More on Data Streams

Shannon Quinn

(with thanks to J. Leskovec, A. Rajaraman, J.
Ullman: Mining of Massive Datasets, http:/ /
www.mmds.org)

Data Streams

* In many data mining situations, we do not
know the entire data set in advance

* Stream Management is important when the
input rate is controlled externally:

—Google queries
—Twitter or Facebook status updates
* We can think of the data as infinite and

non-stationary (the distribution changes
over time)

J. Leskovec, A. Rajaraman, J. Ullman:
Mining of Massive Datasets, http://
www mmds oro

The Stream Model

* Input elements enter at a rapid rate,
at one or more input ports (i.e., streams)

—We call elements of the stream tuples

* The system cannot store the entire stream
accessibly

* Q: How do you make critical calculations
about the stream using a limited amount of
(secondary) memory?

J. Leskovec, A. Rajaraman, J. Ullman:
Mining of Massive Datasets, http://
www mmds oro

Side note: NB is a Streaming Alg.

* Naive Bayes (NB) is an example of a stream
algorithm

* In Machine Learning we call this: Online Learning

— Allows for modeling problems where we have
a continuous stream of data

— We want an algorithm to learn from it and
slowly adapt to the changes in data

* Idea: Do slow updates to the model
— (NB, SVM, Perceptron) makes small updates
— So: First train the classifier on training data.

— Then: For every example from the stream, we
sligl)ltly update the model (using small learning
rate

J. Leskovec, A. Rajaraman, J. Ullman:
Mining of Massive Datasets, http:// 4

www mmds oro

General Stream Processing Model

Ad-Hoc
Queries
...1,5,2,7,0,9,3 — Standing
Queries
a,rnv,tyhb —— » Output
Processor
...0,0,1,0,1,1,0 ——
< time /! "\
Streams Entering.
Each is stream is
composedof ~N_ A
elements/tuples Limited D
Working
Storage Archival
\k_/ Storage
J. Leskovec, A. Rajaraman, J. Ul
Mining of Massive Datasets, htt&/ 5

www.mmds.org

Problems on Data Streams

* Types of queries one wants on answer on
a data stream: (we’ll do these today)
—Sampling data from a stream

* Construct a random sample

—Queries over sliding windows

* Number of items of type x in the last k
elements of the stream

J. Leskovec, A. Rajaraman, J. Ullman:
Mining of Massive Datasets, http://
www mmds oro

Problems on Data Streams

* Other types of queries one wants on answer
on a data stream:

— Filtering a data stream
* Select elements with property x from the stream

— Counting distinct elements
 Number of distinct elements in the last k elements
of the stream
— Estimating moments
 Estimate avg./std. dev. of last k elements

— Finding frequent elements

J. Leskovec, A. Rajaraman, J. Ullman:
Mining of Massive Datasets, http:// 7
www mmds oro

Applications (1)

* Mining query streams

— Google wants to know what queries are
more frequent today than yesterday

* Mining click streams

— Yahoo wants to know which of its pages are
1§e’c’cimg an unusual number of hits in the past
our

* Mining social network news feeds

—E.g., look for trending topics on Twitter,
Facebook

J. Leskovec, A. Rajaraman, J. Ullman:
Mining of Massive Datasets, http://
www mmds oro

Applications (2)

* Sensor Networks

—Many sensors feeding into a central
controller

* Telephone call records

—Data feeds into customer bills as well as
settlements between telephone companies

* IP packets monitored at a switch
—Gather information for optimal routing
— Detect denial-of-service attacks

J. Leskovec, A. Rajaraman, J. Ullman:
Mining of Massive Datasets, http://
WWW mmds oro

Sampling from a Data Stream

* Since we can not store the entire stream,
one obvious approach is to store a sample

* Two different problems:

— (1) Sample a fixed proportion of elements
in the stream (say 1 in 10)

— (2) Maintain a random sample of fixed size
over a potentially infinite stream

* At any “time” k we would like a random sample
of s elements

— What is the property of the sample we want to
maintain?
For all time steps k, each of k elements seen so far has
equal prob..ef.being.sampled.

Mining of Massive Datasets, http:// 10
www mmds oro

Sampling a Fixed Proportion

* Problem 1: Sampling fixed proportion
 Scenario: Search engine query stream
— Stream of tuples: (user, query, time)

— Answer questions such as: How often did a
user run the same query in a single days

— Have space to store 1/10t" of query stream
* Naive solution:
— Generate a random integer in [0..9] for each
query
— Store the query if the integer is 0, otherwise
discard

J. Leskovec, A. Rajaraman, J. Ullman:
Mining of Massive Datasets, http://
www mmds oro

11

Problem with Naive Approach

* Simple question: What fraction of queries by an
average search engine user are duplicates?

