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Abstract

Social media applications such as Twitter provide a power-
ful medium through which users can communicate their ob-
servations with friends and with the world at large. We have
witnessed live reporting of many events, from soccer games
in Johannesburg to revolutions in Cairo and Tunis, and these
reports have in many ways rivaled the content provided by
the official media. Tapping into this valuable resource is a
challenge, due to the heterogeneity and noise inherent in real-
time text, diversity of languages, and fast-evolving linguistic
norms. In this paper we seek to analyze a tweet stream to au-
tomatically discover points in time when an important event
happens, and to classify such events based on the type of the
sentiments they evoke, using only non-textual features of the
tweeting pattern. This results not only in a robust way of an-
alyzing tweet streams independent of the languages used; it
also provides insights about how users behave on social me-
dia websites. For example, we observe that users often re-
act to an exciting external event by decreasing the volume
of communication with other users. We explain this effect
through a model of how users switch between producing in-
formation or sentiments and sharing others’ news or senti-
ments. We develop and evaluate our models and algorithms
using several Twitter data sets, focusing in particular on the
tweets sent during the soccer World Cup of 2010. This data
set has the feature that the underlying ground truth is well-
defined and known whereby goals serve as events.

Introduction
Understanding how a large population reacts to a major
event in real-time is a fundamental question that, until very
recently, was extremely difficult to approach in a large-scale
quantitative fashion. With the growth of real-time social in-
formation systems such as Twitter, however, it becomes pos-
sible to analyze the behavior of large groups as they observe
and participate in such events.

Watching how Twitter has been used during episodes such
as sporting events, large gatherings, political protests, and
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emergency situations, it is clear that the medium is employed
by different people during an unfolding event for a very
broad range of purposes: it is used for reporting both by par-
ticipants at the site of the event and by observers from far
away; it is used for communication and coordination among
people involved in the event; and it is used to express collec-
tive reactions to new developments as they shape the course
of the event. While earlier work has considered the structure
of communication within Twitter across longer time-scales
(Golder and Yardi 2010; Huberman, Romero, and Wu 2009;
Kwak et al. 2010; Romero and Kleinberg 2010), this combi-
nation of rapidly evolving real-time events with the behavior
of large populations involved in the event represents an im-
portant and distinctive role for Twitter.

The central questions we consider are how to identify new
developments in an event stream of tweets, and how these
new developments in the event influence users’ discussion,
reporting, and communication behavior. We study how to
extract the sequence of key events in a news story from the
raw numbers of tweets and retweets that take place during
these events. We propose an efficient linear classifier for this
task. We then study how the evolution of the event affects the
users’ activity, in particular, the balance between producing
new information and forwarding existing information and
the level of communication among individuals.

For our analysis, we focus on a comprehensive collec-
tion of tweets spanning three episodes of varying lengths:
the month-long 2010 Soccer World Cup, the 2011 Academy
Awards presentation, and the 2011 Super Bowl. These
datasets provide an ideal testing ground for studying the
global reaction to an evolving event: the constituent parts
of the event in our case are known, with exact time-stamps
(e.g., the starts and ends of each game and key events such
as goals within each game); there were strong emotions and
active communication associated with the event; and differ-
ent segments of the population were strongly supporting di-
vergent outcomes (one team winning versus another). All of
these are ingredients that one expects to see, potentially in
reduced forms, in a wide range of global events that have a
significant projection on Twitter.

Primary and secondary information. The dynamics of an
event unfold at many different time-scales. In our case, for
example, the full World Cup was a month-long event, with
games comprising short, intense sub-events nested inside the
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longer whole, and with goals and other pivotal moments
in the games serving as a further level of sub-event nested
within the games. We begin by considering how user be-
havior is altered during these intense sub-events; we can ap-
proach this question at two different levels of scale by con-
sidering (a) games nested within the full World Cup and also
(b) short time windows around a goal nested within a game.

