
BSan: A Powerful Identifier-Based Hardware-Independent
Memory Error Detector for COTS Binaries

Wen Zhang
University of Georgia

Botang Xiao
University of Georgia

Qingchen Kong
University of Georgia

Le Guan
University of Georgia

Wenwen Wang
University of Georgia

Abstract—This paper presents BSan, a practical software-
only memory error detector for binary code. Different from
state-of-the-art binary-level detectors, which rely on either the
shadow-memory-based approach or the hardware-specific feature
and thus suffer from several fundamental limitations, BSan
adopts an identifier-based approach, enabling it to detect deep
memory errors missed by existing detectors. Also, BSan does not
depend on any specific hardware features. To reduce the high
performance overhead caused by identifier propagation, BSan
creates a novel hybrid approach, static analysis+dynamic instru-
mentation, to improve the performance without inheriting the
poor reliability of static binary rewriting, distinguishing it from
existing detectors that simply refer to static binary rewriting for
better performance. The comprehensive evaluation demonstrates
that BSan can detect more memory errors than state-of-the-art
binary-level detectors. Meanwhile, the performance and memory
overheads of BSan are comparable to those of existing detectors.

I. INTRODUCTION

Memory errors, such as buffer overflows and use-after-free
errors, have serious impacts on software reliability, stability,
and security [2], [4], [36], [37], [39]. A previous study shows
that around 70% of high-severity security bugs found in
Google Chrome, one of the most popular web browsers, are
memory errors [29]. This phenomenon is also observed by
a security vulnerability study conducted by Microsoft [23].
Therefore, detecting memory errors is of high importance for
building reliable, secure, and sustainable software systems.

On today’s commercial platforms, such as Microsoft Win-
dows and Apple MacOS, most software is still closed-source
and distributed only through executable binaries. Even on
open-source platforms like Linux, many applications depend
on third-party libraries without source code available. Further,
legacy software developed for outdated platforms often lacks
complete source code copies. In most cases, although the
source code is available, compiling it with modern compiler
toolchains may face various problems [20], [35]. Hence, it is
strongly necessary to improve the reliability and security of
binaries by detecting memory errors lurking in them.

Previous research work has developed several binary-level
memory error detectors without the need for application source
code. Notable examples include RetroWrite [15], MTSan [10],
Dr. Memory [8], Memcheck [32], QASan [18], and Undan-
gle [9]. Although these detectors have been quite successful in
detecting memory errors in commercial off-the-shelf (COTS)
binaries, they suffer from three fundamental limitations.

Limitation 1: the incapability of detecting deeply hidden
memory errors. Most existing binary-level detectors, includ-

ing QASan, RetroWrite, Dr. Memory, and Memcheck, employ
a shadow-memory-based approach to capture the status of
application memory for memory error detection. Specifically,
before a memory access is executed, the corresponding shadow
memory location is checked to determine whether the access is
valid or not. Although this mechanism is quite intuitive to im-
plement for binary code, it may miss both spatial and temporal
memory errors due to its limited detection capability (See §II
for more details). As a result, deeply hidden memory errors
can easily escape these detectors, leading to security risks.

Limitation 2: the lack of universal applicability and
practicability. To reduce the high runtime overhead incurred
by dynamic binary instrumentation, several detectors, includ-
ing RetroWrite and MTSan, utilize static binary rewriting
to instrument target binary code. Although static rewriting
can remove the need for dynamic instrumentation, it renders
the detectors vulnerable to low practicability, due to the
notorious challenges of statically rewriting binaries caused by
the inherent complexity of binary code [22], [28]. For instance,
RetroWrite only supports position-independent binary code
compiled with a specific compiler in a specific version.

Limitation 3: hardware dependence. Different from other
software-only detectors, MTSan relies on the memory tagging
hardware extension [1], introduced recently by ARMv8.5-A
processors, to perform memory error detection. Obviously,
this hinders the adoption of this detector on other commercial
hardware platforms, e.g., x86 and RISC-V, as well as plenty
of ARM devices without such a hardware feature available.

