
More on Data Streams

Shannon Quinn

(with thanks to J. Leskovec, A. Rajaraman, J.
Ullman: Mining of Massive Datasets, http://

www.mmds.org)

Data Streams

•  In many data mining situations, we do not
know the entire data set in advance

•  Stream Management is important when the
input rate is controlled externally:
– Google queries
– Twitter or Facebook status updates

•  We can think of the data as infinite and
non-stationary (the distribution changes
over time)

J. Leskovec, A. Rajaraman, J. Ullman:
Mining of Massive Datasets, http://

www.mmds.org
2

3

The Stream Model

•  Input elements enter at a rapid rate,
at one or more input ports (i.e., streams)
– We call elements of the stream tuples

•  The system cannot store the entire stream
accessibly

•  Q: How do you make critical calculations
about the stream using a limited amount of
(secondary) memory?

J. Leskovec, A. Rajaraman, J. Ullman:
Mining of Massive Datasets, http://

www.mmds.org

Side note: NB is a Streaming Alg.

•  Naïve Bayes (NB) is an example of a stream
algorithm

•  In Machine Learning we call this: Online Learning
– Allows for modeling problems where we have

a continuous stream of data
– We want an algorithm to learn from it and

slowly adapt to the changes in data
•  Idea: Do slow updates to the model

–  (NB, SVM, Perceptron) makes small updates
– So: First train the classifier on training data.
– Then: For every example from the stream, we

slightly update the model (using small learning
rate)

J. Leskovec, A. Rajaraman, J. Ullman:
Mining of Massive Datasets, http://

www.mmds.org
4

General Stream Processing Model

J. Leskovec, A. Rajaraman, J. Ullman:
Mining of Massive Datasets, http://

www.mmds.org
5

Processor

Limited
Working
Storage

. . . 1, 5, 2, 7, 0, 9, 3

. . . a, r, v, t, y, h, b

. . . 0, 0, 1, 0, 1, 1, 0
 time

Streams Entering.

Each is stream is
composed of

elements/tuples

Ad-Hoc
Queries

Output

Archival
Storage

Standing
Queries

Problems on Data Streams

•  Types of queries one wants on answer on
a data stream: (we’ll do these today)
– Sampling data from a stream

• Construct a random sample

– Queries over sliding windows
• Number of items of type x in the last k

elements of the stream

J. Leskovec, A. Rajaraman, J. Ullman:
Mining of Massive Datasets, http://

www.mmds.org
6

Problems on Data Streams

•  Other types of queries one wants on answer
on a data stream:
– Filtering a data stream

•  Select elements with property x from the stream

– Counting distinct elements
• Number of distinct elements in the last k elements

of the stream

– Estimating moments
•  Estimate avg./std. dev. of last k elements

– Finding frequent elements
J. Leskovec, A. Rajaraman, J. Ullman:
Mining of Massive Datasets, http://

www.mmds.org
7

Applications (1)
•  Mining query streams

– Google wants to know what queries are
more frequent today than yesterday

•  Mining click streams
– Yahoo wants to know which of its pages are

getting an unusual number of hits in the past
hour

•  Mining social network news feeds
– E.g., look for trending topics on Twitter,

Facebook
J. Leskovec, A. Rajaraman, J. Ullman:
Mining of Massive Datasets, http://

www.mmds.org
8

Applications (2)

•  Sensor Networks
– Many sensors feeding into a central

controller
•  Telephone call records

– Data feeds into customer bills as well as
settlements between telephone companies

•  IP packets monitored at a switch
– Gather information for optimal routing
– Detect denial-of-service attacks

J. Leskovec, A. Rajaraman, J. Ullman:
Mining of Massive Datasets, http://

www.mmds.org
9

Sampling from a Data Stream

•  Since we can not store the entire stream,
one obvious approach is to store a sample

•  Two different problems:
– (1) Sample a fixed proportion of elements

in the stream (say 1 in 10)
– (2) Maintain a random sample of fixed size

over a potentially infinite stream
• At any “time” k we would like a random sample

of s elements
– What is the property of the sample we want to

maintain?
For all time steps k, each of k elements seen so far has
equal prob. of being sampled J. Leskovec, A. Rajaraman, J. Ullman:

Mining of Massive Datasets, http://
www.mmds.org

10

Sampling a Fixed Proportion
•  Problem 1: Sampling fixed proportion
•  Scenario: Search engine query stream

– Stream of tuples: (user, query, time)
– Answer questions such as: How often did a

user run the same query in a single days
– Have space to store 1/10th of query stream

•  Naïve solution:
– Generate a random integer in [0..9] for each

query
– Store the query if the integer is 0, otherwise

discard

J. Leskovec, A. Rajaraman, J. Ullman:
Mining of Massive Datasets, http://

www.mmds.org
11

Problem with Naïve Approach

•  Simple question: What fraction of queries by an
average search engine user are duplicates?
– Suppose each user issues x queries once and d

queries twice (total of x+2d queries)
•  Correct answer: d/(x+d)

– Proposed solution: We keep 10% of the queries
•  Sample will contain x/10 of the singleton queries and

2d/10 of the duplicate queries at least once
•  But only d/100 pairs of duplicates

–  d/100 = 1/10 · 1/10 · d

•  Of d “duplicates” 18d/100 appear exactly once
–  18d/100 = ((1/10 · 9/10)+(9/10 · 1/10)) · d

– So the sample-based answer is
12

Solution: Sample Users

Solution:
•  Pick 1/10th of users and take all their

searches in the sample

•  Use a hash function that hashes the
user name or user id uniformly into 10
buckets

J. Leskovec, A. Rajaraman, J. Ullman:
Mining of Massive Datasets, http://

www.mmds.org
13

Generalized Solution
•  Stream of tuples with keys:

– Key is some subset of each tuple’s
components
•  e.g., tuple is (user, search, time); key is user

– Choice of key depends on application

•  To get a sample of a/b fraction of the stream:
– Hash each tuple’s key uniformly into b

buckets

– Pick the tuple if its hash value is at most a

14

Hash table with b buckets, pick the tuple if its hash value is at most a.
How to generate a 30% sample?
Hash into b=10 buckets, take the tuple if it hashes to one of the first 3 buckets

Maintaining a fixed-size sample

•  Problem 2: Fixed-size sample
•  Suppose we need to maintain a random

sample S of size exactly s tuples
– E.g., main memory size constraint

•  Why? Don’t know length of stream in advance
•  Suppose at time n we have seen n items

– Each item is in the sample S with equal
prob. s/n

15

How to think about the problem: say s = 2
Stream: a x c y z k c d e g…
At n= 5, each of the first 5 tuples is included in the sample S with equal prob.
At n= 7, each of the first 7 tuples is included in the sample S with equal prob.
Imprac'cal	 solu'on	 would	 be	 to	 store	 all	 the	 n	 tuples	 seen	 	
so	 far	 and	 out	 of	 them	 pick	 s	 at	 random	

Solution: Fixed Size Sample
•  Algorithm (a.k.a. Reservoir Sampling)

– Store all the first s elements of the stream to S
– Suppose we have seen n-1 elements, and now

the nth element arrives (n > s)
•  With probability s/n, keep the nth element, else

discard it
•  If we picked the nth element, then it replaces one of

the
s elements in the sample S, picked uniformly at
random

•  Claim: This algorithm maintains a sample S
with the desired property:
– After n elements, the sample contains each

element seen so far with probability s/n
16

Proof: By Induction
•  We prove this by induction:

– Assume that after n elements, the sample contains
each element seen so far with probability s/n

– We need to show that after seeing element n+1 the
sample maintains the property

•  Sample contains each element seen so far with
probability s/(n+1)

•  Base case:
– After we see n=s elements the sample S has the

desired property
•  Each out of n=s elements is in the sample with

probability s/s = 1

J. Leskovec, A. Rajaraman, J. Ullman:
Mining of Massive Datasets, http://

www.mmds.org
17

Proof: By Induction

•  Inductive hypothesis: After n elements, the sample S
contains each element seen so far with prob. s/n