We find that intense sub-events produce a fundamental
shift in the generation of secondary forms of information on
Twitter. We view retweets (the forwarding of information)
and communication via messaging as forming this layer of
secondary information, since they consist of a body of partly
social activity operating on top of a base level of tweets be-
ing generated by users. We refer to all other tweets as pri-
mary information. During a significant sub-event, a char-
acteristic pattern emerges in which the generation of sec-
ondary information is diminished during the sub-event itself,
but then secondary information appears at a temporarily ele-
vated rate during a window of time following the sub-event.
There is an intuitive basis for this kind of “heartbeat” pat-
tern: as the sub-event is actually unfolding, users are devot-
ing more of their time to reporting on and discussing the sub-
event, and hence have less time for producing secondary in-
formation. Once the sub-event has subsided, however, there
is a glut of new tweets that can be retweeted, as well as
communication opportunities for discussing the sub-event
retrospectively, and so the generation of secondary informa-
tion rapidly increases. This trajectory thus suggests a com-
plex complementarity/substitutability relationship between
the volume of primary tweets and the volume of (secondary)
social interactions.

We further argue that this heartbeat pattern can be an ef-
fective component of applications to detect sub-events and
estimate their intensity. While sub-events generally involve
spikes in the volume of tweets, there tend to be many spikes
on Twitter over the course of a short period of time, and so
searching for spikes directly is not a very discriminating test.
Tracking the balance of primary and secondary information,
on the other hand, makes for a more powerful filter, since it
requires not just a spike in volume, but a simultaneous drop
in the level of secondary information. The extent to which
these effects move in opposite directions can be further used
to measure the intensity of the reaction to the sub-event.

We build a mathematical model that formalizes the intu-
itive picture for how the heartbeat phenomenon occurs. In
the model, every user has the same probabilities of tweet-
ing or retweeting in the absence of an unusual event. When
an unusual event happens, each user becomes interested in
it independently by flipping a coin. An interested user will
tweet or retweet about the event before tweeting or retweet-
ing about something else. We show how our model is able to
generate the aggregate behavior we observe in the temporal
vicinity of sub-events, i.e., we show that our model naturally
produces the heartbeat pattern that we observe consistently
in the datasets. Intuitively, this happens because people who
are interested in the event will need to produce primary in-
formation about the new event (new tweets), before becom-
ing able to share existing secondary information about the
same event (retweets).

Related work

There have been several recent papers on automatically
building event reports as witnessed by users from their
tweets. Sakaki, Okazaki, and Matsuo (2010) showed that
tweets can be used to detect earthquakes. They proposed
an algorithm to detect a target event, where their algorithm
is based on classification and a spatiotemporal model; see
also the recent work of Qu et al. (2011) on earthquakes in
China. Petrovic, Osborne, and Lavrenko (2010) considered
the problem of detecting new events in a stream of tweets
and Sankaranarayanan et al. (2009) identified news topics
and clustered tweets for each topics. Chen and Roy (2009)
and Luo, Tang, and Yu (2007) considered similar problems
on other social media applications such as Flickr. Most of
these work are in an unsupervised setting.

A few research papers have also studied tweets dur-
ing specific events, including sporting events. Shamma,
Kennedy, and Churchill (2009) studied tweet usage during
the 2008 Presidential Debates and showed that Twitter activ-
ity serves as a predictor of topic changes in the media event.
Chakrabarti and Punera (2011) used HMM-based methods
to summarize a sequence of tweets produced during a sport-
ing event. Most recently, Zhao et al. (2011) considered the
problem of inferring, from a stream of tweets, the touch-
downs during an American football game; they show that
key events can be recognized to within 40 seconds of their
occurrence. While their work is the closest to ours in terms
of the domain, they are more focused on real-time event
recognition. We obtain a much higher precision (sometimes
to within 15 seconds of a goal).

Becker, Naaman, and Gravano (2010) considered the
problem of developing similarity metrics to help clustering
of media to events; they work in an unsupervised fashion
and focus on developing the similarity metric rather than
try to align a set of tweets to a set of events. In another
work (Becker, Naaman, and Gravano 2011a), they consider
the problem of detecting real-world events in tweets; see
also (Becker, Naaman, and Gravano 2009). They also study
the problem of selecting high-quality event content from
tweets (Becker, Naaman, and Gravano 2011b).

The topic of new event detection in a time series has
been studied for a while; see the work Allan, Papka, and
Lavrenko (1998). Kleinberg (2002) formalized the concept
of event ‘burstiness’ and showed how one can select the
“bursty” words in a stream of text using a version of the
Viterbi algorithm. For additional references on these topics,
see the surveys (Allan 2002; Kleinberg 2004).

