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Abstract

Detection of hairline fractures, representing points or ar-
eas of discontinuity in the bone, is a clinically challenging
task, especially in presence of noise. The above problem is
equally appealing from a computer vision or pattern recog-
nition perspective since (a) traditional techniques for de-
tection of corners, denoting points of surface discontinuity,
typically fail in such cases and, (b) one needs to implicitly
handle unknown local degradation in the image. A novel
two-phase scheme for hairline mandibular fracture detec-
tion, that is robust to noise, is proposed. In the first phase,
the hairline fractures are coarsely localized using statistical
correlation and by exploiting the bilateral symmetry of the
human mandible. In the second phase, the fractures are pre-
cisely identified and highlighted using a Markov Random
Field (MRF) modeling approach coupled with Maximum A
Posteriori probability (MAP) estimation. Gibbs sampling
is used to maximize the posterior probability. Experimen-
tal results on Computer Tomography (CT) scans from real
patients are presented.
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1. Motivation
Craniofacial fractures, especially mandibular fractures, are
quite common now-a-days with the major causes being gun-
shot wounds, motor vehicle accidents and sports-related
injuries [6]. The frequently encountered craniofacial and
mandibular fractures are observed to possess distinct pat-
terns in X-ray or Computer Tomography (CT) images [9].
In some cases, the fractures are observed to be hairline or

minor in nature. The term hairline fracture or minor frac-
ture refers to those situations where the broken bone frag-
ments are not visibly out of alignment. In the presence of
noise, the detection and subsequent visualization of hair-
line fractures is a clinically challenging task. In this paper,
we propose a novel scheme for hairline mandibular frac-
ture detection in CT images based on Markov Random Field
(MRF) modeling and Gibbs sampling. The hairline fracture
detection approach is additionally capable of target pattern
generation, i.e. our method can predict how a jaw with a
hairline fracture would appear if allowed to heal naturally
without explicit surgical intervention. This may have poten-
tial prognostic significance because surgeons can use this to
help deciding if open surgical reduction and fixation is indi-
cated or the fractures can be managed by allowing them to
heal spontaneously based on what the spontaneously healed
mandible will be like. From the perspective of computer
vision and pattern recognition research, the problem of de-
tection of hairline or minor fractures in X-ray or CT im-
ages is inherently challenging. This is so because conven-
tional techniques for detecting points of surface disconti-
nuity, that are typically based on corner detectors such as
the Harris detector [4], do not perform well because of the
pronounced intensity inhomogeneity and noise present in
X-ray or CT images. Moreover, visual comparison of an X-
ray or CT image of a mandible with a hairline fracture with
that of an unbroken (intact) mandible; reveals changes in
pixel intensity only in the vicinity of the fracture site. This
results in the formulation of an image restoration problem
with a mathematically unknown local degradation. This is
in sharp contrast to the more conventional image restora-
tion problem with a mathematically known global degra-
dation as outlined by Geman and Geman in their classical
paper [2].

The proposed fracture detection scheme takes as input a
stack of 2D CT image slices of the human mandible with
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a hairline fracture. The proposed scheme is modeled as a
two-step approach where, in the first step, the hairline frac-
tures are approximately localized within blocks of pixels
by exploiting the (approximate) bilateral symmetry of the
human mandible and by using statistical correlation of the
pixel intensities as a measure of intensity mismatch. Within
each of the above pixel blocks, a Markov Random Field
(MRF) modeling approach coupled with Maximum A Pos-
teriori (MAP) estimation, along the lines of Geman and Ge-
man [2], is used to achieve hairline fracture detection via
implicit image restoration.

