
An Efficient Background Updating Scheme for Real-time Traffic Monitoring

Suchendra M. Bhandarkar and Xingzhi Luo
Department of Computer Science, The University of Georgia

Athens, Georgia 30602-7404, USA

Abstract

Background updating is an important problem in dynamic
scene analysis. It is critical to be able to distinguish between
long-term gradual changes in the background and short-
term rapid changes resulting from moving objects in the
scene. In this paper we propose an efficient background up-
dating scheme for real-time traffic monitoring. In particular,
we address the sleeping person problem, which arises fre-
quently in the context of real-time traffic monitoring. The
proposed scheme combines two levels of reasoning: low-
level reasoning based on pixel status analysis and high-level
reasoning based on moving object correspondence analysis.
The proposed scheme is robust and fast enough to satisfy the
real-time constraints of traffic monitoring.

1. Introduction

Separating the foreground from background is an impor-
tant though difficult problem in computer vision. This
problem is even more complex in the case of dynamic
scenes where the background typically changes with time
and hence needs to be updated periodically. In computer
analysis of dynamic scenes it is critical to be able to dis-
tinguish between long-term gradual changes in the back-
ground which are typically global in nature (such as changes
in ambient illumination) and short-term rapid changes in the
scene resulting from the presence of moving objects. Most
object tracking systems need a background image to extract
moving objects in the scene. Systems that use known back-
ground images for training [1] are not adaptive to changes
in the background if the training images do not span all pos-
sible variations in the background. Moreover, in many prac-
tical situations, it is difficult to acquire training images that
do not contain a moving object.

Some object tracking systems use adaptive techniques
to update the background image on the fly such as by pe-
riodically computing the temporal average of the image
frames [2]. A major shortcoming of the temporal averag-
ing scheme is its inability to address the sleeping person
problem [8]. The sleeping person problem arises frequently
in the context of automated traffic monitoring when a mov-
ing vehicle stops in the scene (such as at a traffic light) and,

on account of being motionless, is improperly merged with
the background image [8]. Another shortcoming of tempo-
ral averaging is the presence of shadows in the background
image especially in areas containing high/frequent motion.
Replacing temporal averaging by median filtering addresses
the shadowing problem but not the sleeping person prob-
lem [4].

Koller et al. [3] propose the following background up-
dating scheme as an improvement over temporal averaging
and median filtering:

B(x, y; t + 1) = B(x, y; t) + α(F (x, y; t) − B(x, y; t)) (1)

where B(x, y; t) is background image at time t, α =
α1(1−M(x, y; t)) + α2M(x, y; t), F (x, y; t) is the image
frame at time t, M(x, y; t) is the motion hypothesis mask
given by

M(x, y; t) =
{

1 if |F (x, y; t) − F (x, y; t − 1)| > Tt

0 otherwise
(2)

and 1 � α1 � α2 > 0. This technique ensures that there
are no shadows at the busy pixels in the background image,
where moving objects pass frequently. However, it still can-
not solve the sleeping person problem. In [5] and [6] it is
assumed that reliable background pixels are those which do
not exhibit motion for a long period of time. This assump-
tion, however, is not valid if moving objects become static
and remain static for a long time.

A more sophisticated background updating scheme pro-
posed in [7] uses coarse object segmentation at the image
block level to construct a block similarity matrix using mo-
tion information. This method can handle situations where
a moving object becomes static for a given time interval.
However, the size of the similarity matrix scales quadrat-
ically with the length of the time interval under considera-
tion. The memory requirement and computational overhead
make this technique unsuitable for real-time object tracking.
Since the time interval for analysis is constrained by the lim-
itations of memory and processing speed, if a moving object
remains static for longer than this time interval, it is improp-
erly merged with the background image. Techniques based
on Kalman filtering [9] and linear prediction [8] have been
proposed for background updating resulting in update equa-
tions similar to equation (1). Edge data is typically used to

2004 IEEE Intelligent Transportation Systems Conference
Washington, D.C., USA, October 3-6, 2004

0-7803-8500-4/04/$20.00 ©2004 IEEE

WeA1.3

859

track objects and these techniques work well in the absence
of occlusion. However, in traffic monitoring, occlusion is a
common occurrence thus limiting the applicability of these
techniques. Occlusion occurs when portions of several ob-
jects in the 3D scene project onto a common region in the
2D image plane. Thus, only the object closest to the camera
is visible in that region of the image plane.

