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Abstract.  With the sequence of many genomes now available the major challenge of functional genomics 
is 'reassembling the pieces'.  One functional view of a living system is as a chemical reaction network, and 
new genomics technologies like RNA and protein profiling are providing ways to measure the state of these 
networks.  The goal here is being able to simulate an arbitrary ensemble of hypothesized biochemical and 
genetic regulatory networks to predict what a cell is doing, i.e. to compute life, so that these predictions 
may be compared with the observed state of the system.  The simulator KINSOLVER will solve chemical 
reaction networks, satisfying standard multiplicative mass balance kinetics, of arbitrary size, topology, rate 
constants, and initial conditions by 5 standard methods (Euler, Modified Euler, Runge Kutta (RK), 
Adaptive RK-Fehlberg, and LSODES).  The simulator includes a simple Web-browser interface for 
specifying and refining a target reaction network as well as visualization tools to represent the network's 
behavior.  The simulator is verified as rapidly solving in seconds (with benchmarks relative to GEPASI) 
some classic biological circuits like the lac operon and qa gene cluster as well as a new circuit, the 
repressilator, with oscillatory behavior.  The LSODES method uniformly outperformed the other methods 
with a relatively large error tolerance of 0.01 and with a small error tolerance of 1E-6. The simulator is 
written in a nearly platform independent manner to simulate large ensembles of models and has a Web-
browser interface to interact with the simulator by using Java and C++ at the back-end. 
 
Availability.  Software can be downloaded from http://webster.cs.uga.edu/~boanerg/mams or 
http://gene.genetics.uga.edu/stc. 
 
Contact.  Please contact arnold@uga.edu. 
 
Keywords:  genetic networks, biological circuits, chemical reaction network, simulator, biochemical and 
gene regulatory network, repressilator, model ensemble 
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1. Introduction 
 
A living system can be viewed as a chemical reaction network (Beadle and Tatum, 1941).  One of the 
central problems of functional genomics then becomes the identification of biochemical and gene 
regulatory networks describing how a living system functions (Arnold et al., 2004).  Solving this problem 
begins by focusing on a particular process like lactose metabolism (Jacob and Monod, 1961), identifying 
the regulatory control exercised by genes, finding the products of these genes, and determining their role in 
relevant biochemical pathways.  The resulting model of lactose metabolism is then a network or "biological 
circuit", in which genes and their products enter as nodes in the circuit [see Figure 1].   The term biological 
circuit refers to a model in biochemistry and molecular biology, which includes efforts to account fully for 
the effects of concentrations of each species, the time evolution of biochemical events, and the 
accumulation of transient intermediates (Purich and Allison, 2000).  Validating a circuit depends upon our 
ability to simulate a particular reaction network and to predict how the network responds to various 
experimental perturbations.  Perturbations may include gene knockouts, change in a substrate like a carbon 
source, or the addition of a protein inhibitor like a drug. As the information about this circuit accumulates, 
the biological circuit is modified in the light of new experiments, and new predictions are made to refine 
the circuit (Wagner, 2001).   
 
These biological circuits can be partially identified for a few well-studied paradigms like the lac operon 
(Jacob and Monod, 1961), trp operon (Yanofsky and Kolter, 1982; Yanofsky, 2001), GAL gene cluster 
(Johnston, 1987), qa gene cluster (Giles et al., 1985), cell cycle (Sveiczer et al, 2000), and biological clock 
(Lee et al., 2000).  Such circuits can display a diversity of dynamical behavior including a transient 
response, switch-like behavior, and oscillations. As circuits are coupled into larger networks they begin to 
display emergent properties (Bhalla and Iyengar, 1999).  As their behavior becomes increasingly complex, 
so does the task of predicting their behavior.  A simulator of a broad class of models and the generation of 
new testable hypotheses is required to understand circuit behavior.  As new technologies for measuring the 
global response of a circuit through RNA and protein profiling (DeRisi et al., 1997; Gygi et al., 1999) 
become available, we are faced with the ultimate challenge of computing the behavior of an entire reaction 
network, i.e. of computing life.  The behavior of the circuit is measured globally, and its success or failure 
as a scientific hypothesis is judged in this wider genomic context (Tomita et al., 1999). 
 
In order to refine and examine the behavior of a biological circuit in a genomic context, a general purpose 
simulator is needed to compute life.  Our goal here is to present a simulator of an arbitrary reaction network 
satisfying multiplicative mass balance kinetics (Bhalla and Iyengar, 1999) with a simple interface for 
specifying and refining the target reaction network as well as with visualization tools to represent the 
circuit's predicted behavior.  A second goal is to support the efficient computation of a whole ensemble of 
104-105 related models to facilitate both the characterization of model families (Alves and Savageau, 2000) 
as well as the identification of biological circuits (Battogtokh et al., 2002).  A model ensemble is then a 
probability distribution over the parameter space of possible models deemed consistent with the available 
data on the reaction network.  This model ensemble is specified once a figure of merit for selecting 
reasonable models is selected, such as the likelihood function or posterior distribution (Battogtokh et al., 
2002). 
 
In this general model on which the simulator is based, the cell is viewed as well-stirred, although it is 
possible to embed cell compartmentalization and scaffolding into a simulation with the existing simulator 
described here.  The simulator allows an arbitrary number of species into a reaction if higher-order kinetics 
need to be hypothesized.  In principle, the number of reactions and participating species is only limited by 
the array dimensions set in the simulator.  The model of a reaction network is deterministic, and each 
reaction has a forward and backward reaction rate.  Once the initial concentrations of all species are 
provided and the reactions specified, the time derivative of each species' concentration can be computed. 
The simulator KINSOLVER solves recursively a system of coupled nonlinear differential equations for the 
trajectories of all species in the reaction network.  As illustrated by some of the examples, this task of 
solving these differential equations is not always straightforward, and there is a premium on speed in the 
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computing of each model in a large model ensemble.  The resulting solution curves are presented over the 
Web via Java back-end processes. 
 