1.1 Previous Work and Our Contributions

Existing published literature on fracture detection includes
techniques based on exploitation of anatomical knowledge
combined with an unconventional divide-and-conquer ap-
proach [10]; active contour modeling coupled with shape
constraints [5], and texture analysis [13]. Our previous
work resulted in a novel semi-automated fracture detection
scheme [14]; however it was restricted to the class of well-
displaced fractures, i.e., fractures where the broken frag-
ments were visibly displaced relative to each other. The
classical MRF-MAP paradigm proposed by Geman and Ge-
man [2] has been used, over the years, in various image
processing and computer vision problems [3], [7], [8], in-
cluding problems in medical imaging [12]. However, to the
best of our knowledge, the classical MRF-MAP paradigm
has not been previously applied to the problem of fracture
detection in medical images (X-ray or CT) in general. The
contribution of this paper lies in proposing a novel two-
phase hairline fracture detection scheme based on the MRF-
MAP paradigm that is robust to the presence of noise. The
MRF-MAP paradigm is shown to handle input noise in an
explicit and efficient manner. The approximate localization
of fractures within pixel blocks in the first phase is shown
to result in significant computational savings in the second
phase since the MRF modeling and MAP estimation in the
second phase, which involves Gibbs sampling, is restricted
only to those pixel blocks in the CT image stack which are
known to contain potential fractures. The second contribu-
tion of the paper, from a theoretical standpoint, arises from
the fact that the classical MRF-MAP paradigm is impro-
vised to deal with an unknown local degradation of image
pixel intensities at the fracture site. This is in contrast to the
classical MRF-MAP paradigm which incorporates a global
and known deformation model. The proposed scheme for
hairline fracture detection is also designed to implicitly re-
store the broken mandible at the fracture sites, thus offering
the surgeon a prognostic view of the bone healing process.

2. Theoretical Framework
The input to the proposed fracture detection scheme is a
stack of 2D CT image slices of the human mandible with
a hairline fracture. Each 2D CT image slice is assumed to
be parallel to the xy plane whereas the z axis is assumed
to be the axial direction along which the CT image slices
are acquired. The CT image stack is divided into a number
of pixel blocks. The theoretical framework of the proposed
two-phase fracture detection and localization scheme is de-
scribed as follows.

2.1 Fracture Localization

Different anatomical structures within the human body are
known to possess different types of symmetry [11]. In the
context of our problem, we exploit the (approximate) bi-
lateral symmetry exhibited by the human mandible. In the
case of a hairline fracture, since the bone fragments are not
visibly out of alignment, the bilateral symmetry is still pre-
served to a great extent. The general equation of the 3D
plane of bilateral symmetry is given by:

Ax + By + Cz = D (1)

For an axial CT scan of the human mandible we assumed B
and C to be approximately equal to zero. and the mandibu-
lar cross-section to be approximately centered within each
CT image slice of width W . Thus, the approximate plane
of bilateral symmetry is reduced to:

x = W/2 (2)

Now, for every incident pixel gi with coordinates (x, y, z)
in the left half of the mandible with a hairline fracture, a bi-
laterally symmetric pixel gR

i with coordinates (xR, yR, zR)
can be determined as:

xR = W − x, yR = y, zR = z (3)

Two heuristics are exploited to reduce the search space for
coarse fracture localization. These heuristics along with
their justifications (based on domain knowledge) are given
below:

1. Since mandibles are essentially bone structures that
typically exhibit higher intensity values in CT images,
we seek pairs of pixel blocks with high average inten-
sity. This helps to remove pixel blocks containing ar-
tifacts and/or large amounts of soft tissue from further
consideration.

2. The mandible is typically larger in size compared to
other bones in the CT images of the craniofacial skele-
ton. Since we are primarily interested in detecting
mandibular fractures, we perform a second round of
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filtering by applying the connected component label-
ing algorithm, at the pixel block level rather than at the
level of individual pixels, and eliminating components
which span only a small number of pixel blocks.

By using the above heuristics, we basically retain only a few
(say q) pixel blocks which are deemed to constitute solely
the fractured mandible.

Having localized the mandible in the CT image, the next
goal is to localize the hairline fracture site within it. This is
done by taking a block from the left half of the image, all of
whose pixels have x coordinate values: 0 ≤ x ≤ W/2, and
a corresponding bilaterally symmetric block in the right half
of the image, all of whose pixels have x coordinate values
W/2 ≥ x ≥ W , and computing the statistical correlation
between the two. The correlation coefficient between a typ-
ical incident block g, with individual pixels gi, and its bilat-
erally symmetric counterpart gR, with corresponding pixels
gR

i is given by:

r(g, gR) =
1

(n − 1)

n∑
i=1

(gi − ḡ)
(sg)

