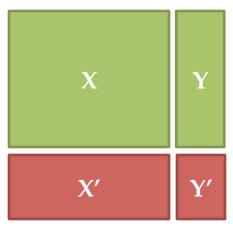
# Large-scale Classification and Regression

Shannon Quinn

### **Supervised Learning**

- Would like to do prediction:
  estimate a function f(x) so that y = f(x)
- Where *y* can be:
  - Real number: Regression
  - Categorical: Classification
  - Complex object:
    - Ranking of items, Parse tree, etc.
- Data is labeled:
  - Have many pairs {(x, y)}
    - **x** ... vector of binary, categorical, real valued features
    - y ... class ({+1, -1}, or a real number)



Training and test set

Estimate y = f(x) on X,Y. Hope that the same f(x) also works on unseen X', Y'

### Large Scale Machine Learning

- We will talk about the following methods:
  - k-Nearest Neighbor (Instance based learning)
  - -Perceptron (neural networks)
  - -Support Vector Machines
  - -Decision trees
- Main question: How to efficiently train (build a model/find model parameters)?

#### **Instance Based Learning**

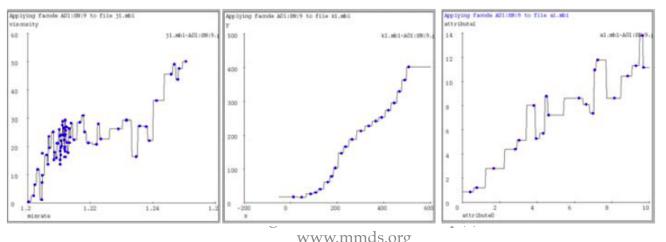
- Instance based learning
- Example: Nearest neighbor
  - Keep the whole training dataset: {(x, y)}
  - A query example (vector) *q* comes
  - Find closest example(s) **x**<sup>\*</sup>
  - -Predict  $\mathbf{y}^*$
- Works both for regression and classification
  - Collaborative filtering is an example of k-NN classifier
    - Find *k* most similar people to user **x** that have rated movie **y**
    - Predict rating  $y_x$  of x as an average of  $y_k$ J. Leskovec, A. Rajaraman, J. Ullman:

#### **1-Nearest Neighbor**

- To make Nearest Neighbor work we need 4 things:
  - Distance metric:
    - Euclidean
  - How many neighbors to look at?
    - One
  - Weighting function (optional):
    - Unused

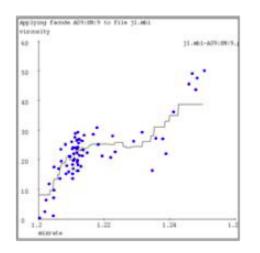
#### – How to fit with the local points?

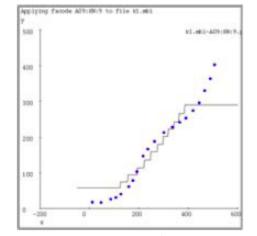
• Just predict the same output as the nearest neighbor

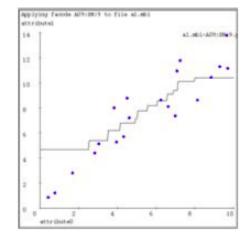


### k-Nearest Neighbor

- Distance metric:
  - Euclidean
- How many neighbors to look at?
  - **-** *k*
- Weighting function (optional):
  - Unused
- How to fit with the local points?
  - Just predict the average output among *k* nearest neighbors





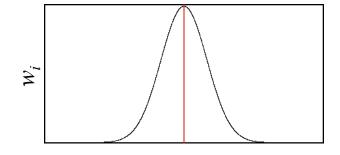


www.mmds.org

**k=**9

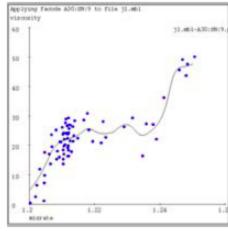
# **Kernel Regression**

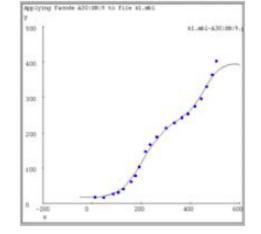
- Distance metric:
  - Euclidean
- How many neighbors to look at?
  - All of them (!)
- Weighting function:
  - $w \downarrow i = \exp(-d(x \downarrow i, q) \uparrow 2 / K \downarrow w)$