A number of software packages exist for simulation of biochemical reaction networks, such as 
METAMODEL (Cornish-Bowden and Hofmeyer, 1991); GEPASI (Mendes, 1993, 1997); SCAMP (Sauro, 
1993); KINSIM (Barshop et al., 1983; Dang and Frieden, 1997), MIST (Ehlde and Zacchi, 1995), and E-
CELL (Tomita et al., 1999).  Like E-CELL, KINSOLVER here has been developed in C++ to simulate 
large reaction networks using a variety of numerical integration methods; 5 numerical solution methods (as 
opposed to 2 methods in E-CELL) are built in with an option to add others so that challenging reaction 
networks like the Oregonator (Murray, 1993) can still be simulated.  Input can take the form of multiple 
models as might arise in model fitting.  The Web interface of KINSOLVER is produced by Java code in 
order to allow Web-accessibility of the simulator and to promote its platform independence.  E-CELL 
allows a stochastic component to the models (KINSOLVER does not), while KINSOLVER includes the 
possibility of reaction velocities with Michaelis-Menten form and cooperativity effects between activators 
or inhibitors. Like GEPASI (Mendes, 1997), KINSOLVER is not constrained by the size of the reaction 
network and has a menu-based interface, but it differs in the kinds of numerical integration tools available 
and in having a Web interface to give it platform independence.  There are three features that separate 
KINSOLVER from most other simulators, its platform independence, flexibility in solution procedures, and 
its capability to simulate efficiently large (104 -105) ensembles of models.  
 
Other modeling approaches for gene regulatory and biochemical networks are being pursued by others.  
These include Bayesian networks (Murphy and Mian, 1999; Friedman et al., 2000), neural networks 
(Weaver et al., 1999), and boolean networks (Huang, 1999; Shmulevich et al., 2001, 2002).  The ultimate 
success of these competing approaches will be determined by their ability to predict successfully reaction 
network behavior.  The advantage of the approach here is that it is well-rooted in chemistry and physics. 
 
Here we present a description of the underlying model on which KINSOLVER is based.  Then the 
implementation of the simulator is described.  A simple example is used to illustrate how the simulator is 
used over the Web and to establish a notation for reaction networks.  Some important real examples are 
used to evaluate the solution procedures of the underlying coupled nonlinear differential equations relative 
to GEPASI (Mendes, 1997) with a particular focus on simulating model ensembles.  The paper concludes 
with limitations of KINSOLVER and some needed extensions to the modeling approach, which 
KINSOLVER implements. 
 
2. Kinetics Model 
 
Models that represent biochemical reaction networks including genes and their products allow us to predict 
what the cell is doing. The standard multiplicative mass balance kinetics leads to a specification of an 
underlying system of coupled differential equations that describes a particular reaction network (Bhalla and 
Iyengar, 1999). The specification of a reaction network model begins with the construction of a circuit 
diagram as in Figure 1, which captures the relationships of reactants, products, the reactions in which the 
species participate, and the relationships of the reactions.  This biological circuit in Figure 1 is a kinetic 
model of DNA, RNA, and proteins involved in carbon metabolism (Bhalla and Iyengar, 1999; Weng et al., 
1999).  The example in Figure 1 is one of two early paradigms of eukaryotic gene regulation and represents 
how the model system Neurospora crassa utilizes quinic acid as a sole carbon source (Geever et al., 1989).  
The qa gene cluster in N. crassa is a good example because of its relative simplicity and because its circuit 
structure is shared with many other gene regulatory systems. 
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Figure 1. Kinetics model of quinic acid metabolism represented as a biological circuit.  The figure 
is redrawn from Figure 1 of Kochut et al.  (2003). 
 
 
A kinetics model is a specification of reactions between hypothesized molecular participants. Almost all of 
the examples in this paper relate to combustion to produce energy (sometimes for a cell), and so to illustrate 
the simplest kind of combustion we begin with that of molecular Hydrogen and Oxygen in Figure 2.  The 
reactants or products are represented as boxes. Reactants connect to other species by reactions represented 
with circles. Incoming arrows are used to indicate the reactants entering a reaction, and outgoing arrows are 
used to indicate the products of a reaction. The arrows also define the forward direction of the reaction.  
The presence of a double arrow is used to indicate that a species being pointed to appears on both the left 
hand side and right hand side of a reaction.  A reaction can have arbitrary numbers of input and output 
species, that is, can involve higher-order kinetics. 
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Figure 2. Water Model I. 
 
For simplicity, we will explain the construction of a full mass balance kinetics within the context of the 
model depicted in Figure 2. This simple Hydrogen/Oxygen Combustion Model will be referred to as Water 
Model I. It consists of 3 reactions with 6 participating species (H, H2, O, O2, OH, H2O).  
 
Such a model can be easily expressed as a series of chemical reactions or kinetics reactions. These 
(reversible) chemical reactions are of the form S1 + S2  S3 + S4, where Si are the participant species. As 
explained in (Salvadori and Schwarz, 1954), reversible reactions are chemical reactions in which one 
molecule of A is transformed into one molecule of C and may actually consist of two successive reactions 
in which at first one molecule of A is transformed into one molecule of B and then one molecule of B 
transformed into one of C; moreover, the intermediate product B and the final product C may 
spontaneously revert to A, and B, respectively.  This can be written in two reactions A  B, and B  C 
where the symbol “ ” is used to indicated that the reaction is reversible with forward and backward 
reaction rate constants. Note that the backward reaction rate constants are often very small, and in some 
cases can be set to zero. 
 
In order to write down the chemical reactions from Figure 2, each reaction (depicted with circles) is written 
independently. Take the reaction represented by circle 1 as an example. Arrows connecting reactant H2 and 
reactant O to circle 1 denote that they are reactants. The outgoing arrows from reaction 1 towards H and 
OH indicate that these are the products. The arrow also defines the forward reaction.  This is expressed as a 
chemical reaction H2 + O  H + OH.  When the stoichiometric coefficients are other than one, this can be 
represented by multiple lines to or from a species or by associating a number with each arrow for a more 
concise representation. 
 
Similarly, for reaction 2, H and O2 are the reactants, and O and OH are the reaction products. This is 
written as H + O2  O + OH. 
 
For reaction 3, arrows from H2 and OH denote that they are the input reactants, and the outgoing arrows to 
H2O and H depict them as products. The chemical reaction is written as H2 + OH  H2O + H. 
 
 
 
 
 
 
The three reactions of the Figure 2 can be written as: 
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 reaction1  H2 + O   H + OH  
 reaction2  H + O2   O + OH 
 reaction3  H2 + OH  H2O + H     (1) 
 
 
To obtain the system of differential equations from the reaction network, a participant species is viewed in 
terms of the changes it goes through in the series of reactions. For the case of a reaction like A  B, the 

species A is converted into B at some rate k1. This can be expressed as 
d(A)

dt = -k1 [A]. The negative sign of 

k1 indicates that A is consumed/reduced in the reaction. For the same reaction, the equation for species B 

can be expressed as 
d(B)

dt = k1 [A]. The absence of a negative sign means that B is “produced” from A at the 

rate given by k1. 
 