The social dynamics behind Twitter continues to be ex-
tensively studied. Yardi and boyd (2010) and Conover et
al. (2011) studied the effect of polarization on Twitter.
For some early papers investigating the social network of
Twitter, see the work of Java et al. (2007) and Krishna-
murthy, Gill, and Arlitt (2008). Huberman, Romero, and
Wu (2009) studied the @ posts in tweets and boyd, Golder,
and Lotan (2010) studied the retweeting phenomenon.
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Experimental setup
The dataset for our experiments comes from the Twitter
Firehose, which contains all the tweets during the entire life-
time of Twitter. Each tweet has a lot of important metadata
associated with it: the text, the geographic location of the
tweet and of the user, and the time-stamp. If the tweet is
produced in response to another tweet, then this information
is also included. The tweet text itself contains a wealth of
information and embodies certain conventions adopted by
the Twitter community. For example, retweets are character-
ized by the symbol @ followed by a user name, who is the
originator of the tweet. Special strings (called hashtags) are
represented by prefixing them a # symbol; several applica-
tions such as Twitter search treat such tokens specially. In
fact, we will heavily depend on hashtags in our analysis.

As one can imagine, the amount of total data is stagger-
ing. During the period of interest, on average, there were
more than 100M tweets per day; this amounts to a total of
tens of billions tweets that we have to analyze. Processing
this massive data is only possible with the use of a map-
reduce system. All of our analyses heavily use the power of
distributed processing to extract various pieces of informa-
tion.

Data. We focus on three major social episodes: the 2010
soccer World Cup held in South Africa (denoted WORLD-
CUP), the 2011 Academy awards held in Hollywood (de-
noted OSCARS), and 2011 Super Bowl XLV, which took
place in Arlington, Texas (denoted SUPERBOWL). These
three datasets cover a broad spectrum of social episodes, in-
cluding different geographic localization (city to country),
different time periods (single day to almost half a year),
multiple sub-episodes (WORLDCUP) vs. a single episode
(OSCARS), and different genres (sporting and entertain-
ment).

The datasets were collected using the following method-
ology. For each dataset, we first assembled the following
pieces of information by hand.

(i) Timeline: the start and end time of the episode.
(ii) Events: a list of all events in the episode including the

features for each of the events, with some of them identified
as key events. In all our cases, each event featured at least
one person, denoted by the first and last names.

(iii) Hashtags: a list of all hashtags that could have been
used to refer to the episode. As we mentioned earlier, these
hashtags will be used to identify all the tweets that are re-
lated to the episode. Of course, since hashtags are only a
convention, there will be tweets about the episode that may
not use one of our listed hashtags. We will not consider such
tweets, and this does not appear to pose a significant limita-
tion due to the total volume of tweets.

Using the hashtags, we obtain all the tweets about the so-
cial episode. Table 1 provides more details about the dataset.
In some cases, we perform additional processing to identify
users who participate a lot in tweeting about the episode.
We define a user to be active if he/she has used at least 10
episode-related tags during at least one of the sub-episodes.
We then do a manual check on the most frequently tweet-
ing users to see if they represented a real human or if they

could be bots/spam. We obtain a threshold from this scan
and eliminate users who tweet more than this threshold dur-
ing the period.

From the sequence of tweets sent by the users, we extract
various time-series such as the volume of tweets, frequency
of usage of various words, and other indicators. We also ob-
tain these time-series on the general population of Twitter
users; this way, we can normalize the data and avoid arti-
facts such as the time-of-day effects. We also extract time-
series about the social interactions by the users. As we men-
tioned, that there are two kinds of social interactions in Twit-
ter: mentioning of another user (which can be a retweet) and
replying to another user.

Methodology. We now describe the methodology used to
assemble the datasets that we use in the paper. Note that in
all the cases, the absolute time-stamps of the key events will
be used in our evaluation.

WORLDCUP. The duration and events for World Cup 2010
are available publicly (soccerstand.com). There were 64
games with non-key events such as 253 yellow cards and
17 red cards. Each of 32 countries participating in the tour-
nament was assigned its own hashtag (e.g., Netherlands was
denoted by #ned, Uruguay was denoted by #uru); in addi-
tion, a generic hashtag of #worldcup was also used. By con-
vention, to refer to the Netherlands–Uruguay game, most
users would use one or more of #ned, #uru, #worldcup tags
while tweeting; this is especially so during the game. Some
of the games were held concurrently.