— Suppose each user issues x queries once and d
queries twice (total of x+2d queries)
* Correct answer: df(x+d)

— Proposed solution: We keep 10% of the queries

« Sample will contain x/10 of the singleton queries and
24d/10 of the duplicate queries at least once

 But only d/100 pairs of duplicates
—d/100=1/10-1/10 - d
* Of d “duplicates” 18d/100 appear exactly once
— 18d/100 = ((1/10 - 9/10)+(9/10 - 1/10)) - d
— So the sample-based answer is

12

Solution: Sample Users

Solution:

« Pick 1/10th of users and take all their
searches in the sample

 Use a hash function that hashes the
user name or user id uniformly into 10
buckets

J. Leskovec, A. Rajaraman, J. Ullman:
Mining of Massive Datasets, http://
www mmds oro

13

Generalized Solution

* Stream of tuples with keys:

— Key is some subset of each tuple’s
components

* e.g., tuple is (user, search, time); key is user

— Choice of key depends on application

* To get a sample of a/b fraction of the stream:

— Hash each tuple’s key uniformly into b
buckets

1 1 [F ¢ 1 1 [[|
— Pick the tuple if its hash value is at most a

Hash table with b buckets, pick the tuple if its hash value is at most a.
How to generate a 30% sample?
Hash into b=10 buckets, take the tuple if it hashes to one of the first 3 buckets

14

Maintaining a fixed-size sample

* Problem 2: Fixed-size sample

* Suppose we need to maintain a random
sample S of size exactly s tuples

— E.g., main memory size constraint
* Why? Don’t know length of stream in advance
* Suppose at time 7 we have seen n items

— Each item is in the sample S with equal
prob. s/n

How to think about the problem: say s = 2

Streamjlaxcyzjkgdeg...

At n= 5, each of the first 5 tuples is included in the sample S with equal prob.
At n= 7, each of the first 7 tuples is included in the sample S with equal prob.

Impractical solution would be to store all the n tuples seen

so far and out of them pick s at random -

Solution: Fixed Size Sample

* Algorithm (a.k.a. Reservoir Sampling)
— Store all the first s elements of the stream to S

— Suppose we have seen n-1 elements, and now
the n'* element arrives (n > s)

 With probability s/n, keep the n* element, else
discard it

« If we picked the n" element, then it replaces one of
the

s elements in the sample S, picked uniformly at
random

* Claim: This algorithm maintains a sample S
with the desired property:

— After n elements, the sample contains each
element seen so far with probability s/n

16

Proof: By Induction

* We prove this by induction:

— Assume that after n elements, the sample contains
each element seen so far with probability s/n

— We need to show that after seeing element n+1 the
sample maintains the property
* Sample contains each element seen so far with
probability s/(n+1)
* Base case:
— After we see n=s elements the sample S has the
desired property
* Hach out of n=s elements is in the sample with
probability s/s =1

J. Leskovec, A. Rajaraman, J. Ullman:
Mining of Massive Datasets, http:// 17
WWW mmds oro

Proof: By Induction

Inductive hypothesis: After n elements, the sample S
contains each element seen so far with prob. s/n

Now element n+1 arrives

Inductive step: For elements already in S,
probability that the algorithm keeps it in § is:

S S s—1 n
| -—|+]| — || — | =——
(n+1) n+1)(S) n+l1

Element n+1 discarded Element n+1 Element in the
. not discarded ~ sample not picked .
So, at time n, tupofes in S were there with prob. s/n

Time n—n+1, tuple stayed in S with prob. n/(n+1)
So prob. tuple is in § at time n+1 =

J. Leskovec, A. Rajaraman, J. Ullman:
Mining of Massive Datasets, http:// 18

www mmds oro

Sliding Windows

* A useful model of stream processing is that
ueries are about a window of length N -
the N most recent elements received

* Interesting case: N is so large that the data cannot
be stored in memory, or even on disk

— Or, there are so many streams that windows
for all cannot be stored

* Amazon example:

— For every product X we keep 0/1 stream of
whether that product was sold in the n-th
transaction

— We want answer queries, how many times have
we sold X in the last k sales

J. Leskovec, A. Rajaraman, J. Ullman:
Mining of Massive Datasets, http://
WWW mmds oro

19

Sliding Window: 1 Stream

 Sliding window on a single stream:

gwertyuioplasd

fghjjklzxcvbnm

gwertyuiopalsd

fghijklzxcvbnm

gwertyuiopas|d

fghjklzxcvbnm

gwertyuiopasd

+«—— Past

fghjkllzxcvbnm

Future ——

J. Leskovec, A. Rajaraman, J. Ullman:
Mining of Massive Datasets, http://
www mmds oro

20

Counting Bits (1)

 Problem:

—Given a stream of 0s and 1s

—Be prepared to answer queries of the form
How many 1s are in the last k bits? where

k<N

e Obvious solution:

Store the most recent N bits
— When new bit comes in, discard the N+1st

bit 010011011101010110

110110

«— Past Future ——

J. Leskovec, A. Rajaraman, J. Ullman:
Mining of Massive Datasets, http://

www mmds oro

Suppose N=6

21

Counting Bits (2)

* You can not get an exact answer without
storing the entire window

* Real Problem:
What if we cannot afford to store N bits?