The previously mentioned techniques perform poorly
when confronted with the sleeping person problem [8]. We
classify the sleeping person problem into two categories:
the middle-static-object problem where a moving object be-
comes static in the middle of the frame sequence and the
initially-static-object problem where an object is static at
the beginning of the frame sequence and eventually moves.
Neither the middle-static-object problem nor the initially-
static-object problem are handled adequately by the previ-
ously described methods.

In this paper we propose a background updating scheme
for real-time traffic monitoring that addresses the sleeping
person problem by combining low-level reasoning based on
the analysis of the status of individual pixels with high-level
reasoning based on correspondence analysis of the moving
objects in the scene. The high-level reasoning about inter-
frame object correspondence enables robust background
updating and detection of the initially-static-object. The
low-level reasoning enables one to update the status of each
pixel (indicating whether it belongs to the background or
not) and also detect certain abnormal situations caused by
an initially-static-object.

In the proposed scheme, the background updating is
done on a frame-to-frame basis without requiring much
history information to be stored. After the initially-static-
object problem is solved, the background updating can be
performed within a local window instead of the entire im-
age. This reduces the processing overhead for background
updating leaving more CPU time for object tracking and
other tasks such as object recognition. By periodically mov-
ing the window around the image frame, the background
can be refreshed to adapt to changes in illumination.

Most of the previously cited techniques detect moving
objects by computing some measure of the inter-frame dif-
ference. The proposed technique, however, uses the back-
ground image to detect moving objects while simultane-
ously using the knowledge of the moving objects to update
and detect errors in the background image. Thus, the pro-
cesses of moving object detection and background updating
are closely integrated. Experimental results show that it is
possible to use the background image, before it is fully ini-
tialized, to detect a middle-static-object. The integration of
moving object detection and background updating makes
the system robust to large variations in the speeds of the
moving objects within the field of view.

2 Background Updating Scheme

The proposed background updating scheme can be summa-
rized as consisting of two primary steps: (a) Perform image
segmentation on the first frame to initialize the background
image (Section 2.1), and (b) Update the background using
correspondence analysis and reasoning (Section 2.2).

The background image is maintained in an image buffer
B(x, y; t). Each pixel in B(x, y; t) has the following at-
tributes: status, which indicates whether the background
pixel intensity is valid or not (1 represents valid, 0 repre-
sents invalid); sum, which represents the accumulation of
gray levels at this pixel location since the last time when
it was valid; count which is the total number of updates to
the pixel since the last time when it was valid in the back-
ground image buffer; and g, which is the background gray
level of this pixel given by g = sum/count. The temporal
averaging used to compute the value of g produces a robust
background, which adapts to changes in ambient illumina-
tion with the passage of time.

For each pixel, we design a set of operators to update the
background image. The operator Add adds the gray scale
value of the current frame F (x, y; t) to B(x, y; t) using the
following rules:

1. If B(x, y; t) is valid, that is status = 1, then

sum = sum + F (x, y; t)
count = count + 1
g = sum/count

(3)

2. If the status of B(x, y; t) is invalid, that is status = 0,
then

status = 1
sum = F (x, y; t)
count = 1
g = F (x, y; t)

(4)

Equation (3) is used to update a background pixel which
is already valid whereas equation (4) is used to initialize a
background pixel which is still invalid. The operator Inval-
idate simply invalidates the status of the background pixel,
i.e., status = 0. Initially, the status of all the background
pixels is set to invalid. We also maintain a timer vari-
able for each pixel, which accounts for the time that this
pixel has been continuously contained within moving ob-
jects. If the pixel is not contained within any moving object
at any time, we set the timer to 0. If the pixel is contained
within moving objects continuously for too long, we inval-
idate the background at that pixel. This operator, termed as
Timer Invalidate, is disabled when the background is fully
initialized and is stable.