For a reversible reaction, the input participants are consumed at a “forward rate” and produced at a 
“backward rate”. For example, for the reversible reaction H2 + O  H + OH of equations (1), the 

differential equation for H2 can be expressed as 
d(H2)

dt = -kf1 [H2] [O] + kb1 [H] [OH]. The concentration of 

H2 is reduced when it reacts with O at the forward rate constant kf1 as indicated by the negative sign.  The 
final products H and OH revert back to H2, and O at the rate given by the backward constant kb1. This is 
expressed in the second term with a positive sign for the backward rate constant. 
 
Signs are different when writing the differential equation for species that are produced in the reaction. Take 
again the reversible reaction H2 + O  H + OH. The species H is produced from the reaction of H2 and O 
at a forward rate kf1. The products H and OH revert back to H2 and O at a backward rate kb1. The positive 

sign for kf1, and the negative sign for kb1 indicate this in the equation 
d(H)

dt = +kf1 [H2] [O] - kb1 [H] [OH].  

 
Note that these equations can be further simplified as in (Rice and Do, 1995; Salvadori and Schwarz, 
1954), but this mathematical simplification was not considered because of the symbolic computation 
involved. 
 
The full multiplicative mass balance kinetics of Water Model I (1) is then obtained by collecting for each 
species all production and consumption rate terms from all the reactions in which the species participates, 
i.e.: 
 
 
d(H2)

dt  = - kf1 [H2] [O] + kb1 [H] [OH] - kf3 [H2] [OH] + kb3 [H2O] [H]  

d(O)
dt  = - kf1 [H2] [O] + kb1 [H] [OH] + kf2 [H] [O2] - kb2 [O] [OH] 

d(O2)
dt  = - kf2 [H] [O2] + kb2 [O] [OH]                                                                                        (2) 

d(H)
dt  = + kf1 [H2] [O] - kb1 [H] [OH] - kf2 [H] [O2] + kb2 [O] [OH] + kf3 [H2] [OH] - kb3 [H2O] [H]  

d(OH)
dt  = + kf1 [H2] [O] - kb1 [H] [OH] + kf2 [H] [O2] - kb2 [O] [OH] - kf3 [H2] [OH] + kb3 [H2O] [H] 

d(H2O)
dt  = + kf3 [H2] [OH] - kb3 [H2O] [H] 

 
where kbi and kfi are the backward and forward reaction rate constants respectively, for reaction i. 
 
 
3.  Systems and Methods 
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The simulator receives an input file that is a representation of the chemical reactions instead of the system 
of ODE's. The participating species are assigned concentrations at an initial time t0, and the system is 
solved for concentrations at a final time tn. The parameters and initial conditions are all part of the input 
file, which has a fixed format. The simulator takes the input file (which can describe an ensemble of 
models to be simulated) and solves the differential equations (for each model listed) and generates an 
output file (with the output for each model simulated).  The simulator or simulation engine KINSOLVER 
can be used as a standalone program (named kin.c or kin.for). 
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Figure 3. Simulator Process. 

 
The simulator is written in both Fortran77 (H.-B. Schüttler) and C++ (Aleman-Meza) and available at 
http://gene.genetics.uga.edu under "Computing Life" and http://webster.cs.uga.edu/~boanerg/mams .  The 
simulators have been executed on a variety of platforms including SUN Solaris UNIX for ULTRA 
SparcStations.   
 
In addition, Aleman-Meza has constructed an input/output Web-browser interface to execute the simulator 
in a Web-based environment at http://gene.genetics.uga.edu/~aleman/kinnew on Solaris 8.0 on a SunFire 
V250 server.  The simulator + interface permits a text file describing a kinetics model to be uploaded and 
edited as in Figure 4.  The different parts of this process are illustrated in Figure 3.  The interface invokes 
the simulator and produces trajectories of the species to be viewed over the Web as in Figure 5. 
 
The plotting tool (based on GNUPLOT) is accessible by a Web Browser. After the researcher has defined a 
model in an input file kin.i01, he or she submits it through a Web page. The submission of the input file 
is processed by a Java program that generates a “workspace Web page for the model”. At this Web page 
the model parameters can be modified, and the simulation results are displayed graphically on the Web 
browser, using Java Servlets (see Rossbach and Schreiber, 2000).  Figure 4 gives an example of a 
“workspace” Web page for the model Water Model I. There are buttons that can be used to run the 
simulation and obtain a plot of each species vs. time. Running the simulation and producing a plot of the 
results is done by the plot button of the workspace web page of a model.  
 
The “Computing Life” Web Page (http://gene.genetics.uga.edu/stc/) from the Genetics Department of the 
University of Georgia contains links to the plotting tool explained above. In Figure 5 there is a species vs. 
time (OH vs. time) plot generated by the plotting tool from Water Model I. 
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A general deterministic kinetics model satisfying mass balance will be the input to the simulator, and its 
corresponding system of ODE's will be solved numerically. A numerical solution of a system of ODE's is a 
table of approximate values to the exact solution. Starting at the initial time t0 with given initial values or 
initial concentrations of the species, the trajectory of the system is followed by evaluating f(t0, y0)–the slope 
at that point. This helps to predict the value of y1 of the solution at time t1, where t1 = t0 + h, and h = (final 
time – initial time) / (number of time steps). Note that the simulator does not receive as input the system of 
differential equations. It receives an input file in plain–text format which is a representation of the species, 
chemical reactions, and related parameter values. 
 