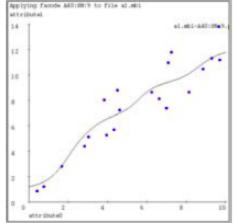


 $d(x_i, q) = 0$ 

- Nearby points to query q are weighted more strongly.  $\mathbf{K}_{\mathbf{w}}...$  kernel width.
- How to fit with the local points?
  - Predict weighted average: Σίî wii vii /Σίî wii



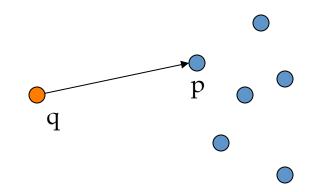




www.mmds.org

#### How to find nearest neighbors?

- **Given:** a set *P* of *n* points in  $R^d$
- Goal: Given a query point *q* 
  - **NN:** Find the *nearest neighbor* **p** of **q** in **P**
  - Range search: Find one/all points in *P* within distance *r* from *q*



# **Algorithms for NN**

- Main memory:
  - –Linear scan
  - -Tree based:
    - Quadtree
    - kd-tree
  - -Hashing:
    - Locality-Sensitive Hashing

#### (1958) F. Rosenblatt

The perceptron: a probabilistic model for information storage and organization in the brain Psychological Review 65:386-408

#### Perceptron

#### Linear models: Perceptron

• Example: Spam filtering

|                   | viagra | learning | the | dating | nigeria | spam?      |
|-------------------|--------|----------|-----|--------|---------|------------|
| $\vec{x}_1 = ($   | 1      | 0        | 1   | 0      | 0)      | $y_1 = 1$  |
| $\vec{x}_2 = ($   | 0      | 1        | 1   | 0      | 0)      | $y_2 = -1$ |
| $\vec{x}_{3} = ($ | 0      | 0        | 0   | 0      | 1)      | $y_3 = 1$  |

- Instance space  $x \in X$  (|X| = n data points)
  - Binary or real-valued feature vector x of word occurrences
  - -d features (words + other things, d~100,000)
- Class  $y \in Y$ 
  - -y: Spam (+1), Leskovamaj (rama) J. Ullman: Mining of Massive Datasets, http://

#### Linear models for classification

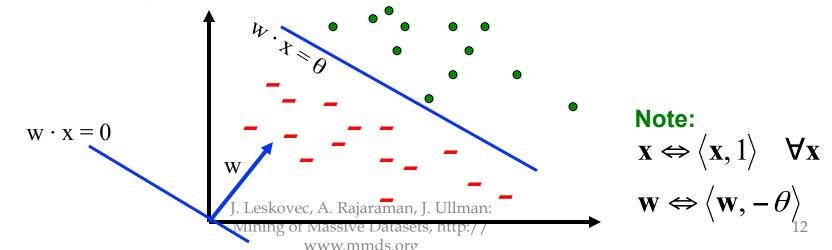
• Binary classification:

 $f(\mathbf{x}) = \begin{cases} +1 & \text{if } \mathbf{w}_1 \mathbf{x}_1 + \mathbf{w}_2 \mathbf{x}_2 + \dots \mathbf{w}_d \mathbf{x}_d \ge \theta \\ -1 & \text{otherwise} \end{cases}$ 

boundar y is **linear** 

Decision

- Input: Vectors x<sup>(j)</sup> and labels y<sup>(j)</sup>
  Vectors x<sup>(j)</sup> are real valued where
- **Goal:** Find vector  $w = (w_1, w_2, ..., w_d)$ – Each  $w_i$  is a real number

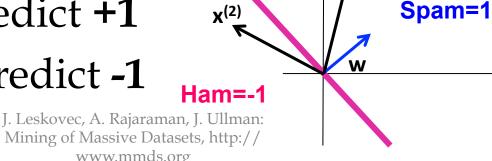


### Perceptron [Rosenblatt '58]

- (very) Loose motivation: Neuron
- Inputs are feature values
- Each feature has a weight  $w_i$
- Activation is the sum:

$$-f(x) = \sum_i w_i x_i = w \cdot x$$

- If the *f*(*x*) is:
  - Positive: Predict +1
  - -Negative: Predict -1



w·x=0

Axon

≥ 0?

viagr

13

a

Nucleus

Schematic of biological neuron

Dendrite

∇**,**X<sup>(1)</sup>

#### **Perceptron: Estimating** *w*

- **Perceptron:**  $y' = sign(w \cdot x)$
- How to find parameters *w*?
  - Start with  $w_0 = 0$

Note that the Perceptron is a conservative algorithm: it ignores samples that it classifies correctly.