(gR
i − ḡR)
(sR

g )
(4)

where ḡ and ḡR denote the mean and sg and sR
g denote the

standard deviation of the pixels within the blocks g and gR

respectively.
Having obtained a value of r(g, gR) for each pair of

pixel blocks (g, gR), the pixel block pairs are sorted in in-
creasing order of their r(g, gR) values. Note that the pixel
block within the intact (unbroken) half of the mandible will
have more pixels with higher intensity values (due to the
presence of more bone material) compared to its bilaterally
symmetric counterpart which contains the hairline fracture
(resulting in some loss of bone material). Thus, the un-
derlying rationale is that pairs of pixel blocks which po-
tentially contain fractures should exhibit a higher intensity
mismatch and hence lower correlation values. The user can
then choose the best k out of q pixel blocks as sites con-
taining potential hairline fractures. The above technique for
coarse fracture localization provides the following two ad-
vantages:

1. It achieves computational efficiency by effectively re-
ducing the image size over which the proposed MRF-
MAP scheme coupled with Gibbs sampling is to be
applied. Thus, instead of applying the proposed MRF-
MAP scheme over the entire CT image slice, we do so
only over the select k pixel blocks in each CT image
slice.

2. It renders the prior shape information in each CT im-
age slice more relevant and more accurate. Instead of
determining two quadratic polynomials to describe the
inner contour and outer contour of the entire mandible,

we now only need to determine the quadratic polyno-
mials that describe the inner and outer contours of the
portion of the mandible that appears within each of the
selected k pixel blocks.

2.2 Model Description

Suppose we have an image with m × n pixels. Let p =
m × n. Based on the formulation detailed in [2], the pixel
intensities in the image can be expressed as

g = Φ(f) + ε (5)

where g, f and ε are p×1 vectors such that g represents the
vector of all observed image intensities, f represents the
vector of intensities corresponding to the true image and ε
is zero-mean random Gaussian noise

ε ∼ N(0, σ2Ip). (6)

where Ip is the p-th order identity matrix. The function Φ(.)
in equation (5) denotes a known degradation (or perturba-
tion) function. Furthermore, we assume the that true pixel
intensity f has a known prior distribution. The conditional
autoregressive model (CAR) is one of several typical prior
distributions used extensively in the domain of image pro-
cessing. The CAR model also ensures the Markovian prop-
erty of the mean of the prior distribution [7]. Therefore,

p(g|f) ∝ exp
{− 1

2σ2 ||g − Φ(f)||2}
p(f) ∝ exp

{− 1
2τ2 fT (Ip − γN)f

} (7)

where N is the neighborhood matrix given by N = [ni,j ]
such that

ni,j =
{

1 if i and j are neighbors
0 otherwise

(8)

The value of γ is chosen appropriately to avoid singular-
ity of the matrix (Ip − γN). Under this formulation, the
posterior distribution of f given the observed data g can be
shown to be Gibbsian on account of conjugacy under linear
degradation.

In the context of hairline fracture detection, we assume
that the image of the fractured mandible is a degraded ver-
sion of some true (perhaps hypothetical) intact mandible.
Consequently, the degradation function needs to be formu-
lated in a manner such that if it is applied to the entire true
image, i.e., the CT image of the intact mandible, the result-
ing image should display a hairline fracture at the desired
site while retaining the pixel intensity values of the true im-
age everywhere else. Radiologically speaking, a hairline
fracture denotes a loss of bone mass and hence a decrease
in the Hounsfield unit (image intensity) at the fracture site.
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Thus, from equation (5), a simple formulation of the degra-
dation function could be

g = Af + ε (9)

where A is the degradation matrix of order p× p consisting
of non-zero elements only along the diagonal. For the i-th
pixel,

gi = aifi + εi (10)

where

ai =
{

αi if i is a fracture site
1 otherwise

(11)

for some known α ∈ (0, 1).

Lemma 1 For each fixed value of g, the posterior proba-
bility p(f |g) is a Gibbs distribution with energy function

U(f |g) =
1

2σ2
||g − Af ||2 +

1
2τ2

fT (Ip − γN)f

For a detailed proof of the above lemma, the interested
reader is referred to [2]. As a special case of the above
lemma, we describe the following result. Before we provide
the result, let us introduce fi− to denote the neighborhood
of fi.

Lemma 2 Based on the MRF formulation in equations (6)
and (9) – (11), if we assume E(fi) = µ(fi−) then the pos-
terior distribution of fi given gi can be shown to be [1]

fi|gi, fi− ∼ N

(
aigi

σ2 + µ(fi−)
τ2

a2
i

σ2 + 1
τ2

,
1

a2
i

σ2 + 1
τ2

)
.