OSCARS. For the Academy awards, we assembled the
events from oscars.nytimes.com/dashboard, which contains
the time when a particular award was announced. By analyz-
ing the top hashtags that were used on the day of the Oscars,
we were able to find out all the tags that were related to the
ceremony.

SUPERBOWL. For the Superbowl, we assembled the events
from blogs.wsj.com/dailyfix/. Unlike the other sporting
events, NFL is more challenging since the official data does
not contain the absolute time-stamps, which are necessary to
align them against the tweets; this difficulty was also noted
in a recent paper (Zhao et al. 2011). In addition to #sb45,
#sbxlv, #superbowl, we also used the names of the two
competing teams, #packers and #steelers.

Key events and tweet volume
We start by studying simple non-textual statistics that we
can readily extract from the set of users and their tweets. In
particular, we focus on the volume of information generated
by these users. We also ask if it is possible to align the key
events by just considering the volume of tweets immediately
after the event.

For WORLDCUP, Figure 1 shows a graph that aggregates
the average number of tweets over all games, scaling the
time to ensure that the length of each game is precisely 105
minutes. The green line represents the absolute number, and
the red line represents the number divided by the total num-
ber of tweets sent by any twitter user at that minute (there-
fore, any potential time-of-day effect is alleviated in the red
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Data Start End #Tweets #Key Sample Sample
(GMT) (GMT) events hashtags events

WORLDCUP Jun 11, 2010 July 12, 2010 342M 159 #worldcup, team tags goal
SUPERBOWL Feb 6, 2011 Feb 7, 2011 1.49M 7 #sb45, #superbowl touchdown

OSCARS Feb 12, 2011 Feb 13, 2011 1.61M 24 #oscars, #redcarpet award

Table 1: Details of the datasets. Key events are boldfaced.

curve). We plot the curves corresponding to the number of
words and the number of characters tweeted, and they both
look very similar to the number of tweet curves: the vol-
ume of tweets quickly increases as the game is about to start,
stays at about the same level during the first half, drops dur-
ing the half-time, and then returns to an even higher level
as the second half starts, and keeps increasing with a sharp
peak at the end of the game. After the game, the volume
drops quickly, but to a level still above the level before the
game (post-game chatter). Figure 2 shows the time-series
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Figure 1: Average tweets volume during a World Cup game.

for SUPERBOWL, with the corresponding events (touch-
downs, goals) marked and the time-series for OSCARS, with
the corresponding key events (awards) marked. Unlike the
WORLDCUP case, the average volume goes down after the
game/ceremony is over, when compared to the beginning.
This is presumably due to the “build-up” caused by TV and
online media and the buzz associated with it.

Note that in both cases, each key event causes a peak in
the volume of tweets. But, it is not the case that each peak
corresponds to a key event. Also, the volume significantly
increases during the half-time for SUPERBOWL. Further-
more, since the interval between the key events in OSCARS
is very short, it is hard to accurately align each peak with the
corresponding key event.

Information production vs. social interaction
We now turn to the pattern of social interactions among
the users. First, we study the average number of messages
replied to during a game. Figure 3 shows the plot. It is il-
lustrative to compare this plot against Figure 1. The relative
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Figure 2: Events and tweet volume during SuperBowl and
the Academy awards.

numbers are almost a mirror image of those in Figure 1. We
investigate this phenomenon more closely by looking at sim-
ilar patterns around a key event (goal); see Figure 4.

The pattern that we observe here is quite surprising: at a
time when a key event happens, we see that the users be-
come less social rather than more social. However, quickly
after the event, the users get back to socializing, this time
at a higher level. This is a pattern similar to the “heartbeat”
pattern in electrocardiographs.1

1This segment of the heartbeat pattern is known as the QRS
complex. There is a significant body of literature on automatically
detecting QRS complexes in electrocardiographs. However, the al-
gorithms used in this literature usually rely on the periodicity of the
heartbeat, and therefore are not useful in detecting similar patterns
during a game.
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Figure 3: Average number of messages replied to during a
World Cup game.