 $W^{(t)}$ 

**W**<sup>(t+1</sup>

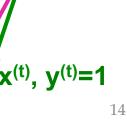
η·**y**<sup>(t)</sup>·**x**<sup>(t)</sup>

- Pick training examples  $x^{(t)}$  one by one (from disk)
- Predict class of  $x^{(t)}$  using current weights

• 
$$y' = sign(w^{(t)} \cdot x^{(t)})$$

- If y' is correct (i.e.,  $y_t = y'$ )
  - No change:  $w^{(t+1)} = w^{(t)}$
- If y' is wrong: adjust  $w^{(t)}$  $w^{(t+1)} = w^{(t)} + \eta \cdot y^{(t)} \cdot x^{(t)}$ 
  - $-\eta$  is the learning rate parameter
  - $-x^{(t)}$  is the t-th training example
  - $-y^{(t)}$  is true t-th class label ({+1<sub>intal</sub>}) Mining of Massive Datasets, http://

www.mmds.org



#### **Perceptron Convergence**

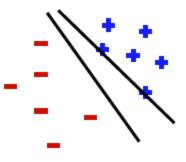
- Perceptron Convergence Theorem:
  - If there exist a set of weights that are consistent (i.e., the data is linearly separable) the Perceptron learning algorithm will converge
- How long would it take to converge?
- Perceptron Cycling Theorem:
  - If the training data is not linearly separable the Perceptron learning algorithm will eventually repeat the same set of weights and therefore enter an infinite loop
- How to provide robustness, more expressivity?

### **Properties of Perceptron**

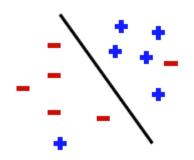
- **Separability:** Some parameters get training set perfectly
- **Convergence:** If training set is separable, perceptron will converge
- **(Training) Mistake bound:** Number of mistakes
  - where

#### and

 Note we assume x Euclidean length 1, then γ is the minimum distance of any example. Leskovec, AL Raiaraman, J. Ullman: any example. Leskovec, AL Raiaraman, J. Ullman: www.mmds.org Separable



Non-Separable



# **Updating the Learning Rate**

- Perceptron will oscillate and won't converge
- When to stop learning?
- (1) Slowly decrease the learning rate  $\eta$ 
  - A classic way is to:  $\eta = c_1/(t + c_2)$ 
    - But, we also need to determine constants  $\mathbf{c_1}$  and  $\mathbf{c_2}$
- (2) Stop when the training error stops chaining
- (3) Have a small test dataset and stop when the test set error stops decreasing
- (4) Stop when we reached some maximum number of passes over the data

#### **Multiclass Perceptron**

- What if more than 2 classes?
- Weight vector w<sub>c</sub> for each class c
   Train one class vs. the rest:
  - <u>Example:</u> 3-way classification **y** = {**A**, **B**, **C**}
  - Train 3 classifiers:  $\mathbf{w}_A$ : A vs. B,C;  $\mathbf{w}_B$ : B vs. A,C;  $\mathbf{w}_C$ : C vs. A,B
- Calculate activation for each clausest f(x,c) = Σ<sub>i</sub> w<sub>c,i</sub> x<sub>i</sub> = w<sub>c</sub> · x
  Highest activation wins c = arg max<sub>c</sub> f(x,c)

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http:// www.mmds.org

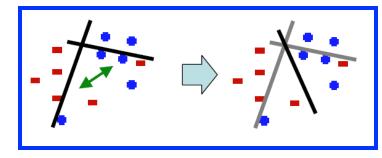
biggest

### **Issues with Perceptrons**

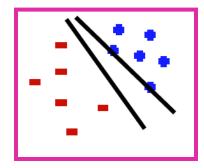
• Overfitting:

succuracy succuracy test held-out iterations

• **Regularization:** If the data is not separable weights dance around

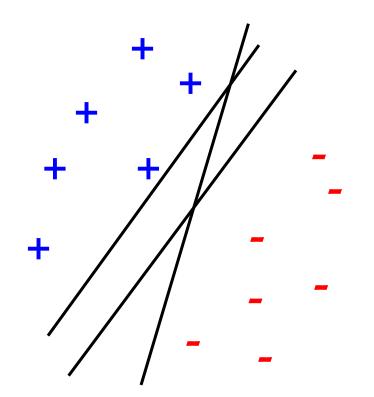


 Mediocre generalization:
 – Finds a "barely" separating solution



# **Support Vector Machines**

• Want to separate "+" from "-" using a line



Data:

Training examples:

$$-(x_{1'}, y_{1}) \dots (x_{n'}, y_{n'})$$

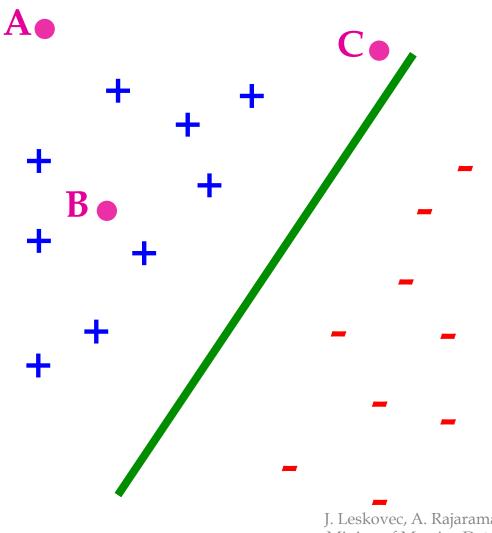
- Each example *i*:
  - $-x_i = (x_i^{(1)}, \dots, x_i^{(d)})$ • **x**<sub>i</sub><sup>(j)</sup> is real valued
  - $-y_i \in \{-1, +1\}$

Inner product:

#### Which is best linear separator (defined by w)?

Mining of Massive Datasets, http://

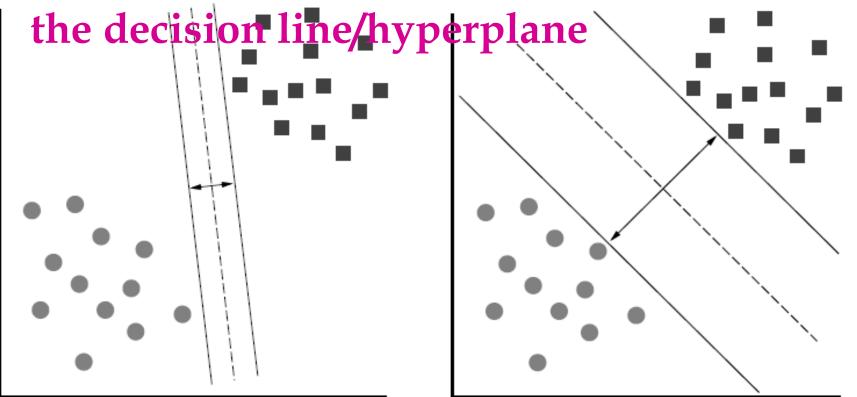
#### Largest Margin



- Distance from the separating hyperplane corresponds to the "confidence" of prediction
- Example:
  - -We are more sure about the class of **A** and **B** than of **C**

### Largest Margin

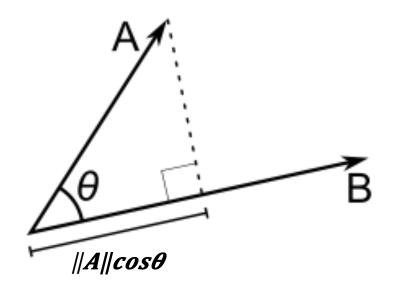
Margin 
 *γ*: Distance of closest example from



The reason we define margin this way is due to theoretical convenience and existence of generalization error bounds that depend on the value of margin.

### Why maximizing $\gamma$ a good idea?

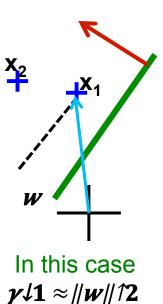
# • Remember: Dot product $A \cdot B = ||A|| \cdot ||B|| \cdot \cos \theta$

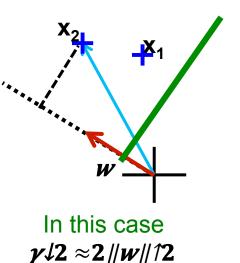


 $||A|| = \sqrt{\sum j} = 1 \uparrow d \equiv (A)$ 

# Why maximizing y a good idea?

- Dot product
- What is ,?





