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ABSTRACT 

 
A novel algorithm, termed a Boosted Adaptive Particle 
Filter (BAPF), for integrated face detection and face 
tracking is proposed. The proposed algorithm is based on 
the synthesis of an adaptive particle filtering algorithm and 
an AdaBoost face detection algorithm. A novel Adaptive 
Particle Filter (APF), based on a new sampling technique, is 
proposed to obtain accurate estimates of the proposal 
distribution and the posterior distribution to enable accurate 
tracking in video sequences. The AdaBoost algorithm is 
used to detect faces in input image frames, while the APF 
algorithm is designed to track faces in video sequences. The 
proposed BAPF algorithm is employed for face detection, 
face verification, and face tracking in video sequences. 
Experimental results show that the proposed BAPF 
algorithm provides a means for robust face detection and 
accurate face tracking under various tracking scenarios. 
Index Terms— Particle filter, video tracking, face detection, 
image analysis 

1. INTRODUCTION 
 
Face detection methods based on machine learning and 
statistical estimation have recently demonstrated excellent 
results amongst all existing face detection methods. Viola 
and Jones propose a robust AdaBoost face detection 
algorithm to detect faces in a rapid and robust manner with a 
high detection rate [1]. Object tracking has been studied 
extensively because of various vision applications that use 
tracking algorithms. Particle filters have been widely used in 
object tracking to address limitations arising from non-
linearity and non-normality of the motion model [2]. The 
basic idea of the particle filter is to approximate the 
posterior density using a recursive Bayesian filter based on a 
set of particles with assigned weights. The 
CONDENSATION algorithm uses a simple proposal 
distribution to draw upon a set of particles [3], which 
defines the conditional distribution on the particle state in 
the previous frame. The proposal distribution typically does 
not make use of the information from the current frame. Li 
et al. [2] propose a Kalman particle filter (KPF) and an 
unscented particle filter (UPF) to improve the particle 
sampling in the context of visual contour tracking. This 
approach makes use of a Kalman filter or an unscented 
Kalman filter to incorporate the current observation in the 

proposal distribution. The Kalman filter or the unscented 
Kalman filter can steer the set of particles to regions of high 
likelihood in the search space, and thus reduce the number 
of particles needed. Okuma et al. [4] propose a boosted 
particle filter for object tracking, which interleaves the 
AdaBoost algorithm with the CONDENSATION algorithm 
in the proposal distribution estimation stage. However, their 
technique does not present a systematic method for 
achieving the combination that would result in the desired 
proposal distribution. This paper uses an improved particle 
filter and combines it with AdaBoost in the final stage. 
Wang et al. [5] propose a likelihood estimation technique 
for the particle filter based on Gentle AdaBoost. Hansen et 
al. [6] propose a log-likelihood ratio function incorporated 
within a particle filter to track the motion of the human eye. 
However, both the above methods focus on improvement of 
the likelihood estimation instead of improvement of the 
proposal distribution estimation which is the focus of this 
paper. In this paper, we propose an APF to enable a more 
accurate estimation of the proposal distribution and of the 
posterior distribution. We also propose a BAPF for face 
detection and tracking by combining the APF algorithm 
with the AdaBoost algorithm.  

 
2. PROPOSED ADAPTIVE PARTICLE FILTER 

 
2.1 The Filtering Distribution 
The standard problem of object tracking is to estimate the 
state tx  of the objects at time t, using a set of observations 

ty  from a sequence of input images. We assume that object 
dynamics form a temporal Markov process and observations 

ty  are independent. The dynamics are determined by a 
transition prior ( )1−tt |p xx . Given the transition prior 
( )1−tt |p xx  and the observation probability ( )tt |p xy , the 

posterior probability ( )t:t |p 1yx  can be computed 
recursively via Bayesian filtering [3] [5]: 
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Since the solution to Eq. (1) entails the computation of high-
dimensional integrals, and dealing with the non-linearity and 
non-normality of the motion model under many tracking 



scenarios, a particle filter is adopted as a practical scheme to 
estimate the posterior probability given by Eq. (1).  
 
2.2 The Standard Particle Filter 
A standard particle filter uses N weighted discrete particles 
to approximate the posterior probability ( )t:t |p 1yx  via 
observation of the data. Each particle consists of a state 
vector x and a weight w. The weighted particle set is given 
by ( ) ( )( ){ }N,,,i,w, i

t
i

t L21=x . Since it is practically infeasible 
to draw samples directly from the posterior distribution, a 
proposal distribution ( )t:tt ,|q 11 yxx −  is used instead to draw 
the samples for approximation of the posterior probability. 
A particle filter samples ( )i

tx  from ( )i
t 1−x  for particle i  

( )N,,,i L21=  and computes the weight for ( )i
tx  using the 

following equation: 
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The posterior distribution ( )t:t |p 1yx  is approximated as: 
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The estimate of the function ( )tf x  of the state vector tx is 
computed as: 
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2.3 Proposed Adaptive Particle Filter 
An Adaptive Particle Filter (APF) is proposed to enable 
more accurate estimation of the proposal distribution and the 
posterior distribution. In the sampling step of the APF 
algorithm, a new sampling strategy is used to improve the 
accuracy of the approximation. For each discrete 
particle )i(