To address the above limitations, this paper presents BSan,
an identifier-based memory error detector for COTS binaries.
BSan assigns a globally unique identifier for each memory
object and attaches the identifier to pointers that point to this
object. When a pointer is dereferenced, BSan first uses the
attached identifier to find the metadata of the accessed object,
e.g., bounds information, and then examines the metadata and
the pointer to detect memory errors. Although prior work has
implemented the identifier-based approach at the source code
level [24], [25], the development of BSan entails multiple
unique technical challenges, e.g., how to propagate identifiers
along with binary-level pointer operations and how to manage
the high performance overhead introduced by the propagation.
We will discuss these challenges and our solutions in §III.

Compared to state-of-the-art binary-level detectors, BSan
has several distinctive advantages. First, BSan is able to
detect more memory errors, especially those that are deeply

hidden in binaries and cannot be detected using the shadow-
memory-based approach. Second, BSan is a pure software
detector and does not rely on any hardware-specific features.
Therefore, it can be applied to binaries compiled for various
hardware platforms. Finally, BSan achieves universal prac-
ticability by inventing a novel hybrid approach, i.e., static
analysis+dynamic instrumentation, to avoid brittle static binary
rewriting. This also offers an exclusive opportunity for BSan
to realize slightly better runtime performance than existing
dynamic instrumentation-based detectors, e.g., Dr. Memory.

We have implemented BSan based on two widely used bi-
nary analysis and instrumentation frameworks: Dyninst [5] for
offline static analysis and DynamoRIO [7] for online memory
error detection. To evaluate BSan, we conduct comprehensive
experiments, covering three well-recognized benchmark suites,
i.e., Juliet [19], SPEC CPU 2017 [12], and PARSEC [6],
22 real-world memory errors, as well as 10 real-world ap-
plications in various domains. We also compare BSan with
four state-of-the-art binary-level detectors, including MTSan,
RetroWrite, Dr. Memory, and Memcheck. Experimental re-
sults demonstrate that BSan can achieve desirable detection
results by reporting more memory errors than other detectors.
Moreover, the detection efficiency of BSan, including both
performance and memory overheads, is comparable to existing
dynamic instrumentation-based detectors.

In summary, this paper makes the following contributions.
• We present BSan, a powerful software-only memory error

detector for COTS binaries. To the best of our knowledge,
BSan is the very first binary-level detector that adopts an
identifier-based detection approach.

• We overcome multiple unique technical challenges to
realize an effective and efficient design of BSan. These
challenges differentiate BSan from previous identifier-
based detectors developed at the source code level.

• We implement BSan using two popular frameworks
Dyninst and DynamoRIO to support x86-64 binaries. We
make the source code of our implementation publicly
available1 to facilitate future research on BSan.

• We conduct comprehensive experiments to evaluate
BSan. Experimental results show that BSan achieves
desirable detection results with both performance and
memory overheads in parallel with existing detectors.

II. BACKGROUND AND MOTIVATION

This section first introduces memory errors and then de-
scribes the shadow-memory-based and identifier-based mem-
ory error detection approaches to motivate the need for a more
effective and powerful binary-level detector.

A. Memory Errors

In general, there are two types of memory errors. A spa-
tial memory error happens when an instruction attempts to
access an address that is out of the bounds of the accessed
memory object. Common spatial memory errors include buffer

1https://github.com/dvaave/BSan

overflows and underflows. Depending on where it is located,
the accessed address may or may not be accessible. In the
case that the accessed address is accessible, e.g., located in
another object, the spatial memory error may not trigger any
observable misbehavior like a crash. As a result, such memory
errors are hard to find if they cannot be caught by a detector.

Differently, a temporal memory error occurs when a mem-
ory access instruction tries to access a memory object that
is out of its liveness range. Use-after-free and double-free
errors are two representative temporal errors. Here, it is worth
pointing out that use-after-free errors can happen on both heap
and stack objects. For instance, a pointer that points to a local
variable in a function may be propagated to the outside of the
function and dereferenced after the function returns, leading
to a stack use-after-free error, also known as use-after-return.

B. Shadow-Memory-Based Detection

The shadow-memory-based detection approach is exten-
sively used in state-of-the-art memory error detectors, in-
cluding binary-level detectors, such as Dr. Memory [8],
Memcheck [32], RetroWrite [15], and QASan [18], as well
as source-level detectors, e.g., AddressSanitizer [31].

