SESSION 12

Title of the Session

First Author Name
Address:Line 1
Line 2
Line 3
email:

Second Author Name
Address:Line 1
Line 2
Line 3
email:

Third Author Name
Address:Line 1
Line 2
Line 3
email:

ABSTRACT

Sample abstract: This session will focus on internal waves in fluids, including mathematical modeling, numerical simulation, collection of field data and wave tank experiments.

Internal waves are ubiquitous in the worlds oceans, being made possible for example by temperature strafication in the open ocean and salinity stratification in the neighborhood of river mounds. Due to their large amplitude and wavelength, internal waves in the oceans are central to the study of hydrodynamics on a geophysical scale, and breaking internal waves have been implicated to be connected to large-scale mixing processes, as well as a transport mechanisms connected to trapped cores.

This session will feature a blend of analytical, numerical and experimental work.

Among the topics to be discussed here are numerical and experimental studies of internal solitary waves running up on a sloped bottom, and an internal bore passing a coastal shelf, thereby generating internal solitary waves.