l,t 1−x , the APF generates a new particle )i(
l,tx  based 

on a proposal distribution ( )xlu . We use the loop controlled 
by the parameter l in the APF algorithm described below to 
implement the new sampling technique. L is the fixed 
number of iterations of loop l. L can be adjusted in different 
real applications. When L=1, the APF is equivalent to the 
pure standard particle filter. When L>1, the APF performs 
more sampling iterations than the standard particle filter. In 
order to enable more accurate estimation of the proposal 
distribution, we iterate the sampling procedure with a 
constraint, which is termed the Adaptive Learning 
Constraint (ALC).  The ALC is described in the following 
analysis. The APF algorithm is summarized as follows. 
1. Initialization:  Initialize a set of particles from the prior 

( )0xp to get ( ) ( )( ){ }N,,,i,w, ii L2100 =x . Let t=0. 
2. Sampling step 

(1) For l = 1, 2, … , L 
     (a) For i = 1, 2, … , N 

Sample ( )i
l,tx  from ( )i

l,t 1−x  based on the proposal        

distribution ( ) ( )k:
)i(
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Dirac function. 
(b) If the ALC is satisfied, 11 −− ⋅⋅≤⋅ llll minKmaxK α  
(variables are detailed in the ALC derivation): 
   (i) Compute the weights of particles 
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(iii) Continue the loop l 
          (c) If the ALC is not satisfied, 

    11 −− ⋅⋅>⋅ llll minKmaxK α : 
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3. Estimation step 
Obtain a set of particles ( ) ( )( ){ }N,,,i,w, i

t
i

t L21=x . The 
posterior distribution can be approximated using the set 

of particles: ( ) ( ) ( )( )∑ =
−≈

N

i
i

tt
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tt:t w|p
11 xxyx δ . The 

estimated value of ( )tf x  can be computed as: 
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4. Selection step 
Resample particles ( )i

tx  with probability ( )i
tw  to obtain 

N i.i.d random particles ( )i
tx , approximately distributed 

as posterior distribution ( )t:t |p 1yx . Assign ( )
N

w i
t

1
= . 

5. Iterative Step: Set t=t+1, and go to step 2. 
A critical step in the APF is obtaining a good approximation 
to the sampling proposal distribution ( )xlu  in the sampling 
step. The purpose behind choosing the proposal distribution 
( )xlu  recursively in a given state is to reduce the estimation 

error. In the following analysis, we prove that the iterations 
of loop l result in the convergence of the estimate of the 
proposal distribution. The propagation of errors between the 
iterations in the APF algorithm can be analyzed for a single 
iteration l: { }L,,,l L21∈ . The sampling error at iteration l 
with respect to ( )xf  is computed as [7]: 
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Using the Lagrange theorem, we could obtain specific 
values ( )i

1ξ  and ( )i
2ξ  in domain D such that: 
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Assuming that ( )xf , ( )tt |p xy , ( )( )i
tt |p 1−xx  are continuous 

functions on domain D, we have the following equation:  
RM,m ∈∃ 11 ,  
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Likewise, we have: 
RM,m ∈∃ 22  
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Since ( )xf , ( )tt |p xy , ( )( )i
tt |p 1−xx are continuous functions 

defined on domain D, Eq. (6) is bounded by two specific 
values, lmax  and lmin .   
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Hence, we obtain: 
( ) ( )( ) lllll maxKXp,XfEminK ⋅≤≤⋅        (11) 

where lK  is a constant corresponding to the loop iteration l. 
Likewise, for the loop iteration  l-1 we obtain: 

( ) ( )( ) 11111 −−−−− ⋅≤≤⋅ lllll maxKp,fEminK xx       (12) 
Let  

11 −− ⋅⋅≤⋅ llll minKmaxK α , where 10 <<α       (13) 
Thus we obtain:  

( ) ( )( ) ( ) ( )( )Xp,XfEXp,XfE ll 1−⋅≤α        (14) 

If Eq. (13) is satisfied, then Eq. (14) ensures that the 
estimation error for the proposal distribution converges 
during the iterations. Eq. (13) is termed as the Adaptive 
Learning Constraint (ALC) whose parameters lK  and α can 
be learned during the iterative computation. The ALC can 
be guaranteed by determining the values of lmax and 

1−lmin from the N particles in each iteration. We prove that 
the iterations of loop l result in the convergence of the 
estimate of the proposal distribution thus showing that the 
APF does not lead to sampling impoverishment. The proof 
of convergence also shows that the estimation error of the 
proposal distribution at loop step l=k+1 is less than that at 
loop step l=k, where ( )121 −∈ L,,,k L . The result is a better 
approximation of the proposal distribution and the posterior 
distribution via the iterations of loop l. Thus, we can obtain 
a lower estimation error for the proposal distribution and for 
the posterior distribution, resulting in higher tracking 
accuracy in real applications.  
 