The numerical methods used in the simulator to simulate a biological circuit are: 

1. Euler Method (first order) 
2. Modified Euler Method (second order) 
3. Runge–Kutta Method of Order 4 
4. Adaptive Runge–Kutta–Fehlberg Method 
5. LSODES Method 

 
The adaptive method automatically adjusts the integration step size through the numerical solution of the 
system of ODE's. Fehlberg (1969) developed the commonly known Fehlberg method of order 4, which is 
in the family of Runge–Kutta methods.  The method also gives a global error bound for each solution.  See 
(Hairer et al., 1987) for more details on numerical methods for solving ordinary differential equations.  
GEPASI (Mendes, 1993) in contrast uses a hybrid method (LSODA) that starts with a nonstiff method (i.e., 
Adams-Moulon) and switches to a stiff method (BDF).  See the work of Petzold (1983) or Zwolak et al. 
(2001) for a description of LSODA.  We have also implemented a new version of LSODA within 
KINSOLVER called LSODES (Petzold, 1983) to enable a clean comparison of methods under one system, 
namely KINSOLVER. The LSODA method is a version of LSODE (Hindmarsh 1980), but it treats the 
Jacobian matrix as either dense or a banded matrix, and the calculation for the switch can be very expensive.  
In contrast, the LSODES method (Hindmarsh 1983), which is the actual stiff solver we have incorporated 
into KINSOLVER, is another version of LSODE, and it treats the Jacobian matrix as sparse, and uses 
components of the Yale Sparse Package (Eisenstat et al., 1977, 1982) 
 
4. Example 
 
Here we illustrate the results of a given input file for the model depicted in Figure 2 as a simple 
representation of the three reactions in equation (1). An example of an input file with arbitrary reaction 
constants and arbitrary initial concentrations is given: 
 
 data set Hydrogen Combustion I: 2 H_2 + O_2  ->  2 H_2O 
   nspec   nreac 
       6       3 
           time0           time1   ntime  ntskip   jtime 
           0.000        10.00000    1000     100       2 
          namespec/xspec0   jfix 
             H_2 
                   6.000       0 
             O_2 
                   3.000       0 
             O 
                   0.000       0 
             H 
                   0.010       0 
             OH 
                   0.000       0 
             H_2O 
                   0.000       0 
H_2+O:     rkfor           rkbak  nipart  nopart    jkin 
          1.0000          0.0200       2       2       1 
            H_2 
            O 
                            OH 
                            H 
O_2+H:     rkfor           rkbak  nipart  nopart    jkin 
          1.0000          0.0200       2       2       1 
            O_2 
            H 
                            OH 
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                            O 
OH+H_2:    rkfor           rkbak  nipart  nopart    jkin 
          0.5000          0.0100       2       2       1 
            OH 
            H_2 
                            H_2O 
                            H 

 
The input file has to adhere to a specific structure. The file must be named “kin.i01”. It may contain one 
data set or multiple data sets. Each data set must begin with a text line containing the character string, 
“data set”. Each data set will simulate one time evolution of the kinetics equations for the reaction 
constants and initial species concentrations specified following the data set line. 
 
Each data set consists of the following set of input parameters, to be entered in the format shown in the 
previously displayed sample input file. Note that numerical input values and text strings can not be entered 
on the same input line.  
 nspec number of participating species 
 nreac number of reactions 
 time0, time1 start and stop times of kinetics time evolution 

 ntime number of time steps. The time step width h is computed as h = 
time1 - time0

ntime  

 ntskip number of time steps to skip in the dense output file.  
 jtime integration method to use, (1) Euler, (2) Modified Euler, (3) Fourth order Runge–Kutta,  (4) 

Adaptive Runge–Kutta–Fehlberg, (5) LSODES. 
 namespec (list) user supplied name of each participant species. All printable ASCII characters, 

except blanks are allowed as species names 
 xspec0 (list) Starting concentration of each participant species at time t = time0 
 jfix It is set to zero to let the concentration of the species evolve according to the kinetics rate 

equations. It is set to 1 to keep the initial concentration fixed at its starting value, this simulates an 
unlimited supply of the participant species 

 Reaction List 
 rkfor, rkbak forward and backward reaction rate constants for each reaction 
 nipart, nopart number of input and output participating molecular species for each 

reaction. For example: In the reaction H2 + O  OH + H the species H2 and O are input, 
hence nipart = 2, the species OH and H are output, hence nopart = 2. 

 In a reaction like H + H2  H + H + H, the species H and H2 are input, hence nipart = 2, 
the species H gets generated as output 3 times, hence nopart = 3. 

 jkin Set to 1.  (In the Fortran77 version kin.for, setting jkin = 11 yields Generalized 
Michaelis-Menten kinetics and setting jkin = 22 yields cooperatively activated/inhibited 
transcription kinetics for a network as explained in the documentation). 

 Reaction participant lists Following the parameter line specifying rkfor, rkbak, etc., for that 
reaction, the names of the participating species must be entered with only one name per line such 
that the names of the input species are followed by the names of the output species.  If more than 
one molecule of a certain species gets consumed or generated in a reaction, then the name of that 
species must be listed as many times (as input and/or as output) as it enters into the reaction. 
Example: In the reaction H2 + O  OH + H with specified nipart = 2, nopart = 2, and we list 
species names as follows: 
        H_2 
        O 
        OH 
        H 

 as the participating species names. The code will automatically recognize that the first 2 names 
listed (H2, O) are input species and that the remaining 2 names (OH, H) are output species.  

 
The input file is validated and (if valid) uploaded to a Web page as shown in Figure 4, where it can be 
modified.  Model input files can be concatenated to simulate ensembles of models with kin.c or kin.for,  
resulting in concatenated output files. 
 
There are three output files: 
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- File kin.o01 contains a complete listing of all the input parameters used in the input file.  The file 
also contains the initial/final species concentrations,  final reaction concentrations (defined below), and 
time dependent species concentrations.  The reaction concentration (xreac) records the net number of 
times a reaction event (ireac) has happened from the start of the kinetics evolution (time0) until some 
time point (timei).  Here the number of reaction events is defined as the number of forward events 
minus the number of backward events.  The reaction event number is measured, e.g., in absolute 
number of events, absolute numbers of moles of events, or number of events per volume, depending 
on, and consistent with, the corresponding choice of units for the numbers of molecules of the species 
participating in the reaction. 

- File kin.o02 lists the concentrations of all of the participating species over time. Each of them is 
presented as tabular dense output with values for the iteration (itime), time (timei), and concentration 
(xspec). The ntskip parameter in the input file causes the simulator to skip over a certain number of 
integration time steps in listing the results in the output file.   

- File kin.o03 contains the time-dependent species concentrations in a format easy to use by plotting 
subroutines. 