The three operators: Add, Invalidate and
Timer Invalidate are the basic low-level pixel-based

860

reasoning operators. The first two are used to refresh the
background image as described in Section 2.3. The third
operator is used to solve the initially-static-object problem
at the pixel level. When correspondence analysis and rea-
soning (Section 2.2) fail to detect the initially-static-object
(which is initially misclassified as valid background) which
then moves away, the object extraction method in Section
2.1 detects a false object at the initial location of the
initially-static-object in every background frame thereafter.
The timers associated with the pixels at the initial location
of the initially-static-object count until they reach a given
threshold value after which the Timer Invalidate operator
invalidates the status of these background pixels. If there
is no moving object at these pixel locations after the
Timer Invalidate operation, the false object will no longer
be detected and these background pixels are refreshed to
the real background value using the first rule described in
Section 2.3.

2.1 Background Image Initialization

We initialize the background image using inter-frame mo-
tion detection. We define the difference image as:

D(x, y; t) = |F (x, y; t) − F (x, y; t − 1)| (5)

We use double thresholding to segment the moving objects
in D(x, y; t). The first threshold τ1 is used to extract the
core regions of the moving objects. The second threshold
τ2 < τ1 is used to grow the core regions using spatial con-
nectivity resulting in a binary image T (x, y; t). Connected
component labeling (CCL) and size filtering are used to
identify significant connected regions in T (x, y; t) which
are then presumed to represent the moving objects in the
scene. A bounding box is computed for each moving ob-
ject.

We initialize the background image as follows: for ev-
ery pixel (x, y) in the current frame F (x, y; t), if (x, y)
is not in the bounding box of any moving object, then we
Add F (x, y; t) to B(x, y; t), else, do nothing (i.e., keep
B(x, y; t) invalid). The bounding box is used to reduce the
effect of the object shadow.

The background updating process is prone to error if
there exists a static object in the scene at the beginning of
the frame sequence. Since this object cannot be extracted
using motion detection, its pixels are misclassified as valid
background pixels, causing problems in future updates to
the background image. As described in the following sub-
sections, the proposed scheme solves this problem using
two levels of reasoning, one based on object correspon-
dence analysis and the other based on a timer associated
with each pixel location in the background image B(x, y; t).

With the initialized background, we are able to refine the
object extraction method. Instead of using equation (5) to

get the difference image, we use the following equation:

D(x, y; t) = max(|F (x, y; t) − F (x, y; t − 1)| ,
|F (x, y; t) − B(x, y; t) · g|
×B(x, y; t) · status) (6)

in which, B(x, y; t) · g and B(x, y; t) · status are the
attributes of B(x, y; t) mentioned previously. Essen-
tially, if the background pixel (x, y) is valid, we in-
clude it to extract the object, if not, ignore it. For
a moving object that is going to stop, the value of
|F (x, y; t) − F (x, y; t − 1)| exhibits a decreasing trend.
But the value of |F (x, y; t) − B(x, y; t) · g| × B(x, y; t) ·
status can still be large if status is 1. Thus, the middle-
static-object problem is automatically prevented, since
these pixels will not be misclassified as belonging to the
background on account of the high value of D(x, y; t) at
these pixel locations. If there is no initially-static-object in
the frame sequence, then a simplified version of our back-
ground updating scheme is as follows: (1) Compute the dif-
ference image using equation (6), (2) Extract moving ob-
ject(s) using double thresholding and CCL, and, (3) Up-
date the pixel locations where there are no moving objects
present. We revert to this simplified scheme to refresh the
background during object tracking when the initially-static-
object problem has been solved and all the background pix-
els have been validated.

2.2 Correspondence Analysis and Reasoning

The correspondence analysis and reasoning phase detects
the initially-static-object and refreshes the background im-
age at the same time. During this phase, we also solve the
problems created by the presence of object shadows and
uniformity in object color. When the value of count is not
large enough, the presence of object shadows will cause the
background pixel intensity values to deviate significantly. It
is important to minimize the effect of object shadows in the
initial stages when the background image is not stabilized.
Also, if an object with uniform color or intensity such as a
car or truck moves very slowly and if the background status
is invalid for the pixels contained within this object, then the
motion information in the interior pixels of the object may
be difficult to obtain. The background refreshing process
itself makes the background image adaptive to the changes
in illumination.

