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Abstract—System-level emulators have been used extensively
for the design, debugging and evaluation of the system soft-
ware. They work by providing a system-level virtual machine
that can support a guest operating system (OS) running on a
platform with the same or different native OS using the same
or different instruction-set architecture. For such a system-level
emulation, dynamic binary translation (DBT) is one of the core
technologies. A recently proposed learning-based approach using
automatically-learned translation rules has shown to improve
DBT performance significantly with much higher quality trans-
lated code. However, it has only been used on user-level emulation,
not system-level emulation.

In applying this approach directly on QEMU for system-level
emulation, we find it actually causes an unexpected performance
degradation of 5% on average. By analyzing its main culprits
in more detail, we find that the learning-based approach will
by default use host registers to maintain the guest CPU states
that include condition-code registers (or FLAG registers). In
cases where QEMU needs to be involved (in which QEMU also
needs to use the host registers), maintaining system states in
the host registers for the guest, the host and QEMU during
and between the context switches can cause undue overheads, if
not handled carefully. Such cases include emulating system-level
instructions, address translation and interrupts, which require
the use of QEMU’s helper functions. To achieve the intended
performance improvement through better-quality code generated
by the learning-based approach, we propose several optimization
techniques that include reducing the overhead incurred in each
context switch, the number of needed context switches, and better
code scheduling to eliminate context switches. Our experimental
results show that such optimizations can achieve an average of
1.36X speedup over QEMU 6.1 using SPEC CINT2006 and 1.15X
on real-world applications in the system emulation mode.

I. INTRODUCTION

System-level emulators are an important tool for designing
new system architectures, debugging binary codes and pro-
filing application programs in a full system environment. A
system-level emulator emulates the binary code of a guest
operating system (OS) implemented on the guest instruction
set architecture (ISA), and booted on a host with the same or a
different ISA running the same or a different OS. In a system-
level emulation, dynamic binary translation (DBT) is one of
the core technologies. This technology has been used in many
applications provided by VMware, Valgrind, QEMU [1], and

Rosetta. In essence, a DBT system provides the capability of
dynamically translating a guest binary code to run on a host
with a different system environment at runtime.

Depending on usage scenarios, a DBT can emulate guest
binaries at the user level or the system level. When at the user
level, the DBT only translates the guest binaries and runs the
translated binaries directly on the host OS without emulating
detailed guest OS operations such as virtual address translation
and system calls. While at the system level, the DBT needs to
translate the entire guest execution environment that includes
all guest OS operations. It thus provides a complete system-
level emulation on top of the host environment.

A general dynamic binary translator, such as QEMU, pro-
vides a general framework that includes an intermediate repre-
sentation (IR) as a common interface between the guest and the
host binaries. Guest binaries are first translated to the QEMU
IR, and then from the IR to host binaries in different ISAs,
i.e., it is a ”many(ISAs)-to-many(ISAs)” binary translation.
However, due to this two-step translation approach, each guest
instruction will be translated into n IR instructions and each
IR instruction to m host instructions, with a total of nxm
host instructions. For example, [2] shows that a guest ARM
instruction can be translated into 8.18 host x86 instructions on
average. In addition, it requires significant engineering effort
to manually create translation rules that translate each guest
instruction to the IR, and then translate each IR instruction to
the host binaries.

A learning-based DBT approach [2] [3] [4] was proposed
recently to resolve those issues using automatically-learned
translation rules for each pair of guest ISA and host ISA,
i.e., an ”one(ISA)-to-one(ISA)” binary translation approach.
These translation rules can be automatically learned from the
optimized guest and host binary codes produced by compilers
using the same source code. It is an ’one-step’ translation
approach (i.e. without going through IR) based on high-quality
translation rules with minimal engineering effort. However,
this approach has only been applied to user-level emulation,
and not yet to system-level emulation. Our recent experimental
results show that, although the learning-based approach works
well at the user level, it unexpectedly causes a 5% slowdown
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after we apply it to a system-level emulation.
In this paper, we first analyze the new challenges in the

system-level emulation. We find that, when it encounters
system-level instructions as well as address translation and
interrupts, which are common in a system mode emulation,
the learning-based approach needs to switch to QEMU for
various system support. Any DBT system, not just learning-
based DBT systems, needs to maintain guest CPU states such
as the content of general registers and condition codes/flags
registers that are set implicitly. For example, QEMU uses a
designated memory region to hold and maintain such guest
CPU states. The learning-based approach, on the other hand,
uses the host registers to hold and maintain guest CPU states
by default. In cases where QEMU needs to be involved (in
which QEMU also needs to use the host registers), maintaining
system states in the host registers for the guest, the host
and QEMU during and between the context switches can
cause undue overheads. These overheads can offset the benefits
derived from the learning-based approach if not coordinated
and handled carefully.

To achieve a better performance, we propose several opti-
mizations to reduce the overhead incurred during and between
the context switches. One optimization is to delay the parsing
of the guest CPU state. It can reduce the number of needed
instructions to maintain the guest CPU state during each
context switch. We also identify several common scenarios
that can create rapid consecutive context switches and incur a
substantial amount of overhead. They include (1) consecutive
memory access instructions that require emulating the address
translation in QEMU, (2) define-before-use translation blocks
(TBs), and (3) consecutive context switching between the
translated code and QEMU due to system calls, interrupts
or instruction sequences not in the translation rules. We can
consolidate and combine some of those episodes to reduce the
number of context switches and their associated overheads.
Further optimizations include doing a better code scheduling
for guest instructions that define and use CPU states (e.g. con-
dition codes/flags), which can reduce redundant instructions
needed to maintain those CPU states.

