Graphs (Part 1)

Shannon Quinn

(with thanks to William Cohen and Aapo Kyrola of CMU, and J.
Leskovec, A. Rajaraman, and J. Ullman of Stanford University)

Parallel Graph Computation

* Distributed computation and/or multicore
parallelism

— Sometimes confusing. We will talk mostly
about distributed computation.

* Are classic graph algorithms parallelizable? What
about distributed?

— Depth-first search?
— Breadth-first search?

— Priority-queue based traversals (Djikstra’s,
Prim’s algorithms)

MapReduce for Graphs

* Graph computation almost always iterative

* MapReduce ends up shipping the whole graph
on each iteration over the network (map-
>reduce->map->reduce->...)

—Mappers and reducers are stateless

Difficult

* System is not optimized for iteration:
lterations

ion is

Iterative Computat

Data

Data

Data

j mﬂmzm_u vm:m@

d @@

Disk Penalty

Data

Vi Vi, SN

Vil
Startup Penalty

Date

Dat

MapReduce and Partitioning

* Map-Reduce splits the keys randomly between
mappers/reducers

* But on natural graphs, high-degree vertices
(keys) may have million-times more edges

than the average
- Extremely uneven distribution
- Time of iteration = time of slowest job.

Curse of the Slow Job

Iterations

http://www.www?20 | lindia.com/proceeding/proceedings/p607.pdf

Map-Reduce is Bulk-Synchronous

Parallel
* Bulk-Synchronous Parallel = BSP (Valiant, 80s)

— Each iteration sees only the values of previous
iteration.

— In linear systems literature: Jacobi iterations
* Pros:
— Simple to program
— Maximum parallelism
— Simple fault-tolerance
* Cons:
— Slower convergence
— Iteration time = time taken by the slowest node

Triangle Counting in Twitter Graph

v Total:

40M Users 34.8 Bi"ion Triangles
1.2B Edges

Hadoop

. 64 Machines, 1024 Cores

GraphLab 1.5 Minutes

Hadoop results from [Suri & Vassilvitskii '11]

PageRank

) ' 5.5 hrs
Hadoop
) 1 hr
Twister
) 8 min
Graphlab

40M Webpages, 1.4 Billion Links (100 iterations)

Hadoop results from [Kang et al. '11]
Twister (in-memory MapReduce) [Ekanayake et al. ‘10]

Graph algorithms

* PageRank implementations
—1n memory
— streaming, node list in memory
— streaming, no memory
— map-reduce

A little like Naive Bayes variants
—data in memory
—word counts in memory
— stream-and-sort
— map-reduce

web sitea b ¢
defg

\ \l\‘]

Google’s PageRank

defg

web

site
Z
- qu pdq -

Inlinks are
“good” (recommendations)

Inlinks from a “good” site
are better than inlinks from
a “bad” site

but inlinks from sites with
many outlinks are not as
“good”...

“Good” and “bad” are
relative.

web sitea b ¢
defg

Google’s PageRank

web site
xxx web sitea b ¢
defg

t!)

web

Imagine a “pagehopper”
that always either @

* follows a random link, or

* jumps to random page

Google’s PageRank

(Brin & Page, http://www-db.stanford.edu/~backrub/google.html)

web si « ”
/ n Imagine a "pagehopper
that always either
web sitea b ¢
—" defgt \ I

* follows a random link, or

* jumps to random page

PageRank ranks pages by
the amount of time the
pagehopper spends on a

page:

* or, if there were many
pagehoppers, PageRank is
the expected “crowd size”

Random Walks

G : a graph

P : transition probability matrix

1
— ifu: v, d:=thedegree of u.
P(u,v)= d / 4 ?

0 otherwise.

u

A lazy walk: J+ P
==

avoids messy “dead ends’....

Random Walks: PageRank

A (bored) surfer

» either surf a random webpage
with probability a

» or surf a linked webpage
with probability /- a

a . the jumping constant

p=a(t, L. . H+(l-a)pW

Random Walks: PageRank

Two equivalent ways to define PageRank p=pr(a,s)
(1) p=as+(l-a)pW

(2) pzai(l—a)’(sWt)

S = (ysyreeny) = the (original) PageRank

s = some "seed”, e.q., (1,0,....,0)

—=> personalized PageRank

Graph = Matrix
Vector = Node = Weight

M
-ﬂﬂ-ﬂﬂﬂﬂﬂﬂﬂ -ﬂ
A E
n 2

_ - zlolm mo0 >
-
| —
—|-[Tjo/m/moj0
(08

PageRank in Memory

* Letu=(1/N, .., 1/N)
—dimension = #nodes N
* Let A = adjacency matrix: [a;=1 < i links to j]
* Let W= [w; =a;/outdegree(i)]
w;; is probability of jump fromi to]
e Let VO (1,1,....,1)
—or anything else you want

* Repeat until converged:
—Letvttl=cu + (1-c)Wvt

* cis probability of jumping “anywhere randomly”

Streaming PageRank

* Assume we can store v but not W in memory
* Repeat until converged:
— Letvttl=cu + (1-c)Wvt

» Store A as a row matrix: each line is
—1i ji1.ujiq [the neighbors of i
e Store v’ and v in memory: v’ starts out as cu

* Foreachline“i jq,...jiq"

— Foreachjinjq,...jiq Everything needed
* V'[j] += (1-c)v][i]/d for upFIate is right
there in row....

