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Supervised Learning 
•  Would like to do prediction:  

 estimate a function f(x) so that y = f(x) 

•  Where y can be: 
– Real number: Regression 
– Categorical: Classification 
– Complex object:  

•  Ranking of items, Parse tree, etc. 

•  Data is labeled: 
– Have many pairs {(x, y)} 

•  x … vector of binary, categorical, real valued features  
•  y … class ({+1, -1}, or a real number) 
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X Y 

X’ Y’ 

Training and  test set 

Estimate y = f(x) on X,Y. 
Hope that the same f(x) 

also works on unseen X’, Y’ 



Large Scale Machine Learning 

•  We will talk about the following methods: 
– k-Nearest Neighbor (Instance based 

learning) 
– Perceptron (neural networks) 
– Support Vector Machines 
– Decision trees 

•  Main question: 
How to efficiently train  
(build a model/find model parameters)? 
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Instance Based Learning 

•  Instance based learning 
•  Example: Nearest neighbor 

– Keep the whole training dataset: {(x, y)} 
– A query example (vector) q comes 
– Find closest example(s) x* 

– Predict y* 

•  Works both for regression and classification 
– Collaborative filtering is an example of k-

NN classifier 
•  Find k most similar people to user x that have 

rated movie y 
•  Predict rating yx of x as an average of yk 
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1-Nearest Neighbor 
•  To make Nearest Neighbor work we need 4 things: 

– Distance metric: 
•  Euclidean 

– How many neighbors to look at? 
•  One 

– Weighting function (optional): 
•  Unused 

– How to fit with the local points? 
•  Just predict the same output as the nearest neighbor 
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k-Nearest Neighbor 
•  Distance metric: 

–  Euclidean 
•  How many neighbors to look at? 

–  k 
•  Weighting function (optional): 

–  Unused 
•  How to fit with the local points? 

–  Just predict the average output among k nearest neighbors 
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Kernel Regression 
•  Distance metric: 

–  Euclidean 
•  How many neighbors to look at? 

–  All of them (!) 
•  Weighting function: 

–  ​𝒘↓𝒊 =𝐞𝐱𝐩​(− ​𝒅​(​𝒙↓𝒊 ,𝒒)↑𝟐 /​𝑲↓𝒘  ) 
•  Nearby points to query q are weighted more strongly.  Kw…

kernel width. 
•  How to fit with the local points? 

–  Predict weighted average: ​∑𝒊↑▒​𝒘↓𝒊 ​𝒚↓𝒊  /∑𝒊↑▒​𝒘↓𝒊    
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How to find nearest neighbors? 

•  Given: a set P of n points in Rd 

•  Goal: Given a query point q 
– NN: Find the nearest neighbor p of q in P 
– Range search: Find one/all points in P 

within distance r from q 
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Algorithms for NN 

•  Main memory: 
– Linear scan 
– Tree based: 

• Quadtree 
• kd-tree 

– Hashing:  
• Locality-Sensitive Hashing 
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Perceptron 



Linear models: Perceptron 

•  Example: Spam filtering 

•  Instance space x ∈ X (|X|= n data points) 
– Binary or real-valued feature vector x of 

word occurrences  
– d features (words + other things, d~100,000) 

•  Class y ∈ Y 
– y: Spam (+1), Ham (-1) J. Leskovec, A. Rajaraman, J. Ullman: 

Mining of Massive Datasets, http://
www.mmds.org 
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Linear models for classification 

•  Binary classification: 

•  Input: Vectors x(j) and labels y(j) 

– Vectors x(j)  are real valued where  
•  Goal: Find vector  w = (w1, w2 ,... , wd ) 

– Each wi is a real number  
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Perceptron [Rosenblatt ‘58] 

•  (very) Loose motivation: Neuron 
•  Inputs are feature values 
•  Each feature has a weight wi 

•  Activation is the sum: 
– f(x) = Σi wi xi = w⋅ x  

•  If the f(x) is: 
– Positive: Predict +1 
– Negative: Predict -1 
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Perceptron: Estimating w 
•  Perceptron: y’ = sign(w⋅ x) 
•  How to find parameters w? 

– Start with w0 = 0 
– Pick training examples x(t) one by one (from 

disk) 
– Predict class of x(t) using current weights 

•  y’ = sign(w(t)⋅ x(t)) 
–  If y’ is correct (i.e., yt = y’) 

•  No change: w(t+1) = w(t)
 

–  If y’ is wrong: adjust w(t)  
  w(t+1) = w(t) + η ⋅ y (t) ⋅ x(t) 

–  η is the learning rate parameter 
–  x(t)  is the t-th training example 
–  y(t)

  is true t-th class label ({+1, -1}) J. Leskovec, A. Rajaraman, J. Ullman: 
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w(t)
 

 η⋅y(t)⋅x(t) 

x(t), y(t)=1 

w(t+1)
 

Note that the Perceptron is 
a conservative algorithm: it 
ignores samples that it  
classifies correctly. 