We use a simple scheme to predict the object speed for
correspondence analysis instead of Kalman filtering [3] or
linear prediction. We use an object’s speed computed in a
previous frame as it’s predicted speed in the current frame.
The result of the correspondence analysis is used to com-
pute the actual speed of the object in the current frame and
to update the prediction for the current frame. This method

861

works very well for traffic monitoring, where a moving ob-
ject moves coherently. Correspondence analysis is observed
to improve the overall robustness of background updating
process. Moreover, errors in correspondence analysis are
observed not to cause significant deviations in the gray level
values of the background pixels.

Suppose the moving objects at time t and time t − 1
are denoted by O(t) = {ot

1, o
t
2, ..., o

t
n} and O(t − 1) =

{ot−1
1 , ot−1

2 , ..., ot−1
m }, respectively. For each object ot−1

i

we predict its new position ωt−1
i using the predicted speed.

We compute the overlapping area between ωt−1
i and every

object in O(t) and construct the correspondence table C,
where entry C[i, j] denotes the size of the overlapping re-
gion between object ωt−1

i and ot
j .

We perform inter-object correspondence analysis based
on the following categorization:

1. One-to-One Correspondence: Object ot−1
i ∈ O(t −

1), corresponds to only one object ot
j ∈ O(t) and vice

versa. Thus row i and column j in C are all 0’s except
for cell C[i, j]. Hence objects ot−1

i ∈ O(t − 1) and
ot

j ∈ O(t) are deemed to be the same physical object
in successive frames.

2. One-to-None Correspondence: Object ot−1
i ∈ O(t−

1) does not correspond to any object in O(t).

3. None-to-One Correspondence: For an object ot
j ∈

O(t), there is no corresponding object in O(t − 1).

4. One-to-Many Correspondence: For an object ot−1
i

in O(t − 1), there is more than one corresponding ob-
ject in O(t), however, object ot−1

i is the only corre-
sponding object for each of them.

5. Many-to-One Correspondence: For an object ot
j

there is more than one corresponding object in O(t −
1), however, ot

j is the only corresponding object for
each of them.

6. Many-to-Many Correspondence: Objects ot−1
i and

ot−1
i′ in O(t − 1) correspond to the same object in

ot
j ∈ O(t). However, ot−1

i′ also corresponds to another
object ot

j′ ∈ O(t). In this case, we use the following
steps to simplify the correspondence, so that the result
falls in one of categories 1–5 described above.

(a) If object ot−1
i ∈ O(t − 1) corresponds to sev-

eral objects in O(t), but one of the these objects,
say ot

j , corresponds to several objects in O(t−1)
(including ot−1

i), then we examine column j in
C, and set the smallest non-zero correspondence
value in this column to 0.

(b) If object ot
j ∈ O(t) corresponds to several ob-

jects in O(t − 1), but one of these objects, say

ot−1
i , corresponds to several objects in O(t) (in-

cluding ot
j), then we examine the corresponding

row i in C and set the smallest non-zero corre-
spondence value in this row to 0.

Steps (a) and (b) are performed repeatedly until the re-
sulting correspondence falls in one of categories 1-5 above.

2.3 Background Updating with Correspon-
dence Reasoning

The results of the correspondence analysis are used to up-
date the background image B as follows:

1. If a pixel (x, y) is not contained in any moving object
in either O(t − 1) or O(t), then we just Add the pixel
value F (x, y; t) to the background pixel B(x, y; t) us-
ing the Add operator described previously.

2. In the case of one-to-one correspondence, we consider
the object to be moving normally. A common occur-
rence is when an object which is static at the beginning
of the frame sequence begins to move, it starts with a
small size and then grows rapidly. Thus, when we de-
tect an object whose area growth rate is larger than a
threshold, we invalidate the background at the pixels
within the bounding box of that object. This solves
some instances of the initially-static-object problem.
Otherwise, if a point (x, y) is contained in the bound-
ing box of the object at time t−1 but not in the bound-
ing box of the corresponding object at time t, then we
Add the pixel value in the current frame to the back-
ground as in case 1 above.