To study the effectiveness and the performance improve-
ment that the learning-based approach can achieve with those
optimization techniques in a system-level DBT, we imple-
mented a prototype on QEMU 6.1. We use SPEC CINT2006 to
evaluate our design. Experimental results show that, compared
to the QEMU running in a system mode, the learning-based
approach without our proposed optimizations has an average of
5% slowdown. When all optimizations are applied, 48.83% of
all operations that are related to maintaining guest CPU states
can be eliminated. It can achieve a performance improvement
of 1.36X over the baseline QEMU on average. In addition,
we also use several real-world applications for evaluation.
The results show that the learning-based approach achieves
an average of 1.15X speedup.

In summary, this paper makes the following contributions:
• We apply the learning-based approach to system-level

DBT, and propose several optimizations to reduce the

overhead required to maintain CPU states during and
between the context switches frequently encountered in
the system mode.

• We implement the proposed learning-based system-level
design and its optimizations in a prototype using QEMU.

• We conduct several experiments to evaluate the learning-
based system-level emulator. The results show that we
can achieve an average of 1.36X speedup over QEMU on
SPEC CINT2006 and 1.15X on real-world applications
with all of the proposed optimizations applied.

The rest of this paper is organized as follows. In Section II,
we discuss the motivation and challenges in applying the
learning-based approach to a system-level DBT. In Section III,
we present the design of the learning-based system-level
emulator and propose several optimizations to improve the
coordination efficiency. In Section IV, we evaluate our im-
plementation and show some experimental results. Section V
includes some related work. Section VI concludes this paper.

II. BACKGROUND & MOTIVATION

In this section, we first give a brief introduction to the
learning-based DBT approach, and then discuss the CPU state
maintenance strategy in the learning-based DBT approach.
Finally, we present the challenges of applying the learning-
based approach to system-level DBT.

A. Learning-Based DBT Approach

There are three parts in the learning-based DBT approach:
(1) learning of the translation rules, (2) parameterization of
the learned rules, and (3) rules application [2] [3] [4].

In the learning phase, it uses an automated learning frame-
work to generate high-quality translation rules. First, it com-
piles a source code into executable binaries of both the guest
and the host architectures (e.g., ARM and x86) using popular
compilers such as LLVM or GCC with the debug option
turned on. Next, it uses the generated debugging information,
such as the line numbers of the source code, to extract the
semantically-equivalent code fragments in the two binaries,
e.g., the binary sequences that correspond to the same source
statement. These two code fragments form the basis of a
translation rule since they are from the same source statement
and are supposed to be semantically equivalent. It then uses
a symbolic execution tool to perform a formal semantic-
equivalence verification of the two code fragments. After the
formal verification, the two code fragments (i.e., the guest and
the host binary sequences) finally form a translation rule. This
process can be iterated automatically using different training
source codes to build a more comprehensive and complete
translation rule set.

In the parameterization phase, the translation rules are
parameterized to reduce the total number of rules in the rule
set and achieve a higher coverage with a smaller training set.
Instead of making each of these ALU-type instructions, such
as add, and, and or, into a different translation rule, we can
lump them together into one translation rule for all ALU-type
instructions. In the rule-application phase during the binary
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translation, we first try to find a matched translation rule in the
rule set. If we cannot find it, it will be switched to QEMU for
emulation. And as mentioned earlier, this context switch will
require the guest CPU states to be saved and restored. Such
a learning-based approach can significantly improve DBT
performance with translation rules learned from the native
compilers. As its focus is on instruction-level translation, it
is orthogonal to other optimizations such as memory-related
optimizations [5], parallelism exploitation [6], and leveraging
special host hardware features [7], [8].

B. CPU State Coordination

The guest CPU states contain all of the information needed
to emulate guest binary codes. It includes the content of the
general-purpose registers, status flags in the condition code
register (CCR) and the program counter (PC). Some DBT
systems, such as QEMU, maintain the guest CPU states in
the memory. In QEMU, it maps the guest CPU states to a
data structure in IR and maintains it in the memory. When
executing the translated host binaries, it loads the guest CPU
states from the memory. After the execution, it stores the latest
guest CPU states back in the memory. Although this strategy is
intuitive and easy to implement, it can generate a large number
of memory operations and incur a significant overhead.

As the learning-based approach bypasses the IR and trans-
lates the guest binaries directly into the host binaries, it keeps
the guest CPU states in the host CPU states as much as
possible. This strategy can reduce the number of memory
operations needed to maintain the CPU states. However, since
the learning-based approach cannot achieve a 100% coverage,
it will need to switch to QEMU to translate those instructions
not covered in its rule set. The context switching between the
translated binaries and QEMU requires additional overhead to
maintain correct CPU states.

We use the example in Figure 1 to show how it works.
Note that, like most DBT systems, QEMU maintains the
translated binaries in a code cache. The unit of translated
binaries organized in the code cache is a basic block of the
guest binaries, marked as TB1 and TB2 in Figure 1. In this
example, after executing the host binary in TB1 we need to
find and translate TB2, which will bring it back to QEMU.