So, roughly corresponds to the margin
 Bigger biggerst he separation

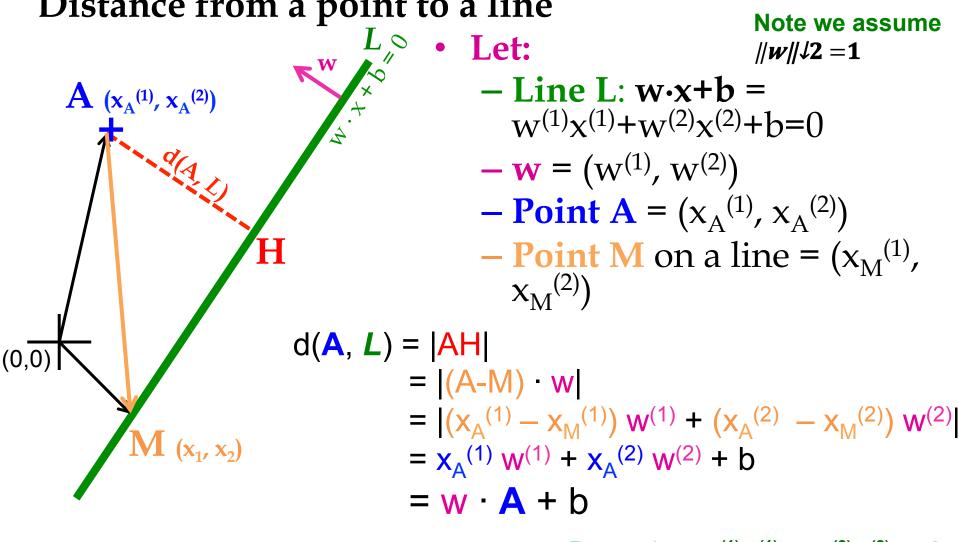
W

**\_**¥₁

**x**₂ **∔** 

# What is the margin?

#### Distance from a point to a line



Remember  $x_{M}^{(1)}w^{(1)} + x_{M}^{(2)}w^{(2)} = -b$ J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://ce M belongs to line L www.mmds.org

25

### **Support Vector Machine**



-Good according to intuition, theory (VC dimension) & + practice

$$\max_{w,\gamma} \gamma$$

$$s.t. \forall i, y_i(w \cdot x_i + b) \ge \gamma$$

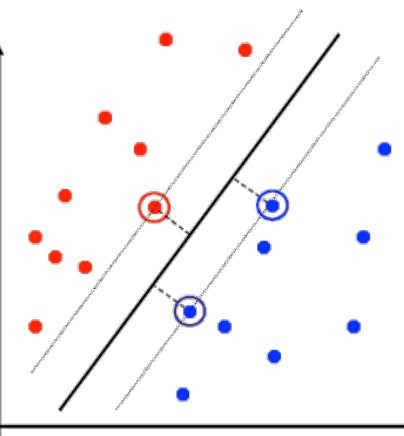
#### - is margin ... distance from Maximizing the margin the separating hyperplane

┿

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http:// www.mmds.org w·x+b=0

# **Support Vector Machines**

- Separating hyperplane is defined by the support vectors
  - –Points on +/- planes from the solution
  - -If you knew these points, you could ignore the rest



-Generally, *d*+*1* support vectors (for *d* dim. data)

# **Non-linearly Separable Data**

• If data is not separable introduce penalty:

 $\min_{w} \frac{1}{2} \|w\|^2 + C \cdot (\# \text{number of mistakes})$ 

- $s.t. \forall i, y_i(w \cdot x_i + b) \ge 1$
- Minimize *w*<sup>2</sup> plus the number of training mistakes
- Set *C* using cross validation
- How to penalize mistakes?
  All mistakes are not equally bad!