 
An example of a kin.o02 output file follows: 

# 
# 
# data set Hydrogen Combustion Modified 
#  time-dep. species concentrations 
# 
# 
#   ispec 
#       1 
# namespec: 
#             H 
#  itime         timei         xspec 
       0    0.000000E+00    1.000000E+00 
       1    1.000000E-03    9.999600E-01 
       2    2.000000E-03    9.999200E-01 
       .           .               . 
       .           .               . 
       .           .               . 
     999    9.990000E-01    9.664881E-01 
    1000    1.000000E+00    9.664597E-01 
  
  
# 
#   ispec 
#       2 
# namespec: 
#             H2O 
#  itime         timei         xspec 
       0    0.000000E+00    0.000000E+00 
       1    1.000000E-03    2.909266E-05 
       2    2.000000E-03    3.731986E-05 
       .           .               . 
       .           .               . 
       .           .               . 
     999    9.990000E-01    3.075079E-05 
    1000    1.000000E+00    3.074627E-05 

 
The Java Servlet process then generates a plot of the species requested as shown in Figure 5. 
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Figure 4. Workspace web page for Water Model I. 
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Figure 5. Species vs. time plot for OH –Water Model I. 
 
5. Results 
 
When trying to optimize the program to measure its efficiency, it was required to know how much 
processor time or CPU time was used at any given time point. The timing of the numerical results is in 
seconds on a SunFire V250 server running Solaris 8.0 (unless otherwise stated), and it was estimated by 
calculating an average over 8 executions.  
 
For those interested in examining one or a few reaction networks, the goal is finding a solution of high 
precision (10-6 error).  This is not our goal.  Our goal is to obtain the behavior of a large (104-105) ensemble 
of models with biologically reasonable accuracy (10-2 error) to obtain general properties of families of 
reaction networks (Alves and Savageau, 2000) and to use new methods of ensemble identification of 
reaction networks (Battogtokh et al., 2002).  The principal barrier to simulating a model ensemble is the 
time spent in computing the trajectory for each member of the ensemble.  One means to reduce this barrier 
is to reduce the demand for high accuracy on each model simulation.   
 
Our expectation is that higher order methods will reach the solution with fewer integration time steps than 
lower order methods (an expectation based on the historical preoccupation with high precision solutions). 
However, the higher order methods may do so at a higher computational cost because they require more 
function evaluations at every time step.  As a benchmark our simulator KINSOLVER was compared with 
GEPASI (Mendes, 1993) on a PC with a Pentium III processor running Windows 98.  The package 
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KINSOLVER was compiled with DJGPP (32-bit C/C++ development system for Intel PCs running DOS) 
freely available at http://www.delorie.com/djgpp/. The solutions of the two simulators in all cases (but one, 
the Oregonator) were identical. 
 
The examples in Tables 1 through 4 are arranged in order of increasing stiffness of each biological model 
tested.  A dimensionless stiffness index S defined to be the time needed to reach equilibrium, times the 
absolute value of the most negative eigenvalue of the Jacobian matrix (i.e., associated with the right hand 
side of equation (2)) was calculated (Hindmarsh, 1983). This stiffness measure varies over the time course 
of the solution.  The eigenvalues reveal the modes of the system. The most negative eigenvalue tells us the 
most dominant mode at this time point to limit the step size. If this value is too big in magnitude compared 
to the time span, in which we are interested, then it just takes too much time to get to that time point since 
the step size is very small. This is the rationale for the stiffness measure. If S is on the order of 1000 or 
higher, we consider this problem to be stiff, and if it’s less than 10, we consider the problem to be nonstiff. 
 
In Table 1 there is a summary of the number of integration time steps by different solution methods for a 
model of the qa gene cluster named “QA–Tr.B” with 39 participant species and 45 reactions.  The stiffness 
index S varies from 400 to 2500, but is usually on the order of ~1000.  The input file is available at 
http://gene.genetics.uga.edu/stc.  The number of time steps shown yields a relative error less than 0.01 and 
less than 1E-6. 
 
Relative error is calculated relative to the fourth–order formula of the Adaptive method using 20,000 time 
steps (100,000 time steps for the lac operon model discussed later).  

 
Table 1. Times required for 6 differential equation solvers to simulate 
the qa gene cluster model (QA–Tr.B).  Statistics are averages of 8 independent runs. 

Relative Error <.01 Relative Error < 1E-6 
Method 
Under 
Solaris: 

No.  
Derivative 
Function 
evaluation 

Time steps 
required 

Time 
(seconds) 

Time steps 
required 

Time 
(seconds) 

Euler 1,000 1,000 0.02 100,000,000 - 
Modified 
Euler 

1,600 800 0.04 100,000 4.57 

Runge 
Kutta 
order 4 

2,800 700 0.07 3,163 0.31 

Adaptive 
RK–Fehl-
berg 

(4,068) (678) 0.12 (678) 0.12 

LSODES 
in C 

-        37 0.01      229 0.0325 

    Under Windows 98:     
Adaptive RK–Fehlberg  - - (678) 0.11 
Euler 1,000 0.01 -        - 
GEPASI* N/A 0.05 N/A              0.07 
*In GEPASI the inputted relative tolerance and absolute tolerance were set equal and given the 
value of 0.01 or 1E-6. 

 
It can be seen in Table 1 that the number of time steps required for each method depends on its order. 
Nonhybrid higher order methods require fewer time steps, but they perform more computations per time 
step. Also generally the number of derivative evaluations required by the method helps to explain the time 
in seconds for the method with relative error less than 0.01.  In the case of a targeted relative error of less 
than 0.01 the reduction in the required time steps in a higher order method other than LSODES is not 
enough to compensate for the computational time needed for finding the overall solution for a relative error 
< 0.01. The function evaluations are expensive to compute; therefore, the fastest method (excluding 
LSODES) is the one that computes the solution by doing fewer function evaluations per step, in this case 
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the Euler method.  All five methods achieved less than 0.01 relative error.   In contrast with the more 
traditional targeted relative error of 1E-6, the extra effort of a higher order method (other than LSODES) 
pays off in time.  The hybrid LSODES method outperformed the other methods for a relative error of 0.01 
or 1E-6. 
 
The following table shows similar results for another model of the qa gene cluster named “QA–A” with 37 
participant species and 43 reactions with input file on the same Web site.  The stiffness measure S varied 
from 250 to 2000. The number of time steps required by each method to achieve a relative error less than 
0.01 and 1E-6 is shown in Table 2.  
 
 

 Table 2. Times required for 6 differential equation solvers to simulate 
the qa gene cluster model (QA–A).  Statistics are averages of 8 independent runs. 