At this point, the guest CPU state is being maintained in the
host CPU registers as shown in the figure. After the host CPU
is switched to QEMU, it will modify the host registers and
corrupt the guest CPU state. Thus, at the end of TB1, we need
to upload the guest CPU states to the memory locations where
QEMU maintains the guest CPU states, as Path 1 shows. After
QEMU translates TB2 and places the translated binary in the
code cache, it needs to download the guest CPU states from
the memory to the host registers where the translated binary in
TB2 maintains the guest CPU states as Path 2 shows. We call
the process of keeping the guest CPU states consistent during
such a context switch ”CPU state coordination”.

CPU state

Memory

QEMU

Learning-based

Host registers

R1
CCR
PC
…

Guest TB2

…

Guest TB1

…

Fig. 1. CPU state maintenance and coordination.

C. Issues and Challenges

There are several challenges in CPU state coordination when
we apply the learning-based approach directly in a system-
level DBT. They can incur a large amount of overhead and
lead to a 5% slowdown on QEMU as mentioned earlier.

System-level instructions. System-level instructions usu-
ally perform privileged operations in guest OS, which do not
exist in user-level applications. As a result, the learning-based
approach cannot automatically learn system-level instruction
rules from user-level applications. It thus needs to use QEMU
to translate the system-level instructions. QEMU uses a series
of helper functions to emulate these instructions. For example,
a privileged ARM instruction such as vmsr1 is emulated
by a QEMU helper function instead of translating into its
corresponding host instruction sequence. When executing a
helper function, it will context switch from the translated
binaries in the code cache to QEMU. If the helper function
needs to read or update guest CPU states, the guest CPU states
can become inconsistent.

Figure 2 gives such an example. Assume the guest ISA
is ARM. System-level instructions such as vmsr transfer the
data between a VFP system register and an ARM register,
in which VFP is a vector floating-point system register in an
ARM processor. Assume that the instructions in the TB are all
translated by the translation rules. When emulating the vmsr
instruction, the learning-based approach invokes a QEMU-
provided helper function. The helper function reads the ARM
CPU state in the memory maintained by QEMU. However,
this CPU state has expired because an earlier instruction ”cmp
al” translated by rules will produce a new CPU state, and
the learning-based approach maintains the latest guest CPU
state in host registers. On the other side, the helper function
for vmsr needs to maintain its own CPU state, which will
overwrite the host registers and corrupt the guest CPU state
stored there. The following instruction ”add eq” after the

1vmsr transfers the content of an ARM register to its VFP system register
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helper function will have lost the guest CPU state produced
by the ”cmp al” instruction.

Guest (ARM)

…

cmp al r0, 0x0

…

System-level Instr.

…

add eq r0, r1, r2

…

HELPER 

function

Latest CPU state

Corrupted CPU state

Expired 

CPU state
CPU state in 

memory
Latest 

CPU state

CPU state in host 

registers

Fig. 2. An example of handling a system-level instruction.

Address translation. In a user-level DBT, it translates
a memory address directly from its guest virtual address
(GVA) to a host virtual address (HVA) by adding a fixed
offset. However, in the system-level emulation, the DBT needs
to emulate the guest memory management unit (MMU) for
potential page faults. In this case, GVA is not necessarily
mapped to a pre-determined HVA location. Therefore, it needs
to be translated through an address translation process as
shown in Figure 3.

Guest (ARM)

ldr r2, [r1, #0x1c]

Address 

translation

Page fault

Exception 

handler

Fig. 3. Address translation.

The learning-based approach does not support the address
translation process. When encountering a memory access
instruction it will context switch to QEMU, and QEMU needs
to use the host registers to carry out address translation thus
corrupting the guest CPU states.

Interrupts. Figure 4 shows the interrupt handling mech-
anism in QEMU. Interrupts, such as I/O interrupts caused
by the keyboard, are caught by the interrupt-check function
(i.e., check_interrupt()) at the beginning of every TB
as shown in the figure. The interrupt check function will invoke
the corresponding interrupt handler to deal with the particular
interrupt. QEMU has to translate and execute the interrupt
handler provided by the guest OS. If system-level instructions
are involved, a context switch from the translated code cache
to QEMU is required.

Guest TB1

check_interrupt()

…

ldr r2, [r1, #0x1c]

b ne #TB2

Guest TB2

check_interrupt()

…

add eq r0, r1, r2

…

Interrupt 

handler

Fig. 4. System-level interrupt.

To estimate the overhead of such context switches, we
collect at runtime the dynamic numbers of system-level in-
structions, memory access instructions, interrupt-check func-
tions, and the total number of guest instructions executed in
each application of SPEC CINT2006. We then calculate the
occurrence frequency of each category per guest instruction,
e.g., # of system-level instructions / # of guest instructions.
The data are shown in Table I.

TABLE I
DISTRIBUTION OF THE THREE CATEGORIES THAT REQUIRE GUEST CPU

STATE COORDINATION IN SPEC CINT2006.

Benchmark System-level instr. Memory instr. Interrupt check
perlbench 0.28% 36.94% 19.64%

bzip2 0.28% 40.03% 14.24%
gcc 2.48% 29.90% 20.11%
mcf 0.45% 41.19% 20.53%

gobmk 0.25% 30.58% 17.53%
hmmer 0.09% 47.98% 5.18%
sjeng 0.17% 33.86% 17.84%

libquantum 0.09% 23.36% 9.19%
h264ref 0.13% 55.21% 9.15%
omnetpp 0.24% 22.54% 22.02%

astar 0.24% 31.42% 15.92%
xalancbmk 0.34% 23.81% 25.94%

GEOMEAN 0.25% 33.46% 15.12%

From the statistics, we can see that a context switch is
required roughly every two guest instructions on average for
QEMU at the system level. Most of the context switches
are for memory access instructions (33.46%) and interrupt
checks (15.12%). Only a small percentage is for system-level
instructions (0.25%) in SPEC CINT2006.