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http:// www.mmds.org 1.+×6=0

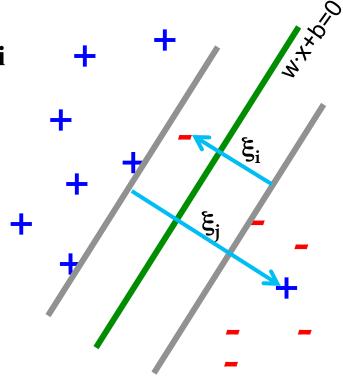
### **Support Vector Machines**

ท

Introduce slack variables ξ<sub>i</sub>

$$\min_{\substack{w,b,\xi_i \ge 0}} \frac{1}{2} \|w\|^2 + C \cdot \sum_{i=1}^n \xi_i$$
  
s.t. $\forall i, y_i (w \cdot x_i + b) \ge 1 - \xi_i$ 

If point *x<sub>i</sub>* is on the wrong side of the margin then get penalty ξ<sub>i</sub>



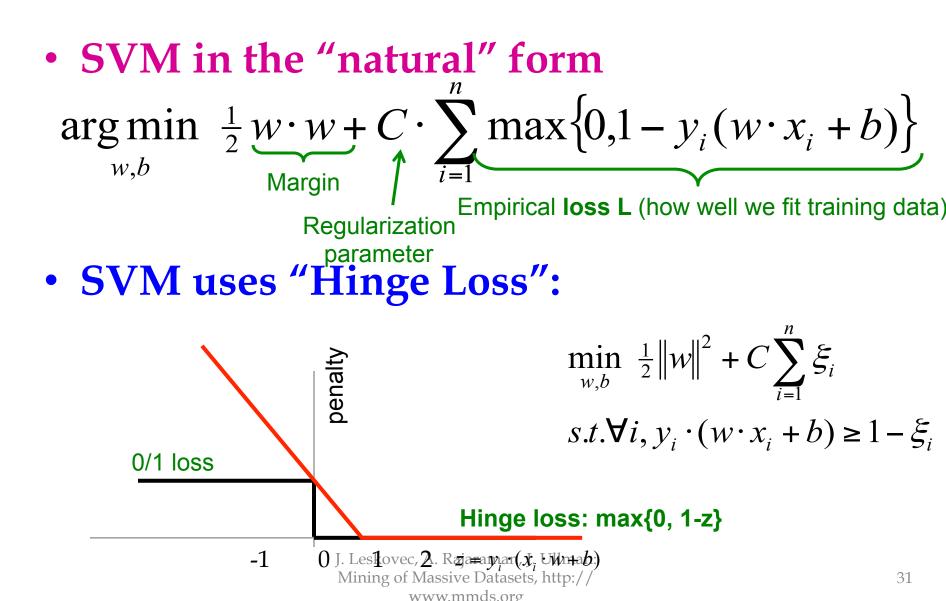
For each data point: If margin  $\ge$  1, don't care If margin < 1, pay linear penalty

#### **Slack Penalty** C

 $\min_{w} \frac{1}{2} \|w\|^2 + C \cdot (\# \text{number of mistakes})$ s.t.  $\forall i, y_i (w \cdot x_i + b) \ge 1$ 

What is the role of slack penalty C:small C
 -C=∞: Only want to w, b + for "good" C
 that separate the data +
 -C=0: Can set ξ<sub>i</sub> to anything, for +
 then w=0 (basically +
 ignores the data) + for +

#### **Support Vector Machines**



$$\min_{w,b} \frac{1}{2} w \cdot w + C \cdot \sum_{i=1}^{n} \xi_{i}$$

$$s.t.\forall i, y_i \cdot (x_i \cdot w + b) \ge 1 - \xi_i$$

- Want to estimate and !
  - Standard way: Use a solver!
    - **Solver:** software for finding solutions to "common" optimization problems
- Use a quadratic solver:
  - Minimize quadratic function
  - -Subject to linear constraints
- Problem: Solvers are inefficient for big data!

- Want to estimate w, b!
- $\min_{w,b} \frac{1}{2} w \cdot w + C \sum_{i=1}^{n} \xi_i$  Alternative approach:  $s.t. \forall i, y_i \cdot (x_i \cdot w + b) \ge 1 - \xi_i$ -Want to minimize f(w,b):

$$f(w,b) = \frac{1}{2}w \cdot w + C \cdot \sum_{i=1}^{n} \max\left\{0, 1 - y_i(\sum_{j=1}^{d} w^{(j)}x_i^{(j)} + b)\right\}$$

g(z)

Ζ

33

- Side note:
  - How to minimize convex functions
  - Use gradient descent:  $\min_z g(z)$