Relative Error < .01 Relative Error < 1E-6 
Method 
Under 
Solaris: 

No. 
Derivative 
Function 
evaluation 

Time steps 
required 

Time 
(seconds) 

Time steps 
required 

Time 
(seconds) 

Euler 2,900 2,900 0.07 100,000,000 - 
Modified 
Euler 

2,200 1,100 0.04 100,000 4.35 

Runge 
Kutta 
order 4 

3,200 800 0.08 3,163 0.30  

Adaptive 
RK–Fehl-
berg 

(4,416) (736) 0.12 (736) 0.12 

LSODES 
in C 

- 39 0.011 180 0.029 

   Under Windows 98:     
Adaptive RK–Fehlberg  - - (736) 0.39 
Euler 2,900 0.05 -       - 
GEPASI* N/A 0.05 N/A              0.10 
* In GEPASI the inputted relative tolerance and absolute tolerance were set equal and given the  
value of 0.01 or 1E-6. 

 
In the above table more time steps are required than in Table 1. It can be seen that there is a bigger 
difference between the number of time steps by the Euler method vs. the modified Euler method at 0.01 
relative error. The Euler method performs comparably to the Modified Euler Method because it computes 
fewer function evaluations per time step than the modified Euler method.  In the case of a relative error of 
0.01 again the conclusion reached is that a simpler method is faster if the LSODES method is not 
considered.  If high precision (1E-6) is sought, then higher order methods (other than LSODES) are 
preferred.  Under both scenarios for the relative error the hybrid LSODES method outperformed the  other 
four methods, and its advantage over other methods has increased to at least 10X at 0.01 relative error with 
the higher stiffness of the problem.  Relative to GEPASI, the Euler method is comparable for a relative 
error of 0.01, but the modified Euler method would have outperformed GEPASI for a relative error of 0.01.  
GEPASI performs a factor of 4 faster than Adaptive RK – Fehlberg Method in achieving the high precision 
(1E-6) solution.  
 
In the following table are results for a model named “QA–Tr.A” with 37 species and 43 reactions with 
input file on the Web site http://gene.genetics.uga.edu/stc.  The stiffness measure S varies from 1000 to 
8000.  The number of time steps in Table 3 shown achieved a relative error less than 0.01 and 1E-6. 
 
 
 

Table 3. Times required for 6 differential equation solvers to simulate the qa gene 
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 cluster model (“QA–Tr.A”).   Statistics are averages of 8 independent runs.  
 Relative Error < .01 Relative Error <1E-6 

Method 
Under 
Solaris: 

No. 
Derivative 
Function 
evaluation 

Time steps 
required 

Time 
(seconds) 

Time steps 
required 

Time 
(seconds) 

Euler 3,300 3,300 0.08 100,000,000 - 
Modified 
Euler 

6,000 3,000 0.13 100,000 4.35 

Runge 
Kutta 
order 4 

9,200 2,300 0.22 3,163 0.30 

Adaptive 
RK–Fehl-
berg 

(12,078) (2013) 0.32 (2013) 0.32 

LSODES 
in C 

-      23 0.02      197 0.06 

   Under Windows 98:     
Adaptive RK–Fehlberg  - - (736) 0.17 
Euler 3,300 0.06 -         - 
GEPASI* N/A 0.05 N/A              0.08 
* In GEPASI the inputted relative tolerance and absolute tolerance were set equal and given the 
value of 0.01 or 1E-6. 

 
This particular data set requires many more integration time steps because the initial concentration of some 
participant species is very high compared with the concentration of other species. Therefore, it exhibits 
increased stiffness. The difference between the number of time steps required by the Euler method vs. the 
modified Euler method is small for a relative error less than 0.01, but the modified Euler method does two 
function evaluations per time step as compared with one computed by the Euler method. This again causes 
the Euler method to perform better in time measurements for a relative error less than 0.01.  In this example 
GEPASI slightly outperforms KINSOLVER’s Euler Method for a relative error of 0.01 and is 
approximately twice as fast as KINSOLVER’s Adaptive RK-Fehlberg Method for a high precision 
solution.   The LSODES method outperformed the other four methods at both low and high relative error.  
The relative advantage of LSODES has increased to at least 4X for 0.01 relative error. 
 
The first biological circuit to be explored in detail was the lac operon in Escherichia coli (Jacob and 
Monod, 1961), and the model is more complicated than that for the qa cluster.  The stiffness measure varies 
from 6,000 to 40,000.  Results for a circuit model of the lac operon in E. coli named “LAC–PTS” with 64 
species and 69 reactions are shown in Table 4. The number of time steps shown gives a relative error less 
than 0.01 but in order to achieve convergence it was necessary to impose a target for the relative error of 
0.001%. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 4. Times required for 6 differential equation solvers to simulate 
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the lac operon model (“LAC–PTS”).  Statistics are averages of 8 independent runs. 
Relative Error < .01 Relative Error < 1E-6 

Method 
Under 
Solaris: 

No. 
Derivative 
Function 
evaluation 

Time steps 
required 

Time 
(seconds) 

Time steps 
required 

Time 
(seconds) 

Euler 103,000 103,000 3.67 1 E09 - 
Modified 
Euler 

204,000 102,000 7.20 1 E06 7.19 

Runge 
Kutta 
order 4 

293,200 73,300 11.20 73,300* 11.20 

Adaptive 
RK–Fehl-
berg 

(182,034) (30,339) 7.64 (30,339) 7.64 

LSODES 
in C 

-       21 0.45      59 0.64 

   Under Windows 98:     
Adaptive RK–Fehlberg  - - (30,339) 4.34 

Euler 103,000 2.31 -         - 
GEPASI* N/A 0.11 N/A              0.59 
* In GEPASI the inputted relative tolerance and absolute tolerance were set equal and given the 
value of 0.01 or 1E-6. 

 
This circuit contains about double the number of species and reactions than in the other qa gene cluster 
circuits tested; therefore, computing the solution takes longer. Values given by the Fourth order Runge–
Kutta method with 100,000 time steps were considered the exact solution. The number of time steps could 
be reduced to 73,300 and still achieve a relative error less than 0.001% with the more accurate 
approximation to the solution. The Adaptive Runge Kutta–Fehlberg method is capable of computing the 
solution faster than the Fourth order Runge–Kutta Method. Euler and modified Euler methods need more 
than 100,000 time steps to compute a solution with a relative error less than .01, but still Euler's method 
was faster among nonhybrid methods. Modified Euler's method performs at a speed similar to the Adaptive 
Runge Kutta–Fehlberg Method for a relative error of 0.01.  For a high precision solution higher order 
methods were faster than lower order methods.  In this example GEPASI outperformed KINSOLVER’s 
Adaptive RK-Fehlberg Method for relative errors of 0.01 or 1E-6, but LSODES outperformed all methods 
for low and high relative errors. 
 
