Clustering

Shannon Quinn

(with thanks to . Leskovec, A. Rajaraman, and J. Ullman of
Stanford University)



High Dimensional Data

* Given a cloud of data points we want to
understand its structure
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The Problem of Clustering

* Given a set of points, with a notion of distance
between points, group the points into some
number of clusters, so that

— Members of a cluster are close/similar to each
other

— Members of different clusters are dissimilar
* Usually:
— Points are in a high-dimensional space
— Similarity is defined using a distance measure

* Euclidean, Cosine, Jaccard, edit distance, ...
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Example: Clusters & Outliers
/ ™~

Outlier Cluster
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Clustering is a hard problem!




Why is it hard?

* Clustering in two dimensions looks easy
* Clustering small amounts of data looks easy
* And in most cases, looks are not deceiving

* Many applications involve not 2, but 10 or
10,000 dimensions

* High-dimensional spaces look different:
Almost all pairs of points are at about the
same distance
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Curse of dimensionality

* “Vastness” of Euclidean space
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Curse of Dimensionality. Figure 1. The ratio of the volume of the hypersphere enclosed by the unit hypercube. The
most intuitive example, the unit square and unit circle, are shown as an inset. Note that the volume of the hypersphere
quickly becomes irrelevant for higher dimensionality

http://link.springer.com/referenceworkentry/10.1007%2F978-0-387-30164-8 192



Clustering Problem: Galaxies

* A catalog of 2 billion “sky objects” represents
objects by their radiation in 7 dimensions
(frequency bands)

* Problem: Cluster into similar objects, e.g.,
galaxies, nearby stars, quasars, etc.
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Clustering Problem: Music CDs

* Intuitively: Music divides into categories,
and customers prefer a few categories

— But what are categories really?

* Represent a CD by a set of customers who
bought it:

e Similar CDs have similar sets of customers,
and vice-versa
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Clustering Problem: Music CDs

Space of all CDs:

* Think of a space with one dim. for each
customer

—Values in a dimension may be 0 or 1 only

— A CD is a point in this space (x;, X5,-.., X}),
where x; = 1 iff the i*" customer bought the
CD

 For Amazon, the dimension is tens of millions

 Task: Find clusters of similar CDs
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Clustering Problem: Documents

Finding topics:

* Represent a document by a vector
(x;, X5, X3), Where x; = 1 iff the i*" word
(in some order) appears in the document

—It actually doesn’t matter if kis infinite; i.e.,
we don’t limit the set of words

* Documents with similar sets of words
may be about the same topic
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Cosine, Jaccard, and Euclidean

 As with CDs we have a choice when we
think of documents as sets of words or
shingles:

—Sets as vectors: Measure similarity by
the cosine distance

—Sets as sets: Measure similarity by the
Jaccard distance

—Sets as points: Measure similarity by
Euclidean distance
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Overview: Methods of Clustering

e Hierarchical:
— Agglomerative (bottom up):

* Initially, each pointis a cluster ol |
* Repeatedly combine the two

“nearest” clusters into one ﬂw m ]J}H m Jﬂ
— Divisive (top down):

o
=

12312 519 4132926 9 310 724 61128172021 218 830251415271622

 Start with one cluster and recursively split it

* Point assignment:
— Maintain a set of clusters
— Points belong to “nearest” cluster
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Hierarchical Clustering

* Key operation: ol
Repeatedly combine N ‘ |
two nearest clusters N
L anie

12312 519 4132926 9 310 724 61128172021 218 830251415271622

* Three important questions:

—1) How do you represent a cluster of more
than one point?

—2) How do you determine the “nearness” of
clusters?

—3) When to stop combining clusters?

J. Leskovec, A. Rajaraman, J. Ullman: Mining
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Hierarchical Clustering

* Key operation: Repeatedly combine two
nearest clusters

* (1) How to represent a cluster of many points?

—Key problem: As you merge clusters, how do
you represent the “location” of each cluster,
to tell which pair of clusters is closest?

* Euclidean case: each cluster has a
centroid = average of its (data)points

* (2) How to determine “nearness” of clusters?

—Measure cluster distances by distances of
Centro i dS J. Leskovec, A. Rajaraman, J. Ullman: Mining
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Example: Hierarchical clustering
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And in the Non-Euclidean Case?