•  Now element n+1 arrives
•  Inductive step: For elements already in S,

probability that the algorithm keeps it in S is:

•  So, at time n, tuples in S were there with prob. s/n
•  Time n→n+1, tuple stayed in S with prob. n/(n+1)
•  So prob. tuple is in S at time n+1 =

J. Leskovec, A. Rajaraman, J. Ullman:
Mining of Massive Datasets, http://

www.mmds.org
18

1
1

11
1

+
=⎟

⎠

⎞
⎜
⎝

⎛ −
⎟
⎠

⎞
⎜
⎝

⎛
+

+⎟
⎠

⎞
⎜
⎝

⎛
+

−
n
n

s
s

n
s

n
s

Element n+1 discarded Element n+1
not discarded

Element in the
sample not picked

Sliding Windows
•  A useful model of stream processing is that

queries are about a window of length N –
the N most recent elements received

•  Interesting case: N is so large that the data cannot
be stored in memory, or even on disk
– Or, there are so many streams that windows

for all cannot be stored
•  Amazon example:

– For every product X we keep 0/1 stream of
whether that product was sold in the n-th
transaction

– We want answer queries, how many times have
we sold X in the last k sales

J. Leskovec, A. Rajaraman, J. Ullman:
Mining of Massive Datasets, http://

www.mmds.org
19

Sliding Window: 1 Stream

•  Sliding window on a single stream:

J. Leskovec, A. Rajaraman, J. Ullman:
Mining of Massive Datasets, http://

www.mmds.org
20

q w e r t y u i o p a s d f g h j k l z x c v b n m

q w e r t y u i o p a s d f g h j k l z x c v b n m

q w e r t y u i o p a s d f g h j k l z x c v b n m

q w e r t y u i o p a s d f g h j k l z x c v b n m

Past Future

N = 6

21

Counting Bits (1)

•  Problem:
– Given a stream of 0s and 1s
– Be prepared to answer queries of the form

How many 1s are in the last k bits? where
k ≤ N

•  Obvious solution:
Store the most recent N bits
– When new bit comes in, discard the N+1st

bit 0 1 0 0 1 1 0 1 1 1 0 1 0 1 0 1 1 0 1 1 0 1 1 0

Past Future
J. Leskovec, A. Rajaraman, J. Ullman:
Mining of Massive Datasets, http://

www.mmds.org

Suppose N=6

Counting Bits (2)

•  You can not get an exact answer without
storing the entire window

•  Real Problem:
What if we cannot afford to store N bits?
– E.g., we’re processing 1 billion streams and

N = 1 billion

•  But we are happy with an approximate answer

22
J. Leskovec, A. Rajaraman, J. Ullman:
Mining of Massive Datasets, http://

www.mmds.org

0 1 0 0 1 1 0 1 1 1 0 1 0 1 0 1 1 0 1 1 0 1 1 0

Past Future

An attempt: Simple solution
•  Q: How many 1s are in the last N bits?
•  A simple solution that does not really solve our

problem: Uniformity assumption

•  Maintain 2 counters:
– S: number of 1s from the beginning of the

stream
– Z: number of 0s from the beginning of the

stream
•  How many 1s are in the last N bits?
•  But, what if stream is non-uniform?

– What if distribution changes over time?
J. Leskovec, A. Rajaraman, J. Ullman:
Mining of Massive Datasets, http://

www.mmds.org
23

0 1 0 0 1 1 1 0 0 0 1 0 1 0 0 1 0 0 0 1 0 1 1 0 1 1 0 1 1 1 0 0 1 0 1 0 1 1 0 0 1 1 0 1 0
N

Past Future

DGIM Method

•  DGIM solution that does not assume
uniformity

•  We store 𝑶(log𝟐𝑵) bits per stream

•  Solution gives approximate answer,
never off by more than 50%
– Error factor can be reduced to any fraction

> 0, with more complicated algorithm and
proportionally more stored bits

J. Leskovec, A. Rajaraman, J. Ullman:
Mining of Massive Datasets, http://

www.mmds.org
24

[Datar, Gionis, Indyk, Motwani]