An intuitive explanation for this phenomenon is as fol-
lows: information generation (i.e., new tweets) and social
interaction (i.e., replying to someone’s tweet) are in a way
both complement and substitute activities. They are comple-
ments since in order to reply to a tweet, that tweet must have
been generated in the first place. They are substitutes since
a user has a limited amount of time/attention, and the more
time she spends tweeting, the less time she will have to re-
ply to others’ tweets. This can cause the volume of the social
interaction to decrease at the moment that a new event has
happened and users are busy tweeting about it, while after
some time, it will increase the volume of social interactions.
Later we will formalize this intuition and build a model that
can generate patterns very similar to what we observed in
this section.

Figure 6 shows similar plots for SUPERBOWL and OS-
CARS. Clearly, as in the case of WORLDCUP, we observe
the heartbeat pattern: at the moment of the key event, the
users becomes less social rather than more social.

Event detection
In this section we consider the problem of finding key events
in a tweet stream using only the tweet and retweet counts.
We show that a simple logistic regression approach allows
us to pinpoint most of the goals in our World Cup dataset,
with a precision of 15 seconds. The point of this exercise
is to show that there is plenty of signal in non-textual fea-
tures such as the pattern of the tweet and retweet volumes
for detecting events. Most notably, the pattern of the retweet
volume plays an important role in improving the accuracy of
prediction.

This dataset has 159 positive instances (windows of 15
seconds containing a goal) and 38,070 negative ones (win-
dows of 15 seconds not containing a goal during or around
one of the games). Our classifier returns 66 false negatives,
and only 17 false positives. The five-fold cross-validated er-
ror rate of this classifier is about 0.197 percent. To put this
number in perspective, the error rate of a classifier that clas-
sifies every instance as negative is 0.414 percent. This is
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Figure 4: Number of tweets and retweets around two goal
events in the World Cup (the one above is the first goal that
Brazil scored against North Korea, in their 15 June 2010
game; the one below is the only goal scored by Mexico
against Argentina, in their 27 June 2010 game.)

more than a fifty percent improvement in accuracy.
A better-scaled measure of the quality of the classifier is

the so called Matthews correlation coefficient. We recall that
the Matthews correlation coefficient of a binary classifica-
tion that produces P true positives, N true negatives, p false
positives, and n false negatives is equal to

P ·N − p · n√
(P + p)(P + n)(N + p)(N + n)

.

This functional is always in the range [−1, 1], a value of 1
corresponds to a perfect classification (i.e., p+ n = 0), and
a value of −1 to a completely wrong one (i.e., P +N = 0).
Predicting always positive, always negative, or at random
results in a Matthews correlation coefficient of zero (or con-
centrated around zero). The Matthews correlation coefficient
of our classifier is close to 0.707, which is quite large.

We now describe the simple, yet very effective, linear
classifier that we used. As already mentioned, our classifier
only uses tweet and retweet counts, in particular, the num-
ber of tweets and the number of retweets in each time win-
dow. In fact, the classifier even uses only a tiny part of this
information. To classify a window i as an eventful, or non-
eventful, the classifier only uses the counts T (i), R(i) of the
window i, and those of the windows i − 2, i − 1, i + 1 and
i+ 2, i.e., the classifier uses only 10 integers per window to
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Figure 5: Average number of tweets and messages replied to
around a red card event in World Cup.

return its guess.
Moreover, our classifier is linear and is thus very efficient:

it classifies a window i as eventful if and only if a linear in-
equality on the 10 integers holds true. The inequality’s co-
efficients were obtained by running a logistic regression on
our 159-goals dataset. The logistic regression produced the
following inequality:

(−2.31,−56.14,+24.64,+71.76,+11.9) ·


T (i− 2)
T (i− 1)
T (i)

T (i+ 1)
T (i+ 2)



+ (−0.70,+80.17,+32.21,−8.46,+38.54) ·


R(i− 2)
R(i− 1)
R(i)

R(i+ 1)
R(i+ 2)


≥ 39.25.

The heartbeat-shaped curve that we have observed around
goals is reflected in the coefficients of the above inequal-
ity. Indeed, we know that the number of tweets spikes up
right after a goal; correspondingly, the coefficients of T (i),
T (i + 1), and T (i + 2) are all positive and quite high. At
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Figure 6: Fraction of tweets and replies around key events
for SUPERBOWL and OSCARS.

the same time, the number of retweets goes down for a little
while right after a goal, and the regression chose a negative
coefficient for R(i+ 1).