-Iterate: 
$$z_{t+1} \leftarrow z_t - \eta \nabla g(z_t)$$

• Want to minimize *f*(*w*,*b*):

$$f(w,b) = \frac{1}{2} \sum_{j=1}^{d} \left( w^{(j)} \right)^2 + C \sum_{i=1}^{n} \max \left\{ 0, 1 - y_i \left( \sum_{j=1}^{d} w^{(j)} x_i^{(j)} + b \right) \right\}$$

Empirical loss  $L(x \downarrow i \ y \downarrow i)$ 

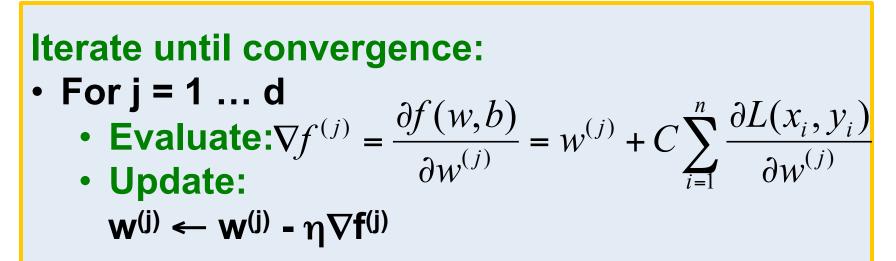
Compute the gradient ∇(j) w.r.t. w<sup>(j)</sup>

$$\nabla f^{(j)} = \frac{\partial f(w,b)}{\partial w^{(j)}} = w^{(j)} + C \sum_{i=1}^{n} \frac{\partial L(x_i, y_i)}{\partial w^{(j)}}$$

$$\frac{\partial L(x_i, y_i)}{\partial w^{(j)}} = 0 \quad \text{if } y_i(\mathbf{w} \cdot x_i + b) \ge 1$$

J. Leskovec, A. Rajaraman, J. Ullman:  $-y_i x_i^{(j)}$  else Mining of Massive Datasets, http://

Gradient descent:



 $\begin{array}{l} \eta... \text{learning rate parameter} \\ \textbf{C}... \text{ regularization parameter} \end{array}$ 

• Problem:

#### -Computing $\nabla f^{(j)}$ takes O(n) time!

• n ... size of the training dataset

- Stochastic Gradient Descent
  - **Stochastic Gradient Descent**   $\nabla f^{(j)} = w^{(j)} + C \sum_{i=1}^{n} \frac{\partial L(x_i, y_i)}{\partial w^{(j)}}$  Instead of evaluating gradient over all examples evaluate it for each **individual** training example

$$\nabla f^{(j)}(x_i) = w^{(j)} + C \cdot \frac{\partial L(x_i, y_i)}{\partial w^{(j)}}$$

Notice: no summation over *i* anymore

We just had:

Stochastic gradient descent:

Iterate until convergence:

- For i = 1 ... n
  - For j = 1 ... d
    - Compute:  $\nabla f^{(j)}(\mathbf{x}_i)$
    - Update:  $\mathbf{w}^{(j)} \leftarrow \mathbf{w}^{(j)} \eta \nabla \mathbf{f}^{(j)}(\mathbf{x}_i)$

#### An observation

$$\nabla f^{(j)}(x_i) = w^{(j)} + C \cdot \frac{\partial L(x_i, y_i)}{\partial w^{(j)}}$$

#### Key computational point:

- If  $x^i = 0$  then the gradient of  $w^j$  is zero
- so when processing an example you only need to update weights for the non-zero features of an example.

#### **Example: Text categorization**

- Example by Leon Bottou:
  - -Reuters RCV1 document corpus
    - Predict a category of a document – One vs. the rest classification
  - -*n* = 781,000 training examples (documents)
  - -23,000 test examples
  - −*d* = 50,000 features
    - One feature per word
    - Remove stop-words
    - Remove low frequency words

#### **Example: Text categorization**

#### • Questions:

- -(1) Is SGD successful at minimizing f(w,b)?
- -(2) How quickly does SGD find the min of f(w,b)?

