf{i}}$
$-\mathrm{C}\left[\mathrm{r}_{\mathrm{i}}\right]++$
- Total ++

Gender	Hours	Wealth
g1	h1	w1
g2	h2	w2
..	\ldots	\ldots
gN	hN	wN

$\mathrm{k}_{\mathrm{i}}=$ arity of attribute i
Complexity? $\mathrm{O}(\mathrm{n})$
$\mathrm{n}=$ total size of input data

gender	hours_worked	wealth			
Female	v0:40.5-	poor	0.253122		
		rich	0.0245895	\square	
	v1:40.5+	poor	0.0421768	\square	
		rich	0.0116293	\square	
Male	v0:40.5-	poor	0.331313	\square	
		rich	0.0971295	\square	
		v1:40.5+	poor	0.134106	\square
		rich	0.105933		

Estimating the joint distribution

- For each combination of values \mathbf{r} :
- Total $=\mathrm{C}[\mathbf{r}]=0$

Gender	Hours	Wealth
g1	h1	w1
g2	h2	w2
..	\ldots	\ldots
gN	hN	wN

- For each data row $\mathbf{r}_{\mathbf{i}}$
$-\mathrm{C}\left[\mathrm{r}_{\mathrm{i}}\right]++$
- Total ++

Complexity? o(T) 1
$\mathrm{k}_{\mathrm{i}}=$ arity of attribute i

Estimating the joint distribution

- For each data row $\mathbf{r}_{\mathbf{i}}$
- If $\mathbf{r}_{\mathbf{i}}$ not in hash tables C,Total:
- Insert $C\left[\mathbf{r}_{\mathbf{i}}\right]=0 \quad$ Complexity? $\mathrm{O}(\mathrm{n})$
$-\mathrm{C}\left[\mathbf{r}_{\mathrm{i}}\right]++$
- Total ++

Gender	Hours	Wealth
g1	h1	w1
g2	h2	w2
..	\ldots	\ldots
gN	hN	wN

gender	hours_worked	wealth			
Female	v0:40.5-	poor	0.253122		
		rich	0.0245895		
	v1:40.5+	poor	0.0421768		
		rich	0.0116293		
Male	v0:40.5-	poor	0.331313		
		rich	0.0971295		
		v1:40.5+	poor	0.134106	
		rich	0.105933		

Probability - what you need to really, really know

- Probabilities are cool
- Random variables and events
- The Axioms of Probability
- Independence, binomials, multinomials
- Conditional probabilities
- Bayes Rule
- MLE's, smoothing, and MAPs
- The joint distribution
- Inference
- Density estimation and classification

Density Estimation

- Our Joint Distribution learner is our first example of something called Density Estimation
- A Density Estimator learns a mapping from a set of attributes values to a Probability

Density Estimation

- Compare it against the two other major kinds of models:

Density Estimation \rightarrow Classification

To classify \mathbf{x}

1. Use your estimator to compute $\widehat{\mathrm{P}}(\mathbf{x}, \mathrm{y} 1), \ldots ., \widehat{\mathrm{P}}(\mathrm{x}, \mathrm{yk})$
2. Return the class y^{*} with the highest predicted probability

Binary case: predict POS if $\hat{P}(\mathbf{x})>0.5$

Ideally is correct with $\hat{P}\left(x, y^{*}\right)=\hat{P}\left(x, y^{*}\right) /(\mathrm{P}(\mathrm{x}, \mathrm{y} 1)+\ldots .+\mathrm{P}(\mathrm{x}, \mathrm{yk}))$

Classification vs Density Estimation

Classification
Density Estimation

Bayes Classifiers

- If we can do inference over $\operatorname{Pr}\left(\mathrm{X}_{1} \ldots, \mathrm{X}_{\mathrm{d}}, \mathrm{Y}\right) \ldots$
- ... in particular compute $\operatorname{Pr}\left(\mathrm{X}_{1} \ldots \mathrm{X}_{\mathrm{d}} \mid \mathrm{Y}\right)$ and $\operatorname{Pr}(\mathrm{Y})$.
- And then we can use Bayes' rule to compute

$$
\operatorname{Pr}\left(Y \mid X_{1}, \ldots, X_{d}\right)=\frac{\operatorname{Pr}\left(X_{1}, \ldots, X_{d} \mid Y\right) \operatorname{Pr}(Y)}{\operatorname{Pr}\left(X_{1}, \ldots, X_{d}\right)}
$$

Summary: The Bad News

- Density estimation by directly learning the joint is trivial, mindless and dangerous

Andrew's joke

- Density estimation by directly learning the joint is hopeless unless you have some combination of
- Very few attributes
- Attributes with low "arity"
- Lots and lots of data
- Otherwise you can't estimate all the row frequencies

Part of a Joint Distribution

A	B	C	D	E	p
is	the	effect	of	the	0.00036
is	the	effect	of	a	0.00034
.	The	effect	of	this	0.00034
to	this	effect	:	"	0.00034
be	the	effect	of	the	\ldots
	...	\ldots	\ldots	\ldots	\ldots
not	the	effect	of	any	0.00024
	...	\ldots	\ldots	\ldots	\ldots
does	not	affect	the	general	0.00020
does	not	affect	the	question	0.00020
any	manner	affect	the	principle	0.00018

Probability - what you need to really, really know

- Probabilities are cool
- Random variables and events
- The Axioms of Probability
- Independence, binomials, multinomials
- Conditional probabilities
- Bayes Rule
- MLE's, smoothing, and MAPs
- The joint distribution
- Inference
- Density estimation and classification
- Naïve Bayes density estimators and classifiers

Naïve Density Estimation

The problem with the Joint Estimator is that it just mirrors the training data.
(and is also really, really hard to compute)
We need something which generalizes more usefully.

The naïve model generalizes strongly:
Assume that each attribute is distributed independently of any of the other attributes.

Naïve Distribution General Case

- Suppose $X_{1}, X_{2}, \ldots, X_{d}$ are independently distributed.

$$
\operatorname{Pr}\left(X_{1}=x_{1}, \ldots, X_{d}=x_{d}\right)=\operatorname{Pr}\left(X_{1}=x_{1}\right) \cdot \ldots \cdot \operatorname{Pr}\left(X_{d}=x_{d}\right)
$$

- So if we have a Naïve Distribution we can construct any row of the implied Joint Distribution on demand.
- How do we learn this?

Learning a Naïve Density Estimator

$$
\begin{gathered}
P\left(X_{i}=x_{i}\right)=\frac{\# \text { records with } X_{i}=x_{i}}{\# \text { records }} \quad \text { MLE } \\
P\left(X_{i}=x_{i}\right)=\frac{\# \text { records with } X_{i}=x_{i}+m q}{\# \text { records }+m} \quad \text { Dirichlet (MAP) }
\end{gathered}
$$

Another trivial learning algorithm!

Probability - what you need to really, really know

- Probabilities are cool
- Random variables and events
- The Axioms of Probability
- Independence, binomials, multinomials
- Conditional probabilities
- Bayes Rule
- MLE's, smoothing, and MAPs
- The joint distribution
- Inference
- Density estimation and classification
- Naïve Bayes density estimators and classifiers
- Conditional independence...more on this tomorrow!