Using weighted logistic regression and varying the weight
of the positive instances, we can explore the tradeoff be-
tween precision and recall. The resulting precision-recall
graph is shown in Figure 7.

Finally, we note that even though the false positives re-
ported by our classifier are not goal moments, they exhibit
tweeting/retweeting patterns similar to a goal moment, and
therefore can be considered “important moments” during
the game. We do not have any ground truth to evaluate this
claim, but manually looking at the set of false positives sup-
ports this claim. For example, the non-goal moment scored
highest by our classifier is a few minutes before the end of
the final game, when Xavi missed a free kick. The second
highest-scored non-goal moment is the end of the first game
of the World Cup (between South Africa and Mexico), the
third is the end of the extra time in the Japan–Paraguay game
(which was decided in the penalties).

Event labeling
We now mention our results for a task related to the previous
one: after we detect that a goal event happened, if we know
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Figure 7: Precision-recall curve for our goal detection task.

that it happened while Team A and Team B were playing,
and if we have a partition of users into supporters of TeamA
and Team B, can we determine which of A or B scored the
goal? Once again, we wanted to make this prediction without
looking at the textual information contained into (re)tweets.

As one can expect, though, this second task cannot be
carried out satisfactorily without being able to guess which
users are supporters of which team. Therefore, we relaxed
our non-text constraint as follows. We used geographic and
language information of each user, as well as their hashtag
usage2 to produce an assignment of the users to the 32 teams
participating in the World Cup. A user who is assigned to a
team is considered a supporter of that team. Users who can-
not be detected using these signals to be a fan of one of the
teams will remain unassigned.

As it turns out, the tweet volumes are heavily skewed to-
ward the winners. This hints at the following baseline clas-
sifier for picking the team that scored the goal: just use the
numbers of tweets produced by supporters of team A and
supporters of team B in that window, and claim that the
goal was scored by the one team whose supporters produce
a larger number of tweets in a window around the goal time
(we used a window of 20 seconds here).

The baseline classifier has an error rate of 19.80% in the
dataset (i.e., it got right more that 4 goals out of 5.) It is often
not easy to improve over such a good success rate, but as in
the case of event detection, using logistic regression with
features that capture the pattern of tweeting and retweeting
around the goal, we obtained a classifier with a 16.17% error
rate. This is almost an 18% relative improvement over the

2For each user, we counted how many times the user used the
official hashtag of each single team; we have also guessed the user
language through a dictionary approach.

accuracy of the baseline classifier.
Our classifier used the following features: the difference

in the volume of tweets by supporters of team A and sup-
porters of team B two buckets before and two buckets after
the goal (i.e., five buckets in total, including the bucket at
the time of the goal), and the similar features for the volume
of communication tweets (i.e., retweets, replies, and men-
tions). We picked each bucket to be 20 seconds long. These
features are enough to capture the pattern around the goal.

The number of features used to classify a goal was then
2 × 5 = 10. The error rate of 16.17% of this classifier
was calculated using the Leave-One-Out Cross-Validation
(LOOCV) method. The Matthews correlation coefficient of
the classifier is about 0.62%.

Model
In this section we present a simple theoretical model that
captures the information generation and propagation pattern
we observed earlier. Our model is based on the following
principle: it is hard to create secondary information if there
is only little primary information. In our context, it translates
to the following: if only a few users have tweeted about an
event, it is unlikely for users to retweet about the event.

In our model, there are N users. The model will support
two types of users, namely, concerned and unconcerned.
The behavior of the model is as follows.

(i) An unconcerned user, at any point in time, will tweet or
retweet something unrelated to the event with probabilities
tg and rg respectively.

(ii) An event happens (i.e., a goal is scored) at time 0;
n ≤ N users will care about the event and will become
concerned at time 0. If a user is concerned she will tweet or
retweet about the event before performing any other action.
Once a concerned user (re)tweets about the event, she will
return to the unconcerned state.

(iii) A concerned user who has not yet posted anything
about the event will tweet about the event with probability
te and will decide to retweet with probability re. In the latter
case, she will look at a twitter profile chosen uniformly at
random: if she finds a tweet or a retweet about the event in
that profile, she will retweet it (i.e., will retweet about the
event). Otherwise, she will not do anything at that point in
time.