III. DESIGN & OPTIMIZATIONS

As mentioned earlier, the learning-based approach includes
three phases: rule learning, parameterization, and rule ap-
plication. CPU state coordination does not affect the rule
learning and the parameterization phases. Thus, they will be
the same as in the user-level DBT. However, in the rule-
application phase, we propose an enhanced design with the
optimizations mentioned earlier to reduce the overall context
switch overheads.

A. Basic Guest CPU State Coordination

There are two types of guest CPU state coordination. One is
the coordination needed when it switches from the code cache
to QEMU shown as Path 1 in Figure 1, we call it sync-save
(as viewed from the perspective of the code cache). The other
is to switch from QEMU back to the code cache shown as
Path 2 in Figure 1, called sync-restore. The needed operations
are determined by the context that has the latest guest CPU
state before it is switched to the other context.

To reduce overall overheads caused by context switching, a
basic coordination scheme is shown in Figure 5. In the rule
application phase, we first perform a scan on the guest TB to
check each guest instruction. It marks the instructions in the
TB, such as system-level instructions and ld/st instructions,
that require guest CPU state coordination. We also identify
what guest CPU states these instructions may read and/or
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write. Based on the information collected, the translation
rule will insert codes to coordinate those CPU states when
translating the corresponding instruction (see Figure 5).

Guest (ARM)

Sync-save.

check_interrupt()

Sync-restore.

Sync-save.

ld/st instr.

Sync-restore.

Sync-save.

System instr.

Sync-restore.

Guest (ARM)

check_interrupt()

ld/st instr.

System instr.

Fig. 5. A basic guest CPU state coordination.

We show the example of a system-level instruction such
as a vmrs/vmsr in Figure 6. The translation rule will insert
a Sync-save and a Sync-restore before and after the helper
function used to emulate the guest system-level instruction. In
the Sync-save before a vmrs instruction, it will upload the
latest guest CPU state updated by the previous rule-translated
cmp al instruction to QEMU, which allows the helper function
to get the latest guest CPU state. Similarly, if the system-level
instruction is a vmsr instruction, a Sync-restore will pass the
latest guest CPU state from QEMU to the host registers after
emulating this instruction. It allows the following instruction
”add eq” to have the latest guest CPU state in the host
registers when we apply the learned translation rule on it.

Guest (ARM)

…

cmp al r0, 0x0

…

Sync-save.

System-level Instr.

Sync-restore.

…

add eq r0, r1, r2

…

HELPER 

function

Latest CPU state

Latest CPU state

Latest 

CPU state
CPU state in 

memory
Latest 

CPU state

CPU state in host 

registers

Fig. 6. An example of the guest CPU state coordination for a system-level
instruction.

However, such a naive implementation will require very
frequent guest CPU state coordination and incur a lot of
runtime overhead. Thus, we propose three optimizations in
the following subsections to reduce its overhead.

B. Coordination Overhead Reduction

In the three scenarios mentioned in Section II-C, only
system-level instructions will update and modify guest CPU
states. For address translation and interrupts, guest CPU state
coordination is required only to prevent these states from being
corrupted during a context switch. However, even if we only
maintain those CPU states that will be modified in a context
switch, our experimental results show that it still requires

14 instructions in each context switch, i.e., it only yields very
modest overhead reduction.

In addition, in the rule-based binary translation2, it may
maintain several components of the CPU state in one reg-
ister, but are maintained in separate memory locations by
QEMU. A typical example is the bit-wise condition codes
and flags, which are maintained in one condition-code
register (CCR) in the rule-based translation since both x86
and ARM have such registers. But each condition code bit
is kept in a different memory location in QEMU. We call
this type of CPU state ”one-to-many CPU state”. In a Sync-
save operation, it will need to parse the host CCR register
and store each condition code in a different memory location
using several store operations. However, if QEMU does not use
them in its emulation, we can save the CCR register in one
memory location using only one store operation and restore
them afterward with only one load operation. In this way, we
can reduce the total number of memory operations in Sync-
save and Sync-restore operations.

Based on the above observation, depending on the types
of the instructions collected in the lightweight parsing of a
translation block, if a Sync-save operation involves an one-
to-many state, we store the content of the host register that
maintains the state to one memory location. In the case of
the CCR register, unless QEMU needs to access any of the
condition codes for emulation, we need not store them in
separate memory locations designated by QEMU. As most
of the Sync-save and Sync-restore operations are just to keep
guest CPU state from being corrupted during context switches
(see Table I), a significant number of memory operations can
be eliminated this way.

Guest TB1

cmp al r0, 0x0

parse and save cc

b ne #TB2

Guest TB2

check_interrupt()

…

add eq r0, r1, r2

…

Guest TB1

cmp al r0, 0x0

save CCR

b ne #TB2

Guest TB2

check_interrupt()

…

add eq r0, r1, r2

…

Handler

restore CCR

parse and save cc

Handler

…

Fig. 7. Coordination overhead reduction.