Streaming PageRank:

with some long rows

* Repeat until converged:
— Letvttl=cu + (1-c)Wvt

« Store A as a list of edges: each line is: “i d(i) j”
e Store v’ and v in memory: v’ starts out as cu
* For eachline “idj"“

* v[j] += (1-o)v[i]/d

We need to get the
degree of i and store
it locally

Streaming PageRank: preprocessing

* Original encoding is edges (i,j)
 Mapper replacesi,j withi,1

* Reducer is a SumReducer

* Resultis pairs (i,d(i))

* Then: join this back with edges (i,j)
* For eachi,j pair:
— send j as a message to node i in the degree table
* messages always sorted after non-messages

— the reducer for the degree table sees i,d(i) first
* thenjl,j2, ...
* can output the key,value pairs with key=i, value=d(i),

Preprocessing Control Flow: 1
I [i

i1 j1,1 i1 1 i1 1 i1 d(i1)
i1 i1,2 i1 1 i1 1 B

2 d(i2)
i1 j1,k1 i1 1 i1 1
i2 j2,1 i2 1 i2 1 i3 d)i3)
i3 j3,1 i3 1 i3 1

) E) EE

Summing values

Preprocessing Control Flow: 2
P el | B

i1 ~j11
i1 1,1 i1 d(i1) i1 d(i1) j1,1
i1 ~j1,2
i1 j1,2 i1 ~i1,1 i1 d(i1) j1,2
. 12
2 ~j2,1
2 j2,1 . i1 d(i1) j1,n1
i2 d(i2) i2 d(i2) j2,1
2~
| d(i) 0 ‘
i1 d(i1) i2 ~i2,2 i3 d(i3) j3,1
i1 d(i1)
2 d(i2)
2 d(i2)

copy or convert to messages join degree with edges

Control Flow: Streaming PR
I 1 [delta

i1 j1,1 i1 d(i1),v(i1) i1 i1 c

i1 j1,2 i1 ~j1,1 i1l (1-o)v(i1)/d(i1) | i1 (1-c)v(...)....
i1 ~j1,2 i1 (1-C)...

i2 j2,1 ol jL,nl i
2 d(i2),v(i2) 2 i2 ¢

| div 2 ~j2,2 i ..
i1 d(i1)v(i1)
2 d(i2),v(i2)

i i -Em$ MAP SORT
send “pageRank

copy or convert to messages updates ” to outlinks

Control Flow: Streaming PR

i1 C il c 1 [V

L1 (@-ov(in)/din) | il (ovi)e. | lin ~v(in
i1 (1-c)... 2 ~(i2) i1 d(i1)v(i1)

jL,nl i T i2 d(i2),v'(i2)

i2 C 2 c

i i2 (1-c)...

.
i1 d(i1),v(i1)
i2 d(i2),v(i2)

i3 c | e e

D PN AN PN PN PN
.m MAP SORT REDUCE , MAP , SORT . REDUCE

Summing values Replace v with Vv’

Control Flow: Streaming PR

2 21 and back around for
""" next iteration....

i1 d(i1),v(i1)
2 d(i2),v(i2)

COpy or convert to messages

f—

PageRank in MapReduce

class MAPPER
method MAP(id n, vertex N)
p < N.PAGERANK/|N.ADJACENCYLIST|
EMIT(id n, vertex N)
for all nodeid m € N.ADJACENCYLIST do
Emit(id m, value p)
class REDUCER
method REDUCE(id m, [p1,p2,...])
M — ()
for all p € [p1,p2,...] do
if ISVERTEX(p) then
M «—p
else
S«—S+0p

M .PAGERANK « s
EmiT(id m, vertex M)

More on graph algorithms

* PageRank is a one simple example of a graph algorithm
— but an important one

— personalized PageRank (aka “random walk with restart”) is an
important operation in machine learning/data analysis settings

* PageRank is typical in some ways
— Trivial when graph fits in memory
— Easy when node weights fit in memory
— More complex to do with constant memory
— A major expense is scanning through the graph many times

 ...same as with SGD/Logistic regression

 disk-based streaming is much more expensive than memory-based
approaches

* Locality of access is very important!
 gains if you can pre-cluster the graph even approximately
 avoid sending messages across the network - keep them local

Design Patterns for Efficient Graph Algorithms in
MapReduce

Jimmy Lin and Michael Schatz
University of Maryland, College Park

{jimmylin,mschatz}@umd.edu

Machine Learning in Graphs - 2010

Some ideas

* Combiners are helpful

—Store outgoing incrementVBy messages and
aggregate them

—This is great for high indegree pages
* Hadoop’s combiners are suboptimal

—Messages get emitted before being
combined

—Hadoop makes weak guarantees about
combiner usage

This slide again!