The aim of this process is to capture the fact that the
time series representing the number of tweets has a spike
at the time when the event happens. This spike is induced
by choosing the event tweet probability to be larger than the
general tweet probability. Moreover, the process also cap-
tures the dip of retweets after the event: there will be a few
event tweets in the first few seconds after the event and hence
the users interested in the event have a small probability of
retweeting for some time after the event. After enough time,
however, the number of users will have gone back to the
unconcerned state (and will therefore behave as before the
event) and the users who are still concerned and who decide
to retweet will have a large probability of retweeting about
the event (since a larger number of users will have tweeted
or retweeted about the event).
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Figure 8: The curves T ′(t) and R′(t) (in bold), and τ ′(t)
and ρ′(t) (dashed), with N = 5000, n = 3/4 ·N , tg = 0.2,
rg = 0.1, te = 0.6 and re = 0.3.

We now analyze the model in detail. Let τ(t) (resp., ρ(t))
be the number of people who have tweeted (retweeted) about
the event at time t. (We assume the event happened at time
0.) We assume that every person posts at most one message
(be it a tweet or a retweet) about the event. Therefore τ(t)
(ρ(t)) also count the number of tweets (retweets) about the
event at time t. Let T (t) (R(t)) be the total number of tweets
(retweets) at time t. Hence, the derivative T ′(t) of T (t) rep-
resents the number of tweets that are posted at time t (e.g.,
the red and the blue curves of Figure 4). Analogously, the
derivative R′(t) of R(t) represents the number of retweets
posted at time t (the green and the purple curves of Figure 4.)
Finally, the derivatives τ ′(t) (ρ′(t)) represent the number of
tweets (retweets) about the event at a given time. We do not
have an empirical plot that shows them (since they are, by
nature, hidden); to show how they can look like, we have
plotted them in Figure 8.

A version of our model is captured by the following sys-
tem of differential equations. For t ≥ 0,

τ ′(t) = te · (n− τ(t)− ρ(t)) ,

ρ′(t) = re · (n− τ(t)− ρ(t)) ·
τ(t) + ρ(t)

N
,

T ′(t) = τ ′(t) + tg · (N − n+ τ(t) + ρ(t)) ,

R′(t) = ρ′(t) + rg · (N − n+ τ(t) + ρ(t)) . (1)

We are interested in the functions T ′(t) and R′(t), i.e.,
the tweet and retweet curves. As boundary conditions, we
choose τ(0) = ρ(0) = 0, i.e., no tweet and no retweets
about the event happened before the event time t = 0. For
completeness, we also define T ′(t) = teN,R

′(t) = reN
for t < 0.

Next, we solve the differential equation system and prove
some of its properties, summarized in Table 2.

Lemma 1. Let A = teN + ren. If τ(0) = ρ(0) = 0, then
there is a unique solution to the system (1) of differential

equations that satisfies:

τ ′(t) =
ten ·Ae−

A
N t

teN + ren · e−
A
N t

ρ′(t) =
teren

2 ·Ae− A
N t
(
1− e− A

N t
)

(
teN + ren · e−

A
N t
)2

T ′(t) = tgN + τ ′(t)

(
1− tg

te

)
R′(t) = ρ′(t) + rg

(
N − τ ′(t)

te

)
.

Moreover, Table 2 contains some limiting values of the
functions in the system.

Proof. If we only consider the variables τ(t) and ρ(t),
which are independent of T (t) and R(t), then by integra-
tion, we get that the solutions of System (1) satisfy, for any
two constants α and β:

τ(t) =
te
re
N · ln teN(teN + ren)

re
(
αN · e−(te+re

n
N

)t + β(teN + ren)
)

ρ(t) = n− τ(t)− τ ′(t)

te
.

Therefore we have

τ(t) + ρ(t) = n− τ ′(t)

te
.

Hence, the solutions to system (1) satisfy:

τ(t) =
te
re
N · ln teN(teN + ren)

re
(
αN · e−(te+re

n
N

)t + β(teN + ren)
)

ρ(t) = n− τ(t)− τ ′(t)

te

T ′(t) = τ ′(t) + tg

(
N − τ ′(t)

te

)
R′(t) = ρ′(t) + rg

(
N − τ ′(t)

te

)
. (2)

We use the boundary conditions τ(0) = ρ(0) = 0 (Note
that these are equivalent to saying that no (re)tweet about the
event was published before the event happened, i.e., before
time 0.)