Proof The posterior distribution of fi|gi, fi− can be ex-
pressed as

p(fi|gi, fi−) ∝ exp
{− 1

2σ2 (gi − aifi)2

− 1
2τ2 (fi − µ(fi−))2

}
∝ exp

[
− 1

2

{(
a2

i

σ2 + 1
τ2

)
f2

i − 2fi

(
aigi

σ2 + µ(fi−)
τ2

)}]

∝ exp


−

a2
i

σ2 + 1
τ2

2

(
fi −

aigi
σ2 +

µ(fi−)

τ2

a2
i

σ2 + 1
τ2

)2

 �

In the above lemma it should be noted that if E(fi|gi) can
be seen to be a weighted average of the data and prior mean
where the weights are based on the choice of σ and τ . Under
this situation, we iteratively draw samples from the poste-
rior distribution using Gibbs sampling. The Gibbs sampling
procedure ensures convergence to the MAP estimate of the
true image after a sufficient number of iterations [2].

A critical issue in the proposed MRF-MAP formulation
described above is determining an appropriate value of α. A
necessary prerequisite for determining an appropriate value

of α is to acquire some a priori knowledge on the shape of
the mandible within the selected pixel blocks in each CT
slice. The inner and outer contours of the portion of the
mandible within each of the pixel blocks can be essentially
approximated by quadratic polynomials with different coef-
ficients. A quadratic polynomial has the general form:

y = c1x
2 + c2x + c3 (12)

For estimating the coefficients c1, c2 and c3 in equa-
tion (12), we need to solve three simultaneous equations.
This means that one needs to obtain a set of three points
[(x1, y1), (x2, y2), (x3, y3)] on the inner contour and outer
contour of the portion of the mandible in each of the pixel
blocks in each image slice in the CT image stack. The need
to obtain so many data points (six data points per pixel block
per CT image slice) can be justified as follows:

1. The inner and outer contours of the mandible, appear-
ing in a particular CT image slice, cannot be repre-
sented mathematically by a single quadratic polyno-
mial with appropriate translation parameters along the
x and y axes. This is because the curvatures of the
inner contour and outer contour of the mandible are
observed to be quite different.

2. Since the spatial resolution of the image stack is
coarser along the z axis (axial direction) compared
to the x and y axes, an inner or outer contour of the
mandible in two different slices cannot be mathemat-
ically approximated by a single quadratic polynomial.
This is due to difference in curvatures of an inner or
outer contour in two consecutive CT image slices.

In the current implementation, user interaction is required
(via computer mouse clicks) to generate all the required data
points. Note that a typical set of three points can be located
anywhere along the inner or outer contour of the portion
of the mandible within the chosen pixel block. Thus, the
coefficients of the fitted quadratic polynomial are not par-
ticularly sensitive to the choice of the clicked points to the
extent that these points lie on the contour (inner or outer)
whose equation is being estimated. We are in the process of
automating the generation of these input data points. Once
the quadratic polynomial for a contour is determined, a set
of points satisfying the polynomial (i.e., set of points along
the fitted contour) is generated. Typically, most of the points
within the set have high intensity values, since they corre-
spond to bone pixels, whereas only a few have low intensity
values since they correspond to pixels at a potential frac-
ture site. For potential fracture pixels at a site i, on a given
contour the value of α can be assigned as follows:

αi = gi/max
i

(gi) (13)
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where maxi(gi) represents the maximum of all the ob-
served pixel intensity values along the contour under con-
sideration.

3. Experimental Results and Analysis

In this section, experimental results of the proposed MRF-
MAP scheme on a CT image stack containing a typical hair-
line fracture are described. Experimental results were re-
stricted to a single case to conserve space. Each 2D CT
image slice is of size 512× 512 pixels with a grayscale res-
olution of 8 bits per pixel. The image resolution parameters
along the x, y and z axes are 0.38 mm/pixel, 0.38 mm/pixel
and 1 mm respectively. The pixel block size (which is a
power of 2 in the current implementation) is an input from
the user via a graphical user interface (GUI). For the CT
image sequences used in the current experiments, the pixel
block size was chosen to be 64×64 pixels. This means there
were altogether 32 pairs of pixel blocks to be examined. Af-
ter the two heuristics based on mandible size and bone pixel
intensity were applied, only 7 out of 32 pixel blocks were
retained. They were arranged in order of increasing value
of the correlation coefficient. Finally, 2 out of these 7 pixel
blocks were chosen as potential hairline fracture sites.