3. In the case of many-to-one correspondence, we use a
bounding box which is the smallest one that includes
the many bounding boxes and then handle the relation
as if it were a one-to-one correspondence. The reason
we use the merged bounding box is to be able to han-
dle the situation where an object has uniform color.
In such a case, it is difficult to estimate the motion
in the interior pixels of the object using temporal dif-
ferencing. Consequently, the extracted object is often
fragmented into more than one component. It is possi-
ble for pixels lying in areas between these components
(which truly belong to the object) to be misclassified as
background pixels. This results in false updates to the
background which could cause the background image
quality to deteriorate, especially when it has not been
completely initialized.

4. In the case of one-to-many correspondence, we use the
same reasoning as in the case of many-to-one corre-
spondence.

862

5. In the case of one-to-none correspondence, we have an
object moving out of the scene or just random noise.
We simply Add the pixels in the bounding box to the
background after a chosen time delay, such as 100
frames. The time delay is chosen to minimize the ef-
fect of random motion in the image (due to noise) on
the background update.

6. In the case of none-to-one correspondence, we have an
object that has stayed in the background since the be-
ginning of the frame sequence and has now begun to
move or just random noise. In this case, we just in-
validate the background at pixels within the bounding
box of the object. This solves most instances of the
initially-static-object problem.

After the background is initialized, we can use a simple
version of background updating that can run in real time.
We use equation (6), double thresholding and CCL to ex-
tract the moving object(s). However, we do not perform
correspondence analysis. We only update the background
pixels, where there is no object present, using equation (3).

The computational requirements of the background up-
dating procedure can be scaled down, if required, to meet
the temporal constraints of real-time traffic monitoring.
The background updating procedure can be performed only
within a window of predetermined size and position in the
background image. Thus, the object extraction and corre-
spondence analysis, which are used to update background,
are performed only within the window, where the window
size is chosen to be larger than the largest object in the
scene. The window is then moved periodically within the
image frame in a prespecified manner in order to update the
entire background image. The moving window-based ap-
proach can be used to update the background image after it
is initialized so that computational resources can be made
available for other tasks such as object recognition and ob-
ject tracking.

3 Experimental Results

Our experiments on traffic monitoring videos show very
good results when there is no static object at the beginning
of the frame sequence. When a static object moves into the
field of view and becomes motionless, it is never merged
into the background image. When there is an initially-
static-object, the correspondence reasoning sometimes fails
to detect that it has begun to move because of the pres-
ence of an occluding object. As described in Section 2, the
Timer Invalidate operator can solve this problem eventually
if the traffic is not very heavy. When the initially-static-
object moves out of its position, a false object will be de-
tected at that position in the background image. The timer

associated with the pixels at this position will count until
the elapsed time exceeds a threshold, after which these pix-
els will perform a Timer Invalidate operation. If there is no
moving object at that position at this time, the real back-
ground value will be copied into these pixels with the Add
operator in the next frame. We also notice that when there
is heavy traffic, it takes a long time for the pixel values in
the background image to converge to their true background
values, after the Timer Invalidate operation has been per-
formed. This is because in heavy traffic it is possible to en-
counter another static object at the very pixel position that
is being invalidated, thus preventing the true background
value from being copied into that pixel via the Add opera-
tion.

Figure 1 shows a series of snapshots of the background
updating process. The initial background image (Fig-
ure 1(b)) is just a copy of the second frame (Figure 1(a)).
However, the pixel status is invalid in the area where motion
is detected. The white car in the center of the field of view is
static in the beginning and hence appears in the background
image (Figure 1(b)). Even when the white car moves away
in frame 1328 (Figure 1(c)), it persists in the background
image due to the presence of other vehicles that partially
occlude it (Figure 1(d)). However, by frame 6700 (Fig-
ure 1(e)), the timer mechanism ensures that all pixels are
updated to their true background values (Figure 1(e)). The
result of the background updating scheme based on simple
temporal averaging of the frames is shown in Figure 1(g).
The background image can be observed to contain the sta-
tionary vehicles waiting at the traffic light (i.e., the sleeping
person problem). Koller’s scheme (equation (1)) also has
a serious problem when dealing with static objects, since it
can adapt very quickly to static objects in the scene causing
them to merge with the background image.