Summary

•  Sampling a fixed proportion of a stream
– Sample size grows as the stream grows

•  Sampling a fixed-size sample
– Reservoir sampling

•  Counting the number of 1s in the last N
elements
– Exponentially increasing windows
– Extensions:

• Number of 1s in any last k (k < N) elements
• Sums of integers in the last N elements

J. Leskovec, A. Rajaraman, J. Ullman:
Mining of Massive Datasets, http://

www.mmds.org
25

Beyond Naïve Bayes:
Some Other Efficient
[Streaming] Learning

Methods
Shannon Quinn

(with thanks to William Cohen)

Rocchio’s algorithm
•  Relevance Feedback in Information Retrieval, SMART Retrieval System

Experiments in Automatic Document Processing, 1971, Prentice Hall
Inc.

Rocchio’s algorithm

DF(w) = # different docs w occurs in
TF(w,d) = # different times w occurs in doc d

IDF(w) = |D |
DF(w)

u(w,d) = log(TF(w,d)+1) ⋅ log(IDF(w))
u(d) = u(w1,d),....,u(w|V |,d)

u(y) =α 1
|Cy |

u(d)
||u(d) ||2d∈Cy

∑ −β
1

|D−Cy |
u(d ')

||u(d ') ||2d '∈D−Cy

∑

f (d) = argmaxy
u(d)

||u(d) ||2

⋅
u(y)

||u(y) ||2

Many
variants of
these
formulae

…as long as
u(w,d)=0 for
words not in d!

Store only non-zeros in
u(d), so size is O(|d|)

But size of u(y) is O(|nV|)

Rocchio’s algorithm

€

DF(w) =# different docs w occurs in
TF(w,d) =# different times w occurs in doc d

IDF(w) =
|D |

DF(w)
u(w,d) = log(TF(w,d) +1)⋅ log(IDF(w))

u(d) = u(w1,d),....,u(w|V |,d) , v(d) =
u(d)

||u(d) ||2

= v(w1,d),....

u(y) = α
1

|Cy |
v(d)

d∈Cy

∑ −β
1

|D −Cy |
v(d)

d '∈D−Cy

∑ , v(y) =
u(y)

||u(y) ||2

f (d) = argmaxy v(d)⋅ v(y)

Given a table
mapping w to
DF(w), we can
compute v(d) from
the words in d…
and the rest of the
learning algorithm
is just adding…

A hidden agenda
•  Part of machine learning is good grasp of theory
•  Part of ML is a good grasp of what hacks tend to work
•  These are not always the same

–  Especially in big-data situations

•  Catalog of useful tricks so far
–  Brute-force estimation of a joint distribution
–  Naive Bayes
–  Stream-and-sort, request-and-answer patterns
–  BLRT and KL-divergence (and when to use them)
–  TF-IDF weighting – especially IDF

•  it’s often useful even when we don’t understand why

Two fast algorithms
•  Naïve Bayes: one pass
•  Rocchio: two passes

–  if vocabulary fits in memory
•  Both method are algorithmically similar

–  count and combine
•  Thought thought thought thought thought thought

thought thought thought thought experiment: what if we
duplicated some features in our dataset many times times
times times times times times times times times?
–  e.g., Repeat all words that start with “t” “t” “t” “t” “t”

“t” “t” “t” “t” “t” ten ten ten ten ten ten ten ten ten
ten times times times times times times times times
times times.

–  Result: some features will be over-weighted in
classifier

This isn’t silly – often there are
features that are “noisy”
duplicates, or important
phrases of different length

Two fast algorithms

•  Naïve Bayes: one pass
•  Rocchio: two passes

– if vocabulary fits in memory
•  Both method are algorithmically similar

– count and combine
•  Result: some features will be over-weighted in

classifier
– unless you can somehow notice are correct

for interactions/dependencies between
features

•  Claim: naïve Bayes is fast because it’s naive

This isn’t silly – often there are
features that are “noisy”
duplicates, or important
phrases of different length