3 THE BOOSTED ADAPTIVE PARTICLE FILTER 
 

This paper proposes a novel scheme, termed a boosted 
adaptive particle filter (BAPF), for face detection and 
tracking by combining the above APF tracking algorithm 
with the AdaBoost face detection algorithm [1]. The 
proposed BAPF scheme consists of an AdaBoost face 
detection model which performs multiview face detection 
using a trained AdaBoost algorithm, and an APF face 
tracking model based on visual contour tracking. The 
proposed BAPF scheme consists of two phases: an 
initialization phase and a tracking phase. In the initialization 
phase, the AdaBoost face detection model provides the 
initial parameters for the APF face tracking model based on 
observations of the input video sequence over a certain time 
interval. During the tracking phase, the AdaBoost face 
detection model and the APF face tracking model improve 
the tracking performance via mutual interaction. The 
AdaBoost model helps the APF model to detect and define 
new objects, and to verify the current states of the objects 
being tracked. On the other hand, the APF model provides 
focus-of-attention regions within the image frame to help 
speed up the face detection in the AdaBoost model. 

We combine the results of the AdaBoost algorithm and 
the APF algorithm to obtain new position for a sampled 
point on the contour, which is described by [5]: 

( )( ) ( ) ( )( ) dfEfE ttc ⋅⋅+⋅−= ηγγ xx 1   (15) 

where cE  represents the estimate of a sampled point on the 
contour which combines the estimates from the APF and the 
AdaBoost algorithm. In Eq. (15), γ is the weight assigned to 
the AdaBoost model, the parameter η is a confidence 
measure for each detected face in the image, and d is the 
distance between the center of a detected face and the center 
of a sampled template contour. The value of ( )( )tc fE x  is 



fed back to the APF for further processing. The parameter γ 
can be adjusted without affecting the convergence of the 
APF. By increasing γ, we emphasize the AdaBoost face 
detection algorithm. The values γ=0 and γ=1 correspond to 
the pure APF algorithm and pure AdaBoost algorithm 
respectively. The value of γ is typically adjusted based on 
varying scene conditions determined by clutter, illumination 
and occlusions. 

 
4. EXPERIMENTAL RESULTS 

 
The proposed BAPF and APF algorithms were implemented 
in C++ on a 1.6 GHz Pentium-M computer. The video 
sequences were sampled at 30 frames/sec with a frame size 
of 320×240 pixels. The proposed BAPF algorithm was 
applied to various tracking scenarios. The tracking results 
from test video sequences shown below were captured under 
various lighting conditions, scales, occlusions, and rotations.  

 
Fig. 1. Tracking results under various scenarios 

 
We compared the performance of the BAPF, APF and 

CONDENSATION algorithms in our experiments. The 
tracking accuracy is defined by the mean displacement error 
(MDE) between the centroid of a ground truth face and the 
centroid of a tracked face in the video sequences. All three 
algorithms are tested on the same test video, and employ 
N=1000 particles for face tracking. In the BAPF algorithm, 
γ=0.8, L=3. In the APF algorithm, L=3. The experimental 
results, as shown in Fig. 2 and Table 1, demonstrate that the 
tracking accuracy of the BAPF algorithm is higher than that 
of the APF algorithm, and that the tracking accuracy of the 
APF algorithm is higher than that of the CONDENSATION 
algorithm. The computation time of the APF algorithm is 
comparable but greater than that of the CONDENSATION 
algorithm, since the APF algorithm performs additional 
iterations needed in order to obtain better estimates of the 
proposal distribution and the posterior distribution. The 
BAPF algorithm needs more computation time than the APF 
algorithm, since the BAPF algorithm additionally performs 
AdaBoost face detection. 
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Fig. 2. Tracking results of BAPF, APF and CONDENSATION 

Table 1. Performance of BAPF, APF and CONDENSATION 
 BAPF APF CONDENSATION 

MDE  (pixels) 8.1 16.3 22.4 
Standard deviation (pixels) 4.1 7.3 7.3 
Speed (frame/sec) 4.1 4.7 6.8 

 
5. CONCLUSIONS 

 
This paper proposes the BAPF algorithm for face detection 
and tracking in video sequences. The APF algorithm is 
proposed to obtain more accurate estimates of the proposal 
distribution and the posterior distribution for improving the 
tracking accuracy in the input video sequences. The 
proposed BAPF algorithm combines the APF algorithm 
with the AdaBoost algorithm. The AdaBoost algorithm is 
used to detect faces in the input images, whereas the APF is 
used to track the faces in the video sequences. The proposed 
BAPF algorithm is employed for face detection, face 
verification, and face tracking in video sequences. The 
experimental results show that the proposed BAPF 
algorithm provides robust face detection and accurate face 
tracking under various scenarios. We compare the 
performance of the BAPF algorithm, the APF algorithm and 
the CONDENSATION algorithm. The experimental results 
show that in terms of tracking accuracy the BAPF algorithm 
is superior to the APF algorithm, which in turn, is superior 
the CONDENSATION algorithm. The computation times of 
the BAPF and APF algorithms are comparable but greater 
than the computation time of the CONDENSATION 
algorithm since both the BAPF algorithm and the APF 
algorithm perform additional iterations in order to obtain 
higher tracking accuracy.  
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