The adaptive Runge Kutta–Fehlberg method adjusts the integration step h as the solution evolves to 
produce a solution satisfying a user–specified accuracy. The number of integration time steps is not fixed in 
the input file for this adaptive method (thus we used parenthesis enclosing the number of time steps 
required to indicate that is not set by user). This method does five function evaluations per time step, and in 
the time–course integration adjusts the time interval h, having to compute again some iterations with the 
new h interval. This method is robust and gives an error estimate.  Yet, the LSODES method outperformed 
the Adaptive RK-Fehlberg Method for low and high relative errors by at least 12X. 
 
The next to last example displays a very different kind of dynamical behavior from the first four examples.  
The repressilator is capable of generating an oscillatory solution (Elowitz and Leibler, 2000).  A related 
circuit can be found in Figure 6.  The stiffness measure S varies cyclically from 775 to 1700. 
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  Figure 7.  Workspace web page for epressilator Model 

ttempts to drop out the basal transcription reactions or the decay reactions in Figure 6 led to the removal 

nother famous oscillatory system is the Oregonator (Field et al., 1972; Tyson, 1985; Murray, 1993) 

his rea ion network can  because the first two reactions are empirically quite fast  (ε and 

R
 
A
of the oscillations.  The parameter domain in the rate constants more favorable to oscillatory behavior 
apparently occurs when the decay rates between proteins and mRNAs are comparable, when there is a lag 
step at translation, and when some basal transcription is present. 
 
A
involving x = [HbrO2], y = [Br-], and z = [Ce4+] as chemical species.  The Oregonator is one of the best 
studied oscillators both experimentally and theoretically.  The oscillatory reaction network can be 
approximated by its dimensionless form (Murray, 1993): 
   ε dx/dt = qy - xy + x(1-x) 
   δ dy/dt = -qy - xy + 2fz 
     dz/dt  = x - z. 
T ct display stiffness
δ are small) while the last reaction empirically is quite slow.  The stiffness measure S varies cyclically from 
500 to 2600.  This system was simulated in KINSOLVER. For a relative error target of 1E-6 the Adaptive 
Runge-Kutta method found the solution in 11.37 seconds in 24,870 iterations on a PC with a Pentium IV 
processor running Windows XP, and took 1.6 seconds in GEPASI using LSODA.   
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We have established in Table 1 that model family QA-Tr.B may be a candidate for ensemble simulation 
using a lower order method with a reasonable error tolerance of 0.01.  To illustrate one of the advantages of 
KINSOLVER, we generated an ensemble of 12,250 models of the form QA-Tr.B with nearly equivalent fit 
by the method of maximum likelihood (Battogtokh et al., 2002), and each member of the ensemble has a 
nearly equivalent likelihood value relative to the data in Battogtokh et al. (2002).  Finding this ensemble of 
12,250 models involved executing the simulation engine KINSOLVER at least 40,000 times.  This 
ensemble was projected into the plane in which the rate of transcription of qa-1S gene (k1) is plotted on the 
x-axis while the rate of inactivation of the qa-1Fp protein by the qa-1Sp protein  (k2) is plotted on the y-axis 
in Figure 8 to examine properties of the ensemble. The kinetics solver gives us the capability to explore 
ensembles of models explaining data on a particular reaction network, although the display capability is not 
currently integrated into the Web interface. 
 
While the ensemble approach (Alves and Savageau, 2000, Battogtokh et al., 2002) is somewhat similar in 
spirit to the scanning capability of GEPASI (Mendes, 1993), there is a crucial difference: scanning 
performs a brute-force exhaustive search on a fixed, user-predetermined grid, whereas the ensemble 
approach automatically finds and then systematically explores the “high-relevance” regions of  the model 
parameter space, without prior user knowledge of the location or extent of such high-relevance regions  
(Battogtokh et al., 2002). Exhaustive scans on large grids in high-dimensional parameter spaces (of 
dimensions larger than 2 or 3, say) are computationally prohibitive, even for the simplest circuit models 
discussed here, since the computation time grows exponentially with D×log(L), where D is the model 
parameter space dimension and L is a typical linear grid dimension (e.g. the number of grid intervals along 
a particular grid axis). By contrast, in the ensemble approach, computational effort scales typically linearly 
with D and there is no predetermined grid size L.  The ensemble approach involves a random walk in the 
parameter space guided by a figure of merit.  As the random walk settles into a steady state, the ensemble is 
identified. This Markov Chain Monte Carlo Method (MCMC) is described in detail (Battogtokh et al., 
2002).  Hence, high-dimensional model parameter spaces can be explored very efficiently.  
 

 
  Figure 8.  Scatter plot of an ensemble of 12,250 models in the (k1, k2) plane. 
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6. Discussion 
 
This general purpose simulator of a model ensemble is one tool needed in carrying out the process of 
hypothesis-driven genomics, which begins with a formal model of the system, namely a chemical reaction 
network.  A system like the lac operon or qa cluster is first perturbed genetically with a gene knockout, 
environmentally (i.e., with changing carbon source), or chemically (i.e., with a protein inhibitor).  Then the 
system is observed as a whole with RNA or protein profiling to obtain the cellular state.  The simulator is 
invoked at several succeeding stages in fitting, predicting, and evaluating the fit to refine (modify) the 
model (Figure 8).   
 
This kinetics solver is designed to be integrated into a tool to fit a model to profiling data using a number of 
standard approaches like the method of maximum likelihood or method of least squares (Mendes and Kell, 
1998; Battogtokh et al., 2002), although the code as currently described here is not so configured. The 
kinetics solver is invoked for each new fitted model tried and the solution, compared through a figure of 
merit with the observed profiles.  Once an ensemble of models consistent with the data is identified, the 
solver is then used to predict how the system will respond to a perturbation.  Inevitably in evaluating fit of 
models the hypothesized ensemble will be modified, and the simulator is setup to make it easy to revise 
existing models.  Multiple runs of different models can be executed from one input file as may be required 
in model fitting.  At the final stage the kinetics solver may be used to evaluate the fit of a particular model 
through some methodology like bootstrapping before trying new experiments (Efron, 1982).  The kinetics 
solver is an essential task repeatedly invoked in the automated workflow summarized in Figure 8 for 
identifying a reaction network (Kochut et al., 2003). 
 