For the MRF-MAP formulation, we chose a first order
neighborhood. In the current implementation, the values of
τ and α were both chosen to be 1.0 in order to give the
prior and the likelihood an equal weight. The value of γ is
chosen to 0.25. The total number of iterations required for
possible convergence of the Gibbs sampling procedure (i.e.,
for the posterior distribution to attain its maximum value)
was chosen to be 1000. The execution of each phase in the
proposed two-phase scheme was observed to take 1-2 min-
utes on a 1.73 GHz Intel c© Pentium c©-M processor. Fig-
ure 1 provides a visual depiction and demonstration of the
the proposed scheme. The first row represents a typical CT
image sequence of a mandible exhibiting a hairline fracture.
The CT images clearly show that the two bone fragments
involved in the hairline fracture are not visibly out of align-
ment. This fact helps us to exploit the bilateral symmetry
between the two halves of the mandible, despite the pres-
ence of the hairline fracture. The second row localizes the
fracture within a pixel block using bilateral symmetry and
statistical correlation. Both the fractured portion (left half
of the mandible) and its symmetric intact counterpart (right
half of the mandible) are marked by black boxes. The third
row shows the results of precise detection and visualization
using the proposed MRF-MAP scheme. Note that whereas
the original intensity values at the fracture pixel sites were
low (due to bone loss), the reconstructed (restored) inten-
sity values at these sites were high, (which correspond to
the bone pixel intensities) on account of MAP estimation
via repetitive Gibbs sampling. The pixels showing large in-

tensity difference (between the reconstructed and original)
were highlighted (using the color black) for the purpose of
visualization.

4. Conclusion and Future Work
In this paper, we presented a novel two-phase scheme for
hairline fracture detection in CT image data that is robust
to the presence of noise. In the first phase, the hairline
fractures are localized within pixel blocks of known size
by analyzing all the image slices in the CT image stack
by exploiting the (approximate) bilateral symmetry of the
human mandible and using the statistical correlation co-
efficient as a measure of intensity mismatch. In each of
the aforementioned pixel blocks, an MRF-MAP based ap-
proach is used to achieve hairline fracture detection via im-
plicit image restoration. Since the implicit reconstruction
embedded within the proposed MRF-MAP based technique
is designed to mimic the natural bone healing process in the
absence of any surgical intervention, the proposed scheme
has an important prognostic significance as well. In addi-
tion to its aforementioned clinical significance, the prob-
lem of hairline fracture detection also has certain notewor-
thy aspects of theoretical interest from the perspective of
computer vision and pattern recognition research. This is
primarily because we are faced with the challenging task of
dealing with an image with a spatially localized degrada-
tion resulting from a mathematically unknown degradation
function. Thus, we first computed the degradation matrix
from the input data (by fitting quadratic polynomial func-
tions to the inner and outer contours) before applying the
Gibbs sampling procedure for the MAP estimation.

One future plan is to incorporate a higher degree of au-
tomation within the existing scheme. The current scheme
for quadratic polynomial approximation of the contours of
the mandible calls for user interaction via mouse clicks;
which needs to be automated in order to reduce the bur-
den on the user. The MRF-MAP paradigm described in this
paper needs to be extended to build a 3D target mandible, in
case of hairline fractures. On the theoretical side, the degra-
dation matrix A needs to be modeled as a stochastic entity,
rather than a deterministic one by imposing a suitable prior
distribution (such as a Beta distribution) on the α values.
We also plan to study the impact of generalization of the A
matrix from a strictly diagonal matrix to a banded-diagonal
matrix to exploit the spatial distribution of the degradation
process. Finally, we propose to formulate prior distributions
(such as the Inverse-Gamma distribution) for both τ and σ
in order to conform to the hierarchical Bayesian paradigm.
With this modified formulation, the posterior distribution
may no longer remain Gibbsian which would require alter-
native sampling scheme such as rejection sampling [1] for
drawing samples from the posterior distribution.
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Figure 1: Two-phase fracture hairline detection scheme on a real patient CT image sequence
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