Perceptron Convergence 
•  Perceptron Convergence Theorem: 

–  If there exist a set of weights that are consistent 
(i.e., the data is linearly separable) the Perceptron 
learning algorithm will converge 

•  How long would it take to converge? 
•  Perceptron Cycling Theorem:  

–  If the training data is not linearly separable the 
Perceptron learning algorithm will eventually 
repeat the same set of weights and therefore enter 
an infinite loop 

•  How to provide robustness, more expressivity?  
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Properties of Perceptron 

•  Separability: Some parameters get 
training set perfectly 

•  Convergence: If training set is 
separable, perceptron will converge 

•  (Training) Mistake bound:  
Number of mistakes  

– where   
and  
• Note we assume x Euclidean length 1, 

then γ is the minimum distance of 
any example to plane u J. Leskovec, A. Rajaraman, J. Ullman: 
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Updating the Learning Rate 

•  Perceptron will oscillate and won’t converge 
•  When to stop learning? 
•  (1) Slowly decrease the learning rate η  

– A classic way is to: η = c1/(t + c2) 
•  But, we also need to determine constants c1 and 

c2 

•  (2) Stop when the training error stops chaining 
•  (3) Have a small test dataset and stop when the 

test set error stops decreasing 
•  (4) Stop when we reached some maximum 

number of passes over the data 
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Multiclass Perceptron 

•  What if more than 2 classes? 
•  Weight vector wc for each class c 

– Train one class vs. the rest: 
• Example: 3-way classification  y = {A, B, C} 
• Train 3 classifiers: wA: A vs. B,C;   wB: B vs. 

A,C;   wC: C vs. A,B 
•  Calculate activation for each class 

 f(x,c) = Σi  wc,i  xi  =  wc⋅ x 
•  Highest activation wins 

 c = arg maxc f(x,c) 
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Issues with Perceptrons 

•  Overfitting: 

•  Regularization: If the data 
is not separable weights 
dance around  

•  Mediocre generalization: 
– Finds a “barely” 

separating solution 
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Support Vector Machines 

•  Want to separate “+” from “-” using a line 
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Data: 
•  Training examples:  

–  (x1, y1) … (xn, yn) 
•  Each example i: 

– xi = ( xi
(1),… , xi

(d) ) 
•  xi

(j) is real valued 
– yi ∈ { -1, +1 } 
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Largest Margin 

•  Distance from 
the separating 
hyperplane 
corresponds to 
the “confidence” 
of prediction 

•  Example: 
– We are more 

sure about the 
class of A and 
B than of C  
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Largest Margin 

•  Margin 𝜸: Distance of closest example : Distance of closest example 
from  
the decision line/hyperplane 
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The reason we define margin this way is due to theoretical convenience and existence of 
generalization error bounds that depend on the value of margin. 



Why maximizing 𝜸 a good idea? 

•  Remember: Dot product 
 𝑨⋅𝑩=‖𝑨‖⋅‖𝑩‖⋅ ​𝐜𝐨𝐬⁠𝜽  
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||𝑨||=√⁠∑𝒋=𝟏↑𝒅▒​(​𝑨↑(𝒋) )↑𝟐    

‖𝑨‖𝒄𝒐𝒔𝜽 



Why maximizing 𝜸 a good idea? 

•  Dot product 
  

•  What is  , ? 

•  So,  roughly corresponds to the margin 
– Bigger  bigger the separation J. Leskovec, A. Rajaraman, J. Ullman: 

Mining of Massive Datasets, http://
www.mmds.org 
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Distance from a point to a line 

A (xA
(1), xA

(2)) 

M (x1, x2) 

H 

d(A, L) = |AH| 
             = |(A-M) · w| 
             = |(xA

(1) – xM
(1)) w(1) + (xA

(2)  – xM
(2)) w(2)| 

             = xA
(1) w(1) + xA

(2) w(2) + b 
             = w · A + b 

Remember xM
(1)w(1) + xM

(2)w(2) = - b 
since M belongs to line L 

w 
L 

+ 

What is the margin? 

•  Let: 
– Line L: w·x+b = 

w(1)x(1)+w(2)x(2)+b=0 
– w = (w(1), w(2))  
– Point A = (xA

(1), xA
(2)) 

– Point M on a line = (xM
(1), 

xM
(2)) 

(0,0) 
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Support Vector Machine 

•  Maximize the margin: 
– Good according to intuition,  

theory (VC dimension) &  
practice 

–  is margin … distance from  
the separating hyperplane 
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Support Vector Machines 

•  Separating hyperplane  
is defined by the  
support vectors 
– Points on +/- planes  

from the solution  
– If you knew these  

points, you could  
ignore the rest 

– Generally,  
d+1 support vectors (for d dim. data) 
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Non-linearly Separable Data 