Figure 7 shows an example that involves condition codes.
It includes a check_interrupt() in TB2 that requires
access to the condition codes. However, interrupts only occur
very rarely. In this case, we save the content of CCR to a
memory location at the end of TB1. If an interrupt has been
triggered at the beginning of TB2, we restore the content of
CCR, parse CCR and save the condition codes separately
to their designated memory locations in QEMU. This is
needed only when an interrupt occurs and the condition codes
are actually needed. From our experimental results, we find

2Since the learning-based DBT uses translation rules for the binary trans-
lation, we also call it rule-based binary translation.
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such interrupts occur very rarely in most applications. For
example, it occurs only 0.0001% per guest instruction in SPEC
CINT2006. A significant number of memory operations can
thus be avoided.

Similar optimization can be applied to Sync-save and Sync-
restore operations for system-level instructions and address
translation as well. As the example shown in Figure 8, it needs
about 14 instructions to parse the Eflags register (the CCR of
x86) and save the condition codes to QEMU. After applying
the optimization, only 3 instructions are actually needed, with
a saving of (14-3)/14 = 78%.

lahf 

seto     %al

movw     %ax, 0x103c(%ebp)

movl $0, %eax

setae    %al

movl %eax, 0x200(%ebp)

movl $0, %eax

seto %al

leal 0x7fffffff(%eax), %eax

movl %eax, 0x204(%ebp)

movl $0, %eax

setne %al

movl %eax, 0x20c(%ebp)

movl $0, %eax

sets     %al

leal 0x7fffffff(%eax), %eax

movl %eax, 0x208(%ebp)

Parse and save cc Save CCR

Fig. 8. Effect of coordination overhead reduction.

C. Coordination Elimination

Even after the overhead of each guest CPU state coordina-
tion is reduced by the optimization mentioned above, there
are still cases where such coordination operations can be
eliminated all together. We propose three such optimizations
in this section.

1) Redundant Sync-restores Elimination: There are
conditionally-executed instructions in some ISAs, which
are executed based on whether the condition specified by
the instruction is satisfied or not. For example, add eq is
a conditional instruction in ARM-v7 that depends on the
condition code Z. Only when the condition code Z is set,
this instruction will be executed. In a DBT system, when a
guest conditional instruction is translated, a host comparison
instruction (e.g., cmpl in x86) is used to determine whether
the current condition is satisfied or not. This will cause
the guest CPU state maintained in the host registers to be
corrupted. In the rule-based approach, as a host comparison
instruction will change its CPU state that may be inconsistent
with the semantics of its corresponding guest instruction, it
is allowed only in a constrained rule [3]. The basic rule-
based design will insert a Sync-restore after the comparison
instruction to maintain the correct guest CPU state. However,
if we encounter consecutive conditional instructions that
depend on the same condition, we only need to restore the
guest CPU state once at the first conditional instruction, and
the remaining instructions can be translated normally without
the additional comparison instructions and Sync-restore
operations. To do this, in each TB, it first checks if there
are such instructions that update the CPU state and the

conditional instructions that depend on the updated CPU state
in the TB. Next, it keeps the first Sync-restore before the first
instruction in the TB that uses the CPU state, and eliminates
the other Sync-restores until it reaches an instruction that
requires a Sync-save operation or reaches the end of the TB.

As the example shown in Figure 9, we assume that after
the instruction ”cmp al”, some situation (e.g., a system-level
instruction) requires the Sync-save operation to save the CPU
state to QEMU. At the same time, the next few instructions
”add eq” need to use the CPU state. The rule-based trans-
lation will have a Sync-restore for each of such instructions.
But in this case, only the first Sync-restore is needed, and
the rest of the Sync-restores and the translated comparison
instructions can be eliminated. Through this optimization, a
significant amount of coordination overhead due to the rule-
based translation can be eliminated.

Guest (ARM)

cmp al r1, 0x0

Sync-save.

Sync-restore.

add eq r0, r1, r2

Sync-restore.

add eq r0, r2, r3

Guest (ARM)

cmp al r1, 0x0

Sync-save.

Sync-restore.

add eq r0, r1, r2

add eq r0, r2, r3

Fig. 9. Coordination-restore optimization.

2) Optimization for Consecutive Memory Operations: In
the case of consecutive memory-access instructions, we can
use a similar coordination elimination scheme to reduce re-
dundant coordination. Because of the need to emulate address
translation in QEMU at the system level, a Sync-save operation
is inserted before and a Sync-restore after each memory access
instruction during the rule-based translation. Apparently, if
there are consecutive memory-access instructions in a TB,
the intermediate coordination among those instructions can be
removed. In this case, it first checks if it has a sequence of
consecutive memory-access instructions in the TB. If it has,
it keeps the Sync-save operation before the first memory-
access instruction and the Sync-restore operation after the
last memory access instruction in the sequence. The rest of
the intermediate Sync-save and Sync-restore operations in the
sequence can be removed.

As the example shown in Figure 10, there are two con-
secutive memory-access instructions str after the instruction
”cmp al”. The rule-based translation will insert two pairs
of coordination in this situation. After applying the redundant
coordination elimination, only a pair of Sync-save and Sync-
restore are needed.

3) Inter-TB Optimization: As the unit of translation in a
DBT is a guest TB, it needs to save the CPU state at the
end of each TB and switch back to QEMU because the
following TB may yet to be translated, or it may need to
do a check_interrupt before the next TB. However,
block chaining is a common optimization [9] [10] that chains
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Guest (ARM)

cmp al r1, 0x0

Sync-save.

str al r2, [r1]

Sync-restore.

Sync-save.

str al r3, [r1]

Sync-restore.

Guest (ARM)

cmp al r1, 0x0

Sync-save.

str al r2, [r1]

str al r3, [r1]

Sync-restore.