—E.g., we're processing 1 billion streams and

N =1 billion 010011011101010110

«—Past Future ——

* But we are happy with an approximate answer

J. Leskovec, A. Rajaraman, J. Ullman:
Mining of Massive Datasets, http:// 22
www mmds oro

An attempt: Simple solution

* Q: How many 1s are in the last N bits?

* A simple solution that does not really solve our
problem: Uniformity assumption
< N >
010011100010100100010110110111001010110011010

Past Future —

e Maintain 2 counters:

— §: number of 1s from the beginning of the
stream

— Z: number of Os from the beginning of the
stream

 How many 1s are in the last N bits?
* But, what if stream is non-uniform?
— What if distribution changes over time?

J. Leskovec, A. Rajaraman, J. Ullman:
Mining of Massive Datasets, http:// 23
www mmds oro

DGIM Method

 DGIM solution that does not assume
uniformity

* We store O(log2 /) bits per stream

* Solution gives approximate answer,
never off by more than 50%

—Error factor can be reduced to any fraction
> 0, with more complicated algorithm and
proportionally more stored bits

J. Leskovec, A. Rajaraman, J. Ullman:
Mining of Massive Datasets, http:// 24

www mmds oro

Summary

* Sampling a fixed proportion of a stream
—Sample size grows as the stream grows

* Sampling a fixed-size sample
—Reservoir sampling

* Counting the number of 1s in the last N
elements

—Exponentially increasing windows

— Extensions:
* Number of 1s in any last k (k < N) elements
* Sums of integers in the last N elements

Beyond Naive Bayes:
Some Other Efficient

[Streaming] Learning
Methods

Shannon Quinn

(with thanks to William Cohen)

Rocchio’s algorithm

* Relevance Feedback in Information Retrieval, SMART Retrieval System
Experiments in Automatic Document Processing, 1971, Prentice Hall
Inc.

| , |
Rocchio’s algorithm Many
variants of
these
DF (w) = #different docs w occurs in formulae
TF(w,d)=#different times w occurs indoc d | 5iongas
1) u(w,d)=0 for
]DF(W) = words not in d!/
DF(w)
u(w,d)=1log(TF(w,d)+1)log(IDF(w))
St 1 - i
u(d) = (0.t) Sore only non st n

ol o owd) o, u(d")
T |2||u(d)||2 Pio—ci,2 la(d "I,

y deEC, y d'€D-C,
u(d) u(y) But size of u(y) is O(|ny/|)

f(d)=argmax lu(d)ll, lla(y)ll,

Given a table
mapping w to
DF(w), we can

Rocchio’s algorithm

DF (w) =#different docs w occurs 1n compute v(d) from
TF (w,d) =#different times w occurs in doc d the words in d...
DI and the rest of the
IDF (w) = learning algorithm
DE(w) is just adding...
u(w,d) =log(TF (w,d) +1)- log(IDF (w))
u(d)
u(d) = (u(w,,d),....u(w,,,d)), v(d) = T (v(w,,d), ...
u(y) = o SV(d) - Svid), V()=
IC, Idecy ID-C, 1,57 ’ la(y) I,

f(d) = argmax, v(d)- v(y)

A hidden agenda

* Part of machine learning is good grasp of theory
* Part of ML is a good grasp of what hacks tend to work
* These are not always the same

— Especially in big-data situations

« Catalog of useful tricks so far
— Brute-force estimation of a joint distribution
— Naive Bayes
— Stream-and-sort, request-and-answer patterns
— BLRT and KL-divergence (and when to use them)
— TF-IDF weighting - especially IDF
* it’s often useful even when we don’t understand why

Two fast algorithms

y This isn’t silly - often there are
* Naive Bayes: one pass e
features that are “noisy

* Rocchio: two passes duplicates, or important
— if vocabulary fits in memory | phrases of different length

* Both method are algorithmically similar

— count and combine

* Thought thought thought thought thought thought
thought thought thought thought experiment: what if we
duplicated some features in our dataset many times times
times times times times times times times times?

— e.g., Re;peat all words that start with “t” “t” “t” “t” “t”
“ Y Y Y Y7 ten ten ten ten ten ten ten ten ten
ten times times times times times times times times
times times.

— Result: some features will be over-weighted in
classifier

Two fast algorithms

3 This isn’t silly - often there are
Naive BaYGSZ One pass features that are “noisy”
f e duplicates, or important
Rocchio: two passes phrases of different length

—if vocabulary fits in memory
Both method are algorithmically similar
—count and combine

Result: some features will be over-weighted in
classifier

—unless you can somehow notice are correct

for interactions/ dependencies between
features

Claim: naive Bayes is fast because it’s naive