•  If data is not separable introduce penalty: 

– Minimize ǁ‖wǁ‖2 plus the  
number of training mistakes 

– Set C using cross validation 

•  How to penalize mistakes? 
– All mistakes are not 

equally bad! 
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Support Vector Machines 

•  Introduce slack variables ξi
 

•  If point xi is on the wrong  
side of the margin then  
get penalty ξi
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Slack Penalty 𝑪 

•  What is the role of slack penalty C: 
– C=∞: Only want to w, b  

that separate the data 
– C=0: Can set ξi to anything,  

then w=0 (basically  
ignores the data) 
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Support Vector Machines 

•  SVM in the “natural” form 

 

•  SVM uses “Hinge Loss”: 
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SVM: How to estimate w? 

•  Want to estimate  and ! 
– Standard way: Use a solver! 

•  Solver: software for finding solutions to  
“common” optimization problems 

•  Use a quadratic solver: 
– Minimize quadratic function 
– Subject to linear constraints 

•  Problem: Solvers are inefficient for big data! 
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SVM: How to estimate w? 

•  Want to estimate w, b! 
•  Alternative approach: 

– Want to minimize f(w,b): 

•  Side note: 
– How to minimize convex functions ? 
– Use gradient descent: minz g(z) 
– Iterate: zt+1 ← zt – η ∇g(zt)  
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SVM: How to estimate w? 

•  Want to minimize f(w,b): 

 
•  Compute the gradient ∇(j) w.r.t. w(j) 
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Iterate until convergence: 
•  For j = 1 … d 

•  Evaluate:  
•  Update:  

w(j) ← w(j) - η∇f(j) 

SVM: How to estimate w? 

•  Gradient descent: 

 

     
 

 

 

 

 

•  Problem: 
– Computing ∇f(j)

 takes O(n) time! 
• n … size of the training dataset 

J. Leskovec, A. Rajaraman, J. Ullman: 
Mining of Massive Datasets, http://

www.mmds.org 
35 

∑
= ∂

∂
+=

∂

∂
=∇

n

i
j
iij

j
j

w
yxLCw

w
bwff

1
)(

)(
)(

)( ),(),(

η…learning rate parameter  
C… regularization parameter 



SVM: How to estimate w? 

•  Stochastic Gradient Descent 
– Instead of evaluating gradient over all 

examples evaluate it for each individual 
training example 

•  Stochastic gradient descent: 
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Iterate until convergence: 
•  For i = 1 … n 

•  For j = 1 … d 
•  Compute: ∇f(j)(xi) 
•  Update: w(j) ← w(j) - η ∇f(j)(xi) 

Notice: no summation 
over i anymore 



Key  computational  point:    

•  If  xi=0  then  the  gradient  of  wj  is  zero

•  so  when  processing  an  example  you  
only  need  to  update  weights  for  the  
non-­‐zero  features  of  an  example.


An observation 
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Example: Text categorization 

•  Example by Leon Bottou: 
– Reuters RCV1 document corpus 

• Predict a category of a document 
– One vs. the rest classification 

– n = 781,000 training examples (documents) 
– 23,000 test examples 
– d = 50,000 features 

• One feature per word 
• Remove stop-words 
• Remove low frequency words 
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Example: Text categorization 

•  Questions: 
– (1) Is SGD successful at minimizing f(w,b)? 
– (2) How quickly does SGD find the min of 

f(w,b)? 
– (3) What is the error on a test set? 
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     Training time         Value of f(w,b)        Test error  
Standard SVM 
“Fast SVM” 
SGD SVM 

(1) SGD-SVM is successful at minimizing the value of f(w,b) 
(2) SGD-SVM is super fast 
(3) SGD-SVM test set error is comparable 



Optimization “Accuracy” 
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Optimization quality: | f(w,b) – f (wopt,bopt) | 

Conventional 
SVM 

SGD SVM 

For optimizing f(w,b) within reasonable quality  
SGD-SVM is super fast 



SGD vs. Batch Conjugate Gradient 

•  SGD on full dataset vs. Conjugate Gradient on 
a sample of n training examples 
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Bottom line: Doing a simple (but fast) SGD update 
many times is better than doing a complicated (but 
slow) CG update a few times 

Theory says: Gradient 
descent converges in 

linear time 𝒌. Conjugate 
gradient converges in 

√⁠𝒌 . 

𝒌… condition number 



Practical Considerations 
•  Need to choose learning rate η and t0 

•  Leon suggests: 
– Choose t0 so that the expected initial updates are 

comparable with the expected size of the weights 
– Choose η: 

•  Select a small subsample 
•  Try various rates η (e.g., 10, 1, 0.1, 0.01, …) 
•  Pick the one that most reduces the cost 
•  Use η for next 100k iterations on the full dataset 

J. Leskovec, A. Rajaraman, J. Ullman: 
Mining of Massive Datasets, http://
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