Fig. 10. Optimization on consecutive ld/st instructions.

multiple TBs in the code cache together without context
switching back to QEMU after each TB.

In this case, if the first guest instruction of the next TB will
update a CPU state without using the CPU state defined in the
previous TB, we will need neither a Sync-save operation at the
end of the previous TB nor a Sync-restore at the beginning
of the current TB. After an in-depth analysis of the execution
flow in application codes, we find that if a series of TBs are
chained together such an execution flow can be analyzed. In
other words, in a code cache that uses block chaining similar
to one used in QEMU, there is an opportunity to eliminate the
Sync-save at the end of the current TB and the Sync-restore
operation at the beginning of the next TB if the next TB will
update its CPU state before using it.

Based on the above observation, we propose an inter-block
optimization. It first checks if the current TB will jump to
a TB in the code cache via block-chaining. Next, for each
CPU state that needs to be coordinated, check the next TB
to see if there is an instruction using the CPU state before it
is updated by an earlier instruction in the TB. If not, we can
omit the Sync-save operation at the end of the current TB and
the Sync-restore operation at the beginning of the next TB.

Guest TB1

cmp al r0, 0x0

Sync-save.

b ne #TB2

Guest TB2

Sync-restore.

cmp al r0, r1

b ne #TB3

Guest TB1

cmp al r0, 0x0

b ne #TB2

Guest TB2

cmp al r0, r1

b ne #TB3

Chaining Chaining

Fig. 11. Inter-TB optimization.

Figure 11 shows such an example. After the rule-based
translation, the instruction ”cmp al” in TB1 will update the
condition codes. It needs to do a Sync-save operation for the
condition codes to be used in the following TB. In addition, the
following TB2 needs to do a Sync-restore operation to obtain
the correct condition codes. After traversing the block chain,
it is found that TB1 jumps to TB2 in the chain. Furthermore,
the instruction ”cmp al” in TB2 updates the condition codes
before the instruction ”b ne” uses the condition codes. We

can thus eliminate the Sync-save operation in TB1 and the
Sync-restore operation in TB2.

D. Instruction Scheduling

We can also use instruction scheduling to reduce more
redundant coordination. In this section, we present two scenar-
ios, called define-before-use scheduling and interrupt schedul-
ing, that can further reduce such coordination.

1) Define-Before-Use Scheduling: Within a TB, the instruc-
tion that uses the CPU state such as condition codes may be
several instructions behind the instruction that updates such
CPU state. There may be other instructions in between also.
Some of them may even be system-level instructions or ld/st
instructions that require QEMU’s intervention. In the rule-
based translation, a Sync-save operation will be inserted after
the ”update/define” instruction and a Sync-restore will be
inserted before the ”use” instruction. But, if there is no instruc-
tion in between that is data-dependent on either instruction, we
can schedule the two instructions next to each other to avoid a
CPU state coordination. We call such an instruction scheduling
scheme the define-before-use scheduling scheme.

Figure 12 shows such an example. In this example, the
instruction ”cmp al” updates the condition codes, and the
instruction ”b ne” uses them. During the rule-based transla-
tion, it will insert a Sync-save operation and a Sync-restore
operation before and after the memory-access instruction ldr.
However, the ldr instruction is not dependent on the ”cmp
al” instruction nor the ”b ne” instruction. By scheduling
both instructions together after the ldr instruction, there is
no longer a need to coordinate these condition codes before
and after the ldr instruction.

Guest (ARM)

cmp al r0, 0x0

Sync-save.

ldr r2, [r1, #0x1c]

Sync-restore.

b ne #TB2

Guest (ARM)

ldr r2, [r1, #0x1c]

cmp al r0, 0x0

b ne #TB2

Fig. 12. Define-before-use scheduling.

2) Interrupt-driven Scheduling: QEMU handles interrupts
at the system level by inserting an interrupt-check function at
the beginning of each TB. In theory, we can place the interrupt-
check function in any other location in the TB. In the rule-
based translation scheme, we insert CPU state coordination
before and after each interrupt-check function. If the TB has
memory-access instructions, we also need such coordination
for each such instruction to prevent possible inconsistencies.
Similar to the instruction scheduling scheme described earlier,
if we can schedule the interrupt-check function close to the
memory-access instructions, we can eliminate those redundant
coordination. As the memory-access instructions appear quite
frequently while interrupts rarely occur, there are ample op-
portunities to cut down such redundant coordination. We call
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such an approach interrupt-driven scheduling. It is particularly
effective if block chaining is applied to TBs in the code cache.

Figure 13 shows such an example. Initially, CPU state
coordination operations will be inserted both at the interrupt-
check function and the memory-access instruction ldr. In
fact, we can move the interrupt-check function to the front of
the memory-access instruction ldr. This scheduling will not
affect the interrupt handling and can reduce the coordination
from two pairs to one.

Guest TB1

cmp al r0, 0x0

Sync-save.

b ne #TB2

Guest TB2

check_interrupt()

Sync-restore.

...

Sync-save.

ldr r2, [r1, #0x1c]

Sync-restore.

Guest TB1

cmp al r0, 0x0

b ne #TB2

Guest TB2

...

Sync-save.

check_interrupt()

ldr r2, [r1, #0x1c]

Sync-restore.

Chaining Chaining

Fig. 13. Interrupt scheduling.