Figure 2 shows a comparison of the converge rates of the
proposed scheme, Koller’s scheme and temporal averaging
scheme for background updating. The y axis in Figure 2
represents the percentage of pixels that do not match the
real background values within a prespecified threshold. The
x-axis represents time measured in terms of the number of
frames (at a uniform sampling rate of 30 frames/second).
The proposed background updating scheme can be seen to
converge more rapidly to an overall background value that
is much closer to the real background value compared to the
other two schemes.

4 Conclusions

In this paper we proposed a background updating scheme
for a real-time traffic monitoring system. For the sleep-
ing person problem, we considered two cases termed as
the initially-static-object problem and the middle-static-
object problem. The former was handled with the pro-

863

(a) Image Frame 2 (b) Background Frame 2

(c) Image Frame 1328 (d) Background Frame 1328

(e) Image Frame 6700 (f) Background Frame 6700

(g) Background Frame 6700
with temporal averaging

Figure 1: Snapshots of the background updating procedure

posed two-level reasoning scheme. The two-level reasoning
scheme was shown to also handle the problem of uniform
color object and shadows. The high-level reasoning based
on inter-object correspondence solved the initially-static-
object problem quickly when there was little occlusion. In
the event that the high-level reasoning failed to solve this
problem (in cases of heavy occlusion), the low-level rea-
soning based on the Timer Invalidate operator solved the
problem (even in the presence of heavy occlusion) though it
took longer. The Timer Invalidate also handled the middle-
static-object problem. In summary, the proposed back-
ground updating scheme was seen to be robust and scalable
with respect to the number of moving objects in the scene
and changes in background illumination. It did not entail
training on typical background images, had low computa-
tional complexity and was fast enough to satisfy the tempo-
ral constraints of real-time traffic monitoring.

Figure 2: Convergence curve

References

[1] M. Isard and J. MacCormick, BraMBLe: A Bayesian
Multiple-Blob Tracker, Proc. Intl. Conf. Computer Vision,
Vol.2, Vancouver, Canada, July 2001, pp. 34-41.

[2] S. Kamijo, Traffic Monitoring and Accident Detection at In-
tersections, IEEE Trans. Intelligent Transportation Systems,
Vol. 1. No. 2, June 2000, pp. 108-118.

[3] D. Koller, J.W. Weber and J. Malik. Robust Multiple Car
Tracking with Occlusion Reasoning, Proc. European Conf.
on Computer Vision, Stockholm, Sweden, May 1994, pp.
189-196.

[4] M. Massey and W. Bender, Salient stills: Process and prac-
tice, IBM Systems Journal, Vol. 35, Nos. 3&4, 1996, pp.
557-573.

[5] S.Y. Chien, S.Y. Ma, and L.G. Chen, Efficient Moving Ob-
ject Segmentation Algorithm Using Background Registra-
tion Technique, IEEE Trans. Circuits and Systems for Video
Technology, Vol. 12, No. 7, July 2002, pp. 577-586.

[6] T. Meier and K. N. Ngan, Automatic Segmentation of Mov-
ing Objects for Video Object Plane Generation, IEEE Trans.
Circuits and Systems for Video Technology, Vol. 8, No. 5,
Sept. 1998, pp. 525- 538.

[7] D. Farin, P.H.N. de With, and W. Effelsberg, Robust Back-
ground Estimation for Complex Video Sequences, Proc.
IEEE Intl. Conf. Image Processing, Barcelona, Spain, Sept.
2003, pp. 145-148.

[8] K. Tooyama, J. Krumm, B. Brumit and B. Meyers,
Wallflower: Principles and Practice of Background Main-
tenance, Proc. Intl. Conf. Computer Vision, Corfu, Greece,
Sept. 1999, pp. 255-261.

[9] C. Ridder, O. Munkelt, and H. Kirchner, Adaptive back-
ground estimation and foreground detection using Kalman-
filtering, Proc. Intl. Conf. Recent Adv. Mechatronics, Istan-
bul,Turkey, August 1995, pp. 193-199.

864

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Helvetica
 /Helvetica-Bold
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