Define A = teN + ren. Forcing τ(0) = 0 gives us

α = A

(
te
re
− β

N

)
.

Then,

τ(t) =
te
re
N · ln te

re

((
te
re
− β

N

)
· e− A

N t + β
N

) .
Therefore,

τ ′(t) =
te

(
te
re
− β

N

)
·Ae− A

N t

re

((
te
re
− β

N

)
· e− A

N t + β
N

) .
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This gives us an expression for ρ(t); setting ρ(0) = 0, gives
us:

ρ(0) =
βreA− (teN)2

tereN
= 0.

Therefore,

β =
(teN)2

reA
,

and therefore,

α = A

(
te
re
− t2eN

reA

)
= ten.

Under the boundary conditions, we then get

τ(t) =
teN

re
· ln A

teN + ren · e−
A
N t
.

Therefore, τ(0) = 0 and τ(∞) = teN
re
· ln
(
1 + re n

teN

)
. (I.e.,

a τ(∞)
n fraction of the people interested in the event, will

eventually tweet about the event.) Also,

τ ′(t) =
ten ·Ae−

A
N t

teN + ren · e−
A
N t
.

Observe that τ ′(0) = ten and τ ′(∞) = 0.
Then,

ρ(t) = n− teN

re
ln

A

teN + ren · e− A
N

t
− n ·Ae−

A
N

t

teN + ren · e− A
N

t
.

Observe that ρ(0) = 0 and ρ(∞) = n − teN
re
·

ln
(
1 + re n

teN

)
. (Obviously we have τ(∞)+ρ(∞) = n, i.e.,

all and only the people interested in the event will eventually
tweet or retweet about it.) We also have,

ρ′(t) =
teren

2 ·Ae− A
N t
(
1− e− A

N t
)

(
teN + ren · e−

A
N t
)2 .

The limiting values of ρ′(t) are then ρ′(0) = ρ′(∞) = 0.
Finally, using the expressions we obtained for τ ′(t) and

ρ′(t), and System (2), we can compute the explicit ex-
pressions for T ′(t) and R′(t) that are in statement of the
Lemma.

We have fit our model to the goals of WORLDCUP. The
fitting is quite convincing for most of the goals (see Fig-
ure 4). There are a handful of exceptions: for instance, when
two goals are scored within two to three minutes of each
other (Figure 9) the fitting procedure fails to produce a good
fit for the parameters. Enhancing our model to accommodate
closely occurring events is an interesting future direction.

Conclusions
Twitter provide a powerful medium through which users can
communicate their observations not only with their friends,
but also with the world at large. This is especially true when
a user is closely following an event online. We studied the
problems of identifying key events in a tweet stream and
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Figure 9: The two peaks in this figure correspond to the third
and fourth goals that Germany scored against Australia in
June 13, 2010.

# tweets at T ′(0) = ten+ tg(N − n)
the event time

# tweets at time∞ T ′(∞) = tgN

# retweets at R′(0) = rg(N − n)
the event time

# retweets at time∞ R′(∞) = rgN

# event tweets τ ′(0) = ten
at the event time

# event tweets τ ′(∞) = 0
at time∞

# event retweets ρ′(0) = 0
at the event time
# event retweets ρ′(∞) = 0

at time∞

total # event tweets τ(∞) = teN
re

ln
(
1 + re n

teN

)
total # event retweets ρ(∞) = n− teN

re
ln
(
1 + re n

teN

)
Table 2: Some properties of the solution to (1) under the
boundary conditions τ(0) = ρ(0) = 0.

the tweet production/consumption patterns around the key
event. We observed, across many datasets, a surprising and
robust “heartbeat” phenomenon: when a key event happens,
the users become less social but quickly after the event, they
get back to socializing, this time at a higher level. We ex-
plained this phenomenon with a natural model, and we used
it to obtain a simple classifier that, by only looking at the
tweet/retweet volume and without using any textual infor-
mation, is able to detect key events more accurately than
strong baseline methods.
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