E. Optimization Interaction

The optimizations described above may change the corre-
sponding host basic blocks in different ways. Therefore, we set
different priorities among these optimizations and coordinate
them for the best results. Redundant sync-restores elimi-
nation and optimization for consecutive memory operations
mentioned in III-C, whose trigger conditions are orthogonal,
simply reduce intra-block coordination and are applied first.
Then, if the conditions of inter-TB optimization mentioned
in III-C are met, we apply it to remove the coordination at
the end of the block and the beginning of the next block.
Otherwise, we use the coordination overhead reduction men-
tioned in III-B at the end of the block. Finally, we apply
the instruction scheduling, changing the instruction order and
further eliminating coordination. Note that this optimization
order will not activate any previous optimizations.

IV. EVALUATION

In this section, we evaluate our design and try to answer
the following questions: (1) Using the rule-based translation
approach at the system level with the proposed optimization
to reduce redundant guest CPU state coordination, how much
performance improvement can we achieve compared to state-
of-the-art systems like QEMU 6.1? (2) How do various
optimizations proposed in the paper affect the overall per-
formance? (3) How does the performance of our approach
compare to that of the native execution? (4) What about its
performance improvement for real applications?

A. Experimental Setup

We have implemented a system-level rule-based DBT pro-
totype based on QEMU 6.1. We take ARM-v7 as the guest
ISA and Intel x86 as the host ISA. The translation rules used
are the same parameterized translation rules used in [2]. The
prototype is run on an Intel Xeon E5-2680 v4 machine with
2 cores, 56 threads and 126GB DRAM. The host OS is a
32-bit Ubuntu 14.04 with Linux 3.13. The guest OS is a 32-
bit unmodified Linux system with kernel 4.4.0. We compile
the SPEC CINT2006 using GCC-4.8 with -O2 optimization
level and statically linking, and run the ref input of SPEC
CINT2006 3 on the guest OS. To better understand the
performance of the rule-based approach, we also evaluate
several real-world applications that include memcached, sqlite,
fileIO, untar and cpu-prime, which are widely used in other
system research [11], [12]. We run each benchmark ten times
and take the average to reduce the effect of fluctuation. To
measure the performance speedup, we use the execution time
on unmodified QEMU 6.1 as the baseline.

B. Overall Performance

To study the effectiveness of our approach, we collect
the performance data on QEMU 6.1 that includes the un-
modified QEMU 6.1, the rule-based implementation of the
system level on QEMU 6.1, and its optimized version with
the three optimizations described in Section III (marked as
”Full Opt.” in the following figures).

As the results in Figure 14 show, the un-optimized rule-
based implementation of QEMU 6.1 has a 5% slowdown
compared to QEMU 6.1, i.e., it is actually slower than QEMU
6.1 running in system mode. The main reason is the CPU
state coordination overhead explained in Section III. However,
after the three optimizations are applied to reduce coordination
overheads, the optimized rule-based QEMU 6.1 running at the
system level can achieve a 1.36X speedup.
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Fig. 14. Performance of SPEC CINT2006 running in system mode on un-
modified QEMU 6.1, the un-optimized rule-based implementation of QEMU
6.1, and the optimized version of the rule-based implementation.

3The rule-based approach also supports the translation of floating-point
instructions. Due to the space constraint, the floating-point applications in
SPEC 2006 are not listed here. When these applications are included, our
approach can achieve an average of 1.92X speedup over QEMU 6.1, instead
of 1.36X speedup for only SPEC CINT2006.
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Based on the data in Table I, an average of 48.83% guest
instructions (which include system-level instructions, memory-
access instructions and interrupt checks) will require CPU-
state coordination operations. Moreover, each coordination
operation will introduce around 14 host instructions. From
Table I, for some benchmarks such as mcf and h264ref, the
percentages of instructions that require such coordinations run
as high as 62.17% and 64.49%, respectively. Their perfor-
mance also suffers the most compared to other benchmarks as
shown in Figure 14.

After the three optimizations are applied to remove redun-
dant coordination operations, the percentage of instructions
that require coordination is reduced to 24.61%, and the number
of host instructions required in each coordination operation
also goes down to only around 3 host instructions (as shown
in Figure 8). To further understand the effect of the rule-
based approach, we also collect the average number of host
instructions needed to translate a guest instruction. The data
are shown in Figure 15. As the data show, QEMU 6.1
in system mode requires an average of around 17.39 host
instructions for each guest instruction, while the optimized
rule-based implementation requires an average of 15.40 host
instructions - a reduction of around 11.44%.
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Fig. 15. Average number of host instructions needed to translate a guest
instruction in un-modified QEMU 6.1, and in the optimized rule-based
implementation.

To identify the performance bottleneck, we count the num-
ber of instructions in the host basic blocks and group the
instructions by their functionality. Based on our analysis, one
of the major bottlenecks is in the address translation. Since
QEMU needs to emulate MMU behavior for each memory
access in system mode, it involves about 20 host instructions
for each translated memory instruction on average. This shows
that the address translation incurs very high overheads, and it
will be the focus for further optimization in our future work.

C. Impact of Coordination Optimizations

To understand the performance impact of each coordina-
tion optimization, we evaluate the cumulative performance
improvement after adding each optimization. The results are
shown in Figure 16.

In the figure, ‘Base’ marks the performance of the un-
optimized version as described in Section III-A. ‘+ Reduction’
marks the performance after adding the optimization to reduce

the number of host instructions in a coordination operation
as described in Section III-B. ‘+ Elimination’ marks the
performance after further adding the optimization that elim-
inates redundant coordinations as described in Section III-C.
‘+ Scheduling’ marks the performance after further applying
instruction scheduling as described in Section III-D. The
baseline is the performance of the unmodified QEMU 6.1.