Many of the fitting and evaluation procedures for fitting kinetics models will involve invoking the 
simulator each time that a new network is tried in the fitting or model evaluation process (Battogtokh et al., 
2002).  As a consequence there is a premium on finding a solution procedure that is quick and accurate 
enough!  With a relative error in the solution of 0.01 the question arises about propagation of error in the 
solution.  What we observed in Tables 1-4 were solutions graphically indistinguishable from the high 
precision solutions.  Among the five solution methods examined, the LSODES method uniformly 
outperformed other methods for low and high relative error.  On the other hand, the Adaptive RK-Fehlberg 
method guarantees a global error target for the solution, but does not perform as well as LSODES. There is 
thus an advantage of having several solution tools in the toolbox.  The KINSOLVER package has a 
modular design like E-CELL (Tomita et al., 1999) and GEPASI (Mendes, 1993) so that as better solution 
procedures are identified they can be incorporated. 
 
As an example of this process of hypothesis-driven genomics (see Figure 8), we present a formal model for 
the qa gene cluster (Giles et al., 1985).  The model in Figure 1 behaves in a number of ways qualitatively 
as it should.  For example, adding sucrose has the effect of shutting down the qa cluster in Figure 1 (results 
not shown), which is observed experimentally (Geever et al., 1989).  The framework facilitates the 
incorporation of more elaborate reaction networks as needed.  For example Covert et al. (2001) and Case et 
al. (1972) both hypothesize that carbon metabolism is coupled to aromatic amino acid biosynthesis, and the 
simulator allows us to make predictions about this enlarged reaction network. 
 
 perturb 

predict 

observe modify 

fit evaluate 

 
 
 
 
 
 
 
 
    Figure 8. Hypothesis-driven Genomics 
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The lac operon model is concordant with experimental observations in a qualitative way as well. Shifting 
the carbon source to glucose shuts down the lac operon as expected, and increasing cAMP increases 
transcription through an internal signaling cascade serves to increase transcription of the lac operon (results 
not shown).  A number of authors have constructed simplified models for the lac operon, which 
KINSOLVER can simulate without invoking steady state approximations leading to Michaelis-Menten 
kinetics. 
 
The simulator has a number of limitations.  First of all, the underlying model is deterministic, but Arkin, 
Ross, and McAdams (1998) have shown the importance of stochastic effects in one classic system, the 
phage λ switch (Ptashne, 1992).  If the number of regulatory molecules is small in number, then phenotypic 
switching may take place between a lytic and nonlytic state for �.  The saving grace of deterministic 
models is that under certain conditions these deterministic models have been shown to be limiting cases of 
stochastic models (Gillespie, 1977).  Kierzek (2002) has recently developed new tools for simulating the 
underlying stochastic models when the data call for it. 
 
The simulator KINSOLVER is based on a model in which the cell is hypothesized to be well-stirred.  Weng 
et al. (1999) point out that consideration needs to be given to cellular compartments, protein scaffolding, 
and reaction channeling.  Compartmentalization can be handled in part by the current simulator by indexing 
the species by the compartment containing them (Mendes and Kell, 2001).  An example is quinic acid 
external to the cell (QAe) and quinic acid in the cell (QA) in Figure 1.  Similarly, scaffolding can be 
represented by allowing for additional concentration variables and corresponding reactions for a chemical 
species participating in a protein scaffold.  This is not an elegant solution, but it does capture the idea that 
what a protein does may depend on where the protein is.  Another option is the approach of E-CELL 
(Tomita et al., 1999), which introduces another table describing the compartmentalization of reaction 
species.  Modeling spatial inhomogeneities of species in the cell is a challenging problem. 
 
The formal model is based on collision dynamics determining the RHS of the coupled differential 
equations.  So, the species concentrations enter multiplicatively on the RHS.  Most of the well known 
kinetics formulations like Michaelis-Menten kinetics are derived as steady state approximations to such 
models (Segel, 1975).  Whatever the functional form of the dynamics, the Weirstrass Theorem (Rudin, 
1976) insures that we can approximate the true dynamics arbitrarily closely with such a functional form. 
 
Currently, the layout of the input is such that the topology cannot be graphically manipulated.  What is 
needed is an easier way to manipulate the topology of a reaction network, and this is a subject of current 
work (Becker and Rojas, 2001). In that the simulator KINSOLVER is setup to execute many reaction 
networks at once, more flexibility in the output interface is desirable to display ensembles of models (Alves 
and Savageau, 2000).   
 
Even with these limitations to the interface, KINSOLVER like GEPASI is quite easy to use.  Both systems 
have been employed for educational purposes quite successfully.  For example, 16-17 freshmen utilized 
KINSOLVER in an introductory biology course with little difficulty in Springs 2002, 2003, and 2004.  
Unlike GEPASI input begins by entering the reactions from the screen, while KINSOLVER takes the 
specification of the reactions from a file, which is checked for formatting. While the information about a 
reaction network is summarized on 3 screens in GEPASI, KINSOLVER presents this information on one 
screen for modification in successive runs of the simulator (see Figure 4).  While GEPASI has more 
flexibility in graphing, KINSOLVER ties the plots of trajectories over time directly to the input screen via 
buttons (see Figure 4).  Both GEPASI and KINSOLVER use GNUPLOT to implement the graphics, 
providing ease of extension and portability.  
 
In spite of these limitations, a number of limitations have been removed.  The simulator is setup for a 
deterministic reaction network that satisfies mass balance.  The simulator will solve reaction networks of 
arbitrary size, topology, rate constants, and initial conditions by 5 standard methods.  As a consequence, the 
desired protein-DNA interactions, protein-protein interactions, regulation, and metabolic pathways can be 
included.  An arbitrary number of reactants and products can participate multiplicatively in any particular 
reaction, enabling higher order kinetics.  The simulator allows calculation not only of species 
concentrations, but also allows calculation of the concentration of different reactions over time.  The solver 
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is flexible in method and enables the simulation of ensembles of models.  In principle the simulator could 
be used to simulate the essential eukaryotic core once identified. 
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