What about the Non-Euclidean case?

* The only “locations” we can talk about are the
points themselves

—i.e., there is no “average” of two points

* Approach 1:

— (1) How to represent a cluster of many
points?
clustroid = (data)point “closest’ to other
points

—(2) How do you determine the “nearness” of
clusters? Treat clustroid as if it were centroid,
when computing inter-cluster distances

J. Leskovec, A. Rajaraman, J. Ullman: Mining
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“Closest’” Point?

(1) How to represent a cluster of many points?
clustroid = point “closest’ to other points

* Possible meanings of “closest”:
— Smallest maximum distance to other points
— Smallest average distance to other points

— Smallest sum of squares of distances to other
points
mésd(x .c)’
 For distance metric d clustroid cof clust

Datapaint Centroid
Centroid is the avg. of all (data)points
in the cluster. This means centroid is
Clustroid o i i1 i

an “artificial” point.
Cluster on Clustroid is an existing (data)point

3 datapoints  J Leskovec, A Rajaraman, | Ullman: mthat is “closest” to all other points |r|18
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Defining “Nearness’ of Clusters

* (2) How do you determine the “nearness” of
clusters?

— Approach 2:
Intercluster distance = minimum of the
distances between any two points, one from
each cluster

— Approach 3:
Pick a notion of “cohesion” of clusters, e.g,
maximum distance from the clustroid

* Merge clusters whose union is most cohesive

J. Leskovec, A. Rajaraman, J. Ullman: Mining
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Cohesion

* Approach 3.1: Use the diameter of the merged
cluster = maximum distance between points
in the cluster

» Approach 3.2: Use the average distance
between points in the cluster

* Approach 3.3: Use a density-based approach

—Take the diameter or avg. distance, e.g., and
divide by the number of points in the cluster

J. Leskovec, A. Rajaraman, J. Ullman: Mining
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Implementation

* Naive implementation of hierarchical
clustering:

— At each step, compute pairwise distances
between all pairs of clusters, then merge

_O(A®)

* Careful implementation using priority queue
can reduce time to O(N? log N)

— Still too expensive for really big datasets
that do not fit in memory

J. Leskovec, A. Rajaraman, J. Ullman: Mining
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k=means Algorithm(s)

* Assumes Euclidean space/distance
 Start by picking k, the number of clusters

* Initialize clusters by picking one point per
cluster

— Example: Pick one point at random, then
k-1 other points, each as far away as
possible from
the previous points

J. Leskovec, A. Rajaraman, J. Ullman: Mining
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Populating Clusters

1) For each point, place it in the cluster whose
current centroid it is nearest

2) After all points are assigned, update the
locations of centroids of the k clusters

3) Reassign all points to their closest centroid
— Sometimes moves points between clusters

Repeat 2 and 3 until convergence

— Convergence: Points don’t move between
clusters and centroids stabilize

J. Leskovec, A. Rajaraman, J. Ullman: Mining
of Massive Datasets, http://www.mmds.org
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K-Means Clustering Example
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K-Means Clustering Example
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Getting the k right

How to select k?

* Try different Kk, looking at the change in the
average distance to centroid as Kk increases

* Average falls rapidly until right k, then
changes little

Best value
of k
Average
distance to

centroid K

J. Leskovec, A. Rajaraman, J. Ullman: Mining
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Too few;
many long
distances
to centroid.

Example: Picking k

J. Leskovec, A. Rajaraman, J. Ullman: Mining
of Massive Datasets, http://www.mmds.org

34



Just right;
distances
rather short.

Example: Picking k

J. Leskovec, A. Rajaraman, J. Ullman: Mining
of Massive Datasets, http://www.mmds.org
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Example: Picking k

Too many;

little improvement
In average
distance.