L1 cache reference 0.5 ns
Branch mispredict 5 ns
L2 cache reference 7 ns
Mutex lock/unlock 100 ns
Main memory reference 100 ns
Compress 1K bytes with Zippy 10,000 ns
Send 2K bytes over 1 Gbps network 20,000 ns
Read 1 MB sequentially from memory 250,000 ns
Round trip within same datacenter 500,000 ns
Disk seek 10,000,000 ns
Read 1 MB sequentially from network 10,000,000 ns
Read 1 MB sequentially from disk 30,000,000 ns

Send packet CA->Netherlands->CA 150,000,000 ns

1e+06
1

1e+04
|

Count

1e+02
|

1e+00
|

| I I l
1e+00 1e+02 1e+04 1e+06

Degree

Figure 6: ClueWeb09 in-degree distribution. Most
pages have relatively few predecessors, but a signifi-
cant fraction have more than 100, and 15 pages have
more than 1 million.

1: class COMBINER

2: method CoMBINE(id m, [p1,p2,...])
3: M—0

4: for all p € [py,p2,...] do

5: if ISVERTEX(p) then

6: EmiT(id m, vertex p)

7: else

8: S+ S8+p

9:

EmiT(nid m, value p)

Figure 3: Combiner pseudo-code for PageRank in
MapReduce. The combiner aggregates partial Page-
Rank contributions by destination vertex and passes
the graph structure along.

: class MAPPER
method INITIALIZE
H «— new ASSOCIATIVEARRAY
method MaAp(id n,vertex N)
p «— N.PAGERANK/|N.ADJACENCYLIST|
EMiT(id n,vertex N)
for all id m € N.ApJACENCYLIST do
H{m} < H{m} +p
method CLOSE
for all id n € H do
EmiT(id n,value H{n})

HO®L XN AW

[Wa—Y

Figure 4: Mapper pseudo-code for PageRank in
MapReduce that implements the in-mapper combin-
ing design pattern.

Some ideas

* Most hyperlinks are within a domain

—If we keep domains on the same machine
this will mean more messages are local

—To do this, build a custom partitioner that
knows about the domain of each nodeld and
keeps nodes on the same domain together

—Assign node id’s so that nodes in the same
domain are together - partition node ids by
range

—Change Hadoop’s Partitioner for this

Some ideas

* Repeatedly shuffling the graph is expensive

—We should separate the messages about the
graph structure (fixed over time) from
messages about pageRank weights
(variable)

—compute and distribute the edges once

—read them in incrementally in the reducer
* not easy to do in Hadoop!

—call this the “Schimmy” pattern

Schimmy

In the initialization APl hook, the reducer opens
the file containing the graph partition corresponding to the
intermediate keys that are to be processed by the reducer.
As the reducer is processing messages passed to each ver-
tex in the REDUCE method, it advances the file stream in
the graph structure until the corresponding vertex’s struc-
ture is found. Once the reduce computation is complete (a
simple sum), the vertex’s state is updated with the revised
PageRank value and written back to disk. The partitioner
ensures consistent partitioning of the graph structure from
iteration to iteration.

Relies on fact that keys are sorted, and sorts the graph
input the same way.....

Schimmy

1: class REDUCER

2: method INITIALIZE

3: P.OPENGRAPHPARTITION()

4: method REDUCE(id m, [p1,p2,...])
o: repeat

6: (id n,vertex N) «+ P.READ()
7 if n ## m then

8: EMIT(id n, vertex N)

9: untiln =m
10: for all p € values [py,p2,...] do
11: S+ S8+p
12: N.PAGERANK + s
13: EMIT(id n, vertex N)

Figure 5: Reducer pseudo-code for PageRank in
MapReduce using the schimmy design pattern to
avoid shuffling the graph structure.

Runtime (s)

1500

1000

500

Resul

ts

+18% +0% -16% +26% -24% -60%

Basic + Basic +
HashPartitioner = RangePartitioner

O Unoptimized
8 Combiner
= IMC

4% -21% -33%

Schimmy +
HashPartitioner

3% -40% -69%

Schimmy +
RangePartitioner

More details at...

Overlapping Community Detection at Scale: A Nonnegative Matrix

Factorization Approach by J. Yang, J. Leskovec. ACM International

Conference on Web Search and Data Mining (WSDM), 2013.

Detecting Cohesive and 2-mode Communities in Directed and

Undirected Networks by J. Yang, J. McAuley, . Leskovec. ACM

International Conference on Web Search and Data Mining (WSDM),
2014.

Community Detection in Networks with Node Attributes by J. Yang, J.

McAuley,]. Leskovec. IEEE International Conference On Data Mining
(ICDM) 2013.

J. Leskovec, A. Rajaraman, J. Ullman: Mining

of Massive Datasets, http://www.mmds.org 39

Resources

» Stanford SNAP datasets:
— http://snap.stanford.edu/data/index.html

* ClueWeb (CMU):
—http://lemurproject.org/clueweb09/

* Univ. of Milan's repository:
— http://law.di.unimi.it/datasets.php