As the data show, it achieves 1.22X speedup after the reduc-
tion optimization is applied. After adding the optimization that
eliminates redundant coordination operations, the cumulative
performance improvement is 1.30X. When all optimizations
are applied, we achieve 1.36X overall speedup.

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

pe
rlb

en
ch

bz
ip

2
gc

c
m

cf

go
bm

k

hm
m

er

sj
en

g

lib
qu

an
tu

m

h2
64

re
f

om
ne

tp
p

as
ta

r

xa
la

nc
bm

k

G
EO

M
EA

N

S
p

ee
d

 u
p

Base +Reduction +Elimination +Scheduling

Fig. 16. Cumulative performance improvement after adding each proposed
optimization.

To further understand the performance impact of these three
optimizations, we also calculate the average number of host
instructions needed for coordination per guest instruction. It
is calculated by the following formula:

sync instr per guest ins =
sync num ∗ sync overhead

guest num

In the formula, sync num is the total number of coordination
operations, sync overhead is the average number of host
instructions used in a coordination operation, and guest num
is the total number of translated guest instructions. The results
are shown in Figure 17.

Because we can reduce the number of host instructions in a
coordination operation from 14 instructions to 3 instructions as
shown in Figure 8, the average number of host instructions for
coordination per guest instruction is reduced from 8.36 to 1.79.
After the elimination of redundant coordination operations, the
number of host instructions for coordination per guest instruc-
tion is further reduced to 1.33. When the instruction scheduling
is finally applied, that number is eventually dropped to 0.89.

D. Comparison to Native Execution

The slowdown factor of a system-level emulation compared
to the native execution of a program is an important factor in
designing an emulator. We collect such performance data for
both un-modified QEMU 6.1 and our rule-based optimized
version of QEMU 6.1. The data are shown in Figure 18.
Compared to QEMU 6.1, our rule-based optimized version
of QEMU 6.1 achieves an average slowdown of 13.83X while
QEMU 6.1 has an average of 18.73X slowdown.
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Fig. 17. Average number of host instructions per guest instruction for
coordination after three optimizations are applied.
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Fig. 18. Slowdown factors of the system-level emulation on un-modified
QEMU 6.1 and the fully-optimized rule-based QEMU 6.1 compared to the
native execution using SPEC CINT2006 (lower is better).

E. Performance on Real-World Applications

To better understand the performance of optimized rule-
based approach at the system level, we evaluate the perfor-
mance with several real-world applications. The real-world
applications consists of Memcached, Sqlite, FileIO, Untar and
CPU-prime. As the results in Figure 19 show, our design can
achieve an average of 1.15X speedup over QEMU 6.1. In these
applications, FileIO and Untar are IO-bound applications and
Memcached is a network application. Since a lot of execution
time is spent on IO or network, we can only achieve a speedup
of 1.08X, 1.09X and 1.13X, respectively.
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Fig. 19. Speedup of real-world applications on optimized rule-based QEMU
6.1 compared to un-modified QEMU 6.1.

V. RELATED WORK

DBT systems have attracted extensive research. Prior work
includes instruction translation and optimization [2]–[4], [13]–
[16], system-level translation [1], [6], [7], [17], memory-
access instruction optimization [5], [18], [19], indirect-branch
optimizations [20]–[23], translation of architecture-specific
instructions such as SIMD instructions [24]–[27], translation
of atomic instructions [28], [29], and more. In this paper, we
mainly focus on system-level DBT systems.

For system-level optimizations, [5] speeds up the memory
address translation using embedded shadow page tables to do
a direct mapping between a guest virtual address to its host
physical address. [30] proposes a parallel system-level DBT
emulator using a separate thread to optimize the translated
code. Qlet [31] is a cross-ISA system-level instrumentation
tool and several techniques is used to improve its performance.
COREMU [6] uses one QEMU instance to emulate a multi-
core system with a lightweight library for communication.
By leveraging multi-core platforms and the optimizations in
LLVM, HQEMU [10] proposed a parallel DBT system. The
kernel-level binary translation mechanism in [32] achieves a
near-native performance. [7], [8] translated binaries between
ARM and x86 by utilizing host hardware features. The work
in [17], [33], [34] takes advantage of hardware features to
support system-level binary translation. Captive [17] is a
retargetable system-level DBT hypervisor. It combines both
offline and online optimizations running in a virtual bare-metal
environment to deliver performance improvement.

Our work extends the rule-based DBT and applies it to
the system-level DBT. It focuses on improving the quality
of instruction translation, and can be combined with other
optimizations applied to system-level DBTs to further im-
prove performance, such as memory optimizations [5], paral-
lelism [6] and hardware feature-based optimizations [7], [8].

VI. CONCLUSION

The rule-based approach using an automatic learning pro-
cess to learn translation rules has shown to be effective in a
DBT such as QEMU at the user level. To apply this approach
to the system level, this paper presents a basic design to
coordinate CPU states embedded in the guest and the host
instructions when switching between the execution from the
code cache and the emulation in QEMU. We address the issues
critical to such a design and propose several optimization
strategies to reduce such coordination overhead. We also
implement a prototype based on QEMU 6.1 to demonstrate
the feasibility of such an approach. The experimental results
show that our design is quite efficient. Compared to QEMU
6.1, our fully optimized system can achieve an average of
1.36X speedup on SPEC CINT2006 and an average of 1.15X
on real-world applications.
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