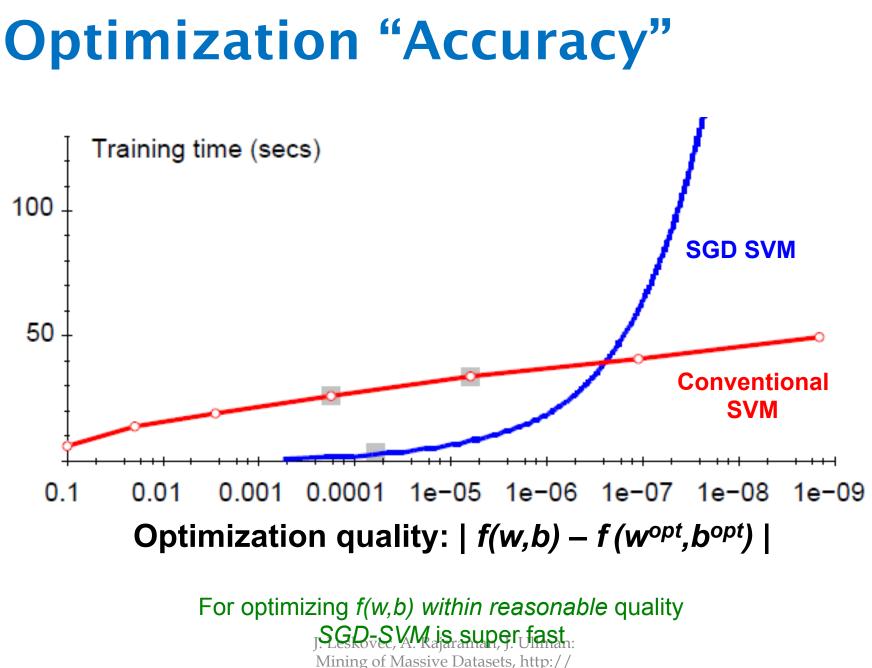
#### -(3) What is the error on a test set?

|              | Training time | Value of f(w,b) | Test error |
|--------------|---------------|-----------------|------------|
| Standard SVM | 23,642 secs   | 0.2275          | 6.02%      |
| "Fast SVM"   | 66 secs       | 0.2278          | 6.03%      |
| SGD SVM      | 1.4 secs      | 0.2275          | 6.02%      |

- (1) SGD-SVM is successful at minimizing the value of *f(w,b)*
- (2) SGD-SVM is super fast
- (3) SGD-SVM test set error is comparable J. Leskovec, A. Rajaraman, J. Ullman:

Mining of Massive Datasets, http://

www.mmds.org

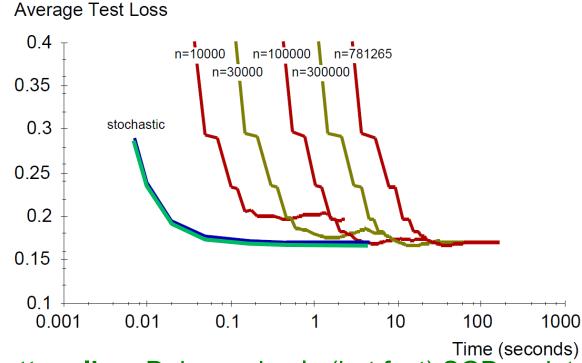


40

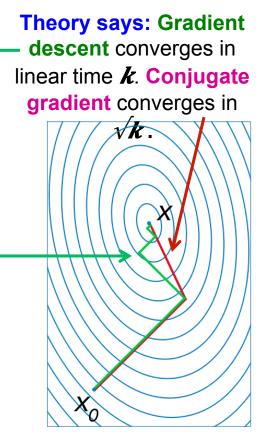
www.mmds.org

#### SGD vs. Batch Conjugate Gradient

• **SGD** on full dataset vs. **Conjugate Gradient** on a sample of *n* training examples



Bottom line: Doing a simple (but fast) SGD update many times is better than doing a complicated (but slow) CG update a few times of Massive Datasets, http://



k... condition number

### **Practical Considerations**

• Need to choose learning rate  $\eta$  and  $t_0$ 

$$w_{t+1} \leftarrow w_t - \frac{\eta_t}{t+t_0} \left( w_t + C \frac{\partial L(x_i, y_i)}{\partial w} \right)$$

- Leon suggests:
  - Choose  $\mathbf{t}_0$  so that the expected initial updates are comparable with the expected size of the weights
  - Choose  $\eta$ :
    - Select a small subsample
    - Try various rates **η** (e.g., 10, 1, 0.1, 0.01, ...)
    - Pick the one that most reduces the cost
    - Use  $\eta$  for next 100k iterations on the full dataset