In this approach, a shadow memory region is allocated to
store the metadata of the original application memory. The
metadata captures the status of the application memory, e.g.,
whether a specific memory location is allocated and valid for
access. The mapping between the application memory and the
shadow memory is usually fixed and one-to-one, e.g., a single
byte of the application memory is mapped to several bits of the
shadow memory, to limit the total size of the shadow memory
and make access to the shadow memory simple and fast. The
shadow memory is updated at special events to reflect the
latest status of the application memory. For instance, when a
heap object is deallocated, the shadow memory corresponding
to the object is updated to indicate the memory region of the
object is freed and thus not valid for access. By checking the
metadata stored in the shadow memory when the application
memory is accessed, this approach can detect memory errors.

Issues. Although the idea of this shadow-memory-based ap-
proach is quite intuitive, it has two critical issues. First, it may
miss spatial memory errors. To understand the reason, let us
consider the following code snippet:
1 void foo(int idx, ...) {
2 int buf[10];
3 buf[idx] = ...; // a buffer overflow if idx >= 10
4 }

In this example, the function argument idx is not checked
before it is used to access the stack buffer buf. As a result,
this access may lead to a spatial memory error. However,
depending on the value of idx, the accessed memory location,
i.e., buf[idx], may be in the stack frame of a caller function
of foo(). In that case, checking the shadow metadata of
buf[idx] cannot detect this memory error, as the metadata
indicates the address is valid for access. The underlying reason
for this problem is that checking the metadata stored in the
shadow memory is insufficient to validate a memory access.

https://github.com/dvaave/BSan

Second, it may also miss temporal memory errors. As dis-
cussed before, a use-after-free error caused by the dereference
of a pointer pointing to a deallocated memory object can be
detected by checking the shadow metadata. However, if the
memory region of the deallocated object is reused to allocate
a new object, as shown in the following code snippet, simply
checking the shadow metadata will not be able to detect the
memory error, because the corresponding shadow metadata is
about the new object, rather than the old object.
1 p = malloc(sizeof(int));
2 ...
3 free(p);
4 q = malloc(sizeof(int)); // reusing the memory of p
5 *p = ...; // a use-after-free error

To mitigate this problem, existing binary-level detectors often
adopt a heuristic quarantine mechanism [8], which places
deallocated objects in a quarantine queue to delay the reuse of
the memory. However, even with this mitigation, a use-after-
free error can still easily escape the detectors, as memory reuse
can happen when the quarantine queue is full. Our experience
with existing detectors shows that this is quite common in
reality, especially when target applications frequently allocate
and deallocate memory objects. Worse, it is very challenging
to apply the quarantine mechanism for stack objects at the
binary code level, as stack regions are naturally reused across
function calls, leading to missed stack temporal errors.

C. Identifier-Based Detection

Different from the shadow-memory-based approach, the
identifier-based approach assigns a globally unique identifier,
e.g., an integer, to each memory object and attaches the
identifier to every pointer that points to this memory object.
When a pointer is dereferenced, its attached identifier is used
to find the metadata of the accessed memory object, which
includes the bounds information and whether the object is
still alive, i.e., not deallocated. By examining the metadata,
this approach can detect both spatial and temporal errors.

The key feature that distinguishes the identifier-based ap-
proach from the shadow-memory-based approach is that it
maintains the metadata for each memory object and uses the
object identifier rather than the object address to find the meta-
data. This allows it to obtain more accurate metadata, even if
the same memory region may be reused for different memory
objects. Because of this reason, the identifier-based approach
can detect deep memory errors missed by the shadow memory-
based approach, e.g., the two memory errors discussed before.
Due to the more powerful detection capability, the identifier-
based approach has been implemented at the source code level,
e.g., SoftBound [24] and CETS [25]. However, as we will
discuss in the next section, developing a binary-level identifier-
based detector faces unique technical challenges.

III. TECHNICAL CHALLENGES

There are three unique technical challenges to developing
an identifier-based memory error detector for binary code.

How to attach object identifiers to binary pointers? An
important requirement of the identifier-based approach is that

every pointer needs to be attached with the identifier of the
memory object it points to. At the source code level, this
can be easily achieved, e.g., through fat pointers [21], [26],
[38]. However, for binary code, it is very challenging, as data
layouts of binaries are hard to modify flexibly and arbitrarily,
e.g., appending extra bits to every pointer. Considering that 64-
bit memory pointers only use the low 48 bits [16], [17], one
may think about placing object identifiers into the unused 16
bits of pointers [11]. Unfortunately, this method cannot work
either, as it is challenging to differentiate augmented 64-bit
pointer values from regular 64-bit non-pointer values at the
binary code level, due to the unavailability of the data type
information in binaries. As a result, it is hard to determine
whether the high 16 bits of a 64-bit value should be removed
or not before it can be used for an arithmetic/logic operation.