J. Leskovec, A. Rajaraman, J. Ullman: Mining 36
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More K-means examples

* http://www.naftaliharris.com/blog/
visualizing-k-means-clustering/




Gaussian or
"normal”
distribution

BFR Algorithm

 BFR [Bradley-Fayyad-Reinalisa —= s SR
variant of k-means designed to
handle very large (disk-resident) data sets

* Assumes that clusters are normally distributed

around a centroid in a Euclidean space
— Standard deviations in different ‘
dimensions may vary

* Clusters are axis-aligned ellipses

 Efficient way to summarize clusters
(want memory required O(clusters) and not O(data))

J. Leskovec, A. Rajaraman, J. Ullman: Mining 38
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BFR Algorithm

* Points are read from disk one main-memory-
full at a time

* Most points from previous memory loads are
summarized by simple statistics

* To begin, from the initial load we select the
initial k centroids by some sensible approach:

— Take krandom points

— Take a small random sample and cluster
optimally
— Take a sample; pick a random point, and

then

k-1 more points, each as far from the

previously selected points as possible
of Massive Datasets, http://www.mmds.org
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Three Classes of Points

3 sets of points which we keep track of:
* Discard set (DS):

— Points close enough to a centroid to be
summarized

* Compression set (CS):

— Groups of points that are close together
but not close to any existing centroid

— These points are summarized, but not
assigned to a cluster

» Retained set (RS):

— Isolated points waiting to be assigned to
a compression set

J. Leskovec, A. Rajaraman, J. Ullman: Mining
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BFR:‘“Galaxies’’ Picture
o Points in
@ °*——the RS
C d sets.
(gm0

the CS.

A cluster. Its points

are in the DS. The centroid

Discard set (DS): Close enough to a centroid to be summarized
Compression set (CS): Summarlzed but not assigned to a cluster
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Summarizing Sets of Points

For each cluster, the discard set (DS) is
summarized by:

 The number of points, N

* The vector SUM, whose ™ component is
the sum of the coordinates of the points in
the ™ dimension

* The vector SUMSQ: " component = sum

of squares of coordinates in @
A cluster.

 Leskovee s RapramAll it points are in the DS. The centroid

of Mass D atasets, http://www.mmds.o



Summarizing Points: Comments

 2d+ 1 values represent any size cluster
— d = number of dimensions

* Average in each dimension (the centroid)
can be calculated as SUM;/ N

—SUM; = " component of SUM
* Variance of a cluster’s discard set in dimension
iis: (SUMSQ;/ N) - (SUM; / N)?
— Ailnd standard deviation is the square root of
that

* Next step: Actual clustering

Note: Dropping the “axis-aligned” clusters assumption would require
storing full covariance matrix to summarize the cluster. So, instead of
SUMSAQ being a d-dim vector, it would-beasd 4 thravatrix, Whichisltow

big! of Massive Datasets, http://www.mmds.org
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The “Memory-Load” of Points

Processing the “Memory-Load” of points (1):

* 1) Find those points that are “sufficiently close” to
a cluster centroid and add those points to that
cluster and the DS

— These points are so close to the centroid that
they can be summarized and then discarded

* 2) Use any main-memory clustering algorithm to
cluster the remaining points and the old RS

— Clusters go to the CS; outlying points to the RS

Discard set (DS): Close enough to a centroid to be summarized.
Compression set (CS): Summarized, but not assigned to a cluster

Retainbl S6t{RS): TS0/dte pojits “



The “Memory-Load” of Points

Processing the “Memory-Load” of points (2):

* 3) DS set: Adjust statistics of the clusters to
account for the new points

—Add Ns, SUMs, SUMSQs

* 4) Consider merging compressed sets in the
CS

» 5) If this is the last round, merge all
compressed sets in the CS and all RS points
. . Discard set (D§): . Close enough to a centroid to be summarized.
lntO thelr r@é&@sﬁtrﬁiﬂ%ﬁﬁgummarized, but not assigned to a cluster
Retaingif S6t (RS)- [Soldterrpiits i



BFR:‘“Galaxies’’ Picture
o Points in
@ °*——the RS
C d sets.
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the CS.

A cluster. Its points

are in the DS. The centroid

Discard set (DS): Close enough to a centroid to be summarized
Compression set (CS): Summarlzed but not assigned to a cluster
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A Few Details...

* Q1) How do we decide if a point is “close
enough” to a cluster that we will add the point
to that cluster?

* Q2) How do we decide whether two
compressed sets (CS) deserve to be combined
into one?



How Close is Close Enough?

* Q1) We need a way to decide whether to put a
new point into a cluster (and discard)

* BFR suggests two ways:

—The Mahalanobis distance is less than a
threshold

—High likelihood of the point bélbhgi
currently nearest centroidw

to

0214 : | , 0214
.OO_’1 35 >¢71.1359 !.3413 1.3413 1.1359 54 .0Q135
J. Leskovec, A. Rajaraman, J. Ullman: l"lining-30 -20 o 2 9 2o 3048
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Mahalanobis Distance

* Normalized Euclidean distance from centroid

* For point (%, .., X;) and centroid (c,, ..., ¢z)
1. Normalize in each dimension: y; = (x;-c,) /
O;

2. Take sum of the squares of the y;
3. Take the square root

4(5,3) = \i ("

2
Ci )
o; ... standard deviation of points in
the cluster in the ™ dimension

J. Leskovec, A. Rajaraman, J. Ullman: Mining 49
of Massive Datasets, http://www.mmds.org
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Mahalanobis Distance

 If clusters are normally distributed in d
dimensions, then after transformation, one
standard deviation = vd

—i.e., 68% of the points of the cluster will
have a Mahalanobis distance <vd

Gaussian or

* Accept a point for a cluster if
its M.D. is < some threshold, |
e.g. 2 standard deviations ’

0214 | . | 0214
00135_>¢1.1359 | .3413 |.3413 |.1359 "< .00135
3 2 © 0 o 2 3o
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Picture: Equal M.D. Regions

 Euclidean vs. Mahalanobis distance

Contours of equidista,nt oints from the origin

Uniformly distributed points, Normally distributed points, = Normally distributed points,
Euclidean distance Euclidean distance Mahalanobis distance

J. Leskovec, A. Rajaraman, J. Ullman: Mining
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Should 2 CS clusters be combined?

Q2) Should 2 CS subclusters be combined?

* Compute the variance of the combined
subcluster

— N, SUM, and SUMSQ allow us to make t
calculation quickly

e Combine if the combined variance is @
below some threshold

* Many alternatives: Treat dimensions
differently, consider density

J. Leskovec, A. Rajaraman, J. Ullman: Mining
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The CURE Algorithm

* Problem with BFR/k-means

— Assumes clusters are normally
distributed in each dimension

—And axes are fixed - ellipses at
an angle are not OK

* CURE (Clustering Using REpresentatives):
—Assumes a Euclidean distance

points to represent clusters

of Massive Datasets, http://www.mmds.org



Example: Stanford Salaries

e
© e
e
T . e °
salary - h
h
h
h h
h h P
age —

J. Leskovec, A. Rajaraman, J. Ullman: Mining
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Starting CURE

2 Pass algorithm. Pass 1:

* 0) Pick a random sample of points that fit in
main memory

* 1) Initial clusters:

— Cluster these points hierarchically - group
nearest points/clusters

* 2) Pick representative points:

— For each cluster, pick a sample of points, as
dispersed as possible

— From the sample, pick representatives by
moving them (say) 20% toward the centroid
of the cluster

J. Leskovec, A. Rajaraman, J. Ullman: Mining
of Massive Datasets, http://www.mmds.org
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Example: Initial Clusters

age ____

J. Leskovec, A. Rajaraman, J. Ullman: Mining
of Massive Datasets, http://www.mmds.org
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Example: Pick Dispersed Points

Pick (say) 4
remote points
for each
cluster.

age ____

J. Leskovec, A. Rajaraman, J. Ullman: Mining
of Massive Datasets, http://www.mmds.org
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Example: Pick Dispersed Points

Move points
(say) 20%
toward the
centroid.

age ____

J. Leskovec, A. Rajaraman, J. Ullman: Mining
of Massive Datasets, http://www.mmds.org
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Finishing CURE

Pass 2:
O O
* Now, rescan the whole dataset and
visit each point pin the data set o O
* Place it in the “closest cluster” p

—Normal definition of “closest™:
Find the closest representative to p and
assign it to representative’s cluster

J. Leskovec, A. Rajaraman, J. Ullman: Mining
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Summary

* Clustering: Given a set of points, with a notion
of distance between points, group the points
into some number of clusters

 Algorithms:
— Agglomerative hierarchical clustering:
* Centroid and clustroid
— k-means:
* Initialization, picking k
—BFR
—CURE

J. Leskovec, A. Rajaraman, J. Ullman: Mining

of Massive Datasets, http://www.mmds.org 60



Assignment 2!

* (to bereleased nextweek)
* K-Means on Hadoop!



Spectral clustering

* Tune in next week!