To overcome this challenge, our key observation is that
pointers in binary code are stored in either registers or memory
locations. Therefore, by attaching object identifiers to them,
we can effectively maintain the association between pointers
and object identifiers. Note that we need to use disjoint data
structures to achieve this. See §IV for more details.

How to propagate identifiers along with binary-level
pointer operations? The identifier attached to a pointer needs
to be propagated appropriately when the pointer is involved
in pointer-related operations. For example, when deriving a
new pointer by adding a constant value to an old pointer,
the identifier attached to the old pointer needs to be propa-
gated to the new pointer. Otherwise, dereferences of the new
pointer cannot be checked. However, identifier propagation at
the binary code level is quite challenging, as it is unclear
how to propagate identifiers for different instructions. Also,
any incomplete propagation can potentially cause ineffective
detection, resulting in missed memory errors.

To overcome this challenge, we create comprehensive iden-
tifier propagation rules according to general instruction se-
mantics. Through these propagation rules, we can effectively
propagate identifiers along with pointer operations. Note that
the design of the propagation rules is not tied to any specific
instruction sets. See §IV for more details.

How to reduce the heavy performance overhead caused
by propagating identifiers? Due to the lack of the data type
information in binaries, we have to instrument all instructions
that may produce new pointers to realize complete identifier
propagation. For instance, let us consider the x86-64 instruc-
tion mov %rax,%rbx, which copies the value in rax to
rbx. Since it is hard to know whether or not the value is a
pointer, this instruction has to be instrumented for potential
identifier propagation, even if the value may not be a pointer.
Note that this is not an issue at the source code level because,
with the data type information, this instruction would not be
instrumented if the value is not a pointer.

To overcome this challenge, we propose innovative op-
timizations to reduce the performance overhead introduced
by identifier propagation. Our key insight is that it is only
necessary to propagate an identifier if the propagated identifier

Detection
Optimization

Propagation
Optimization

Instrumentation
Optimization

Dynamic
Instruction

Instrumentation

Application
Binary

Instrumentation
Plan

Object Identifier
Management

Global
Identifier

Propagation

Memory Error
Detection

Offline Analysis Online Detection

Memory
Error

Fig. 1. System overview of BSan.

is required to check memory accesses in the following code
for memory error detection. By identifying and removing
unnecessary propagation, our optimizations can effectively
reduce the performance overhead of propagating identifiers
and boost detection efficiency. See §IV for more details.

IV. SYSTEM DESIGN OF BSAN

Figure 1 shows the overview of BSan, which consists of two
components: offline analysis and online detection. Given an ap-
plication binary, BSan first conducts a series of static analyses
to identify optimization opportunities, e.g., redundant memory
error detection and unnecessary identifier propagation. After
the analyses, BSan generates an instrumentation plan to note
what work needs to be done at specific instructions, e.g.,
memory error detection and/or identifier propagation. Under
the direction of this instrumentation plan, BSan next runs the
binary code with dynamic instruction instrumentation to real-
ize object identifier management, global identifier propagation,
and memory error detection. If a memory error is detected
during the execution, BSan reports it with detailed information,
including the error type, the problematic memory access in-
struction, and the accessed memory object, to facilitate further
manual analysis. Next, we describe more design details.

A. Object Identifier Management

The management of object identifiers includes: (1) creat-
ing an identifier for a memory object when it is allocated,
(2) collecting the metadata of the object, e.g., the bounds and
liveness information, and (3) attaching the identifier to the first
pointer pointing to the object, e.g., a register. BSan creates
identifiers using a global 64-bit counter, which is atomically
increased by one each time after a new identifier is generated.
That is, BSan never reuses previous identifiers. To maintain
the collected metadata of memory objects, BSan creates a hash
table called object table using the identifier as the key. Each
entry of the table corresponds to a memory object, and when
a memory object is deallocated, the corresponding entry will
be updated to indicate the object is not valid for access.

1) Heap Objects: Typically, heap objects are allocated and
deallocated explicitly by invoking standard library routines,
e.g., malloc() and free(), or system calls, e.g., mmap()
and munmap() on Linux. By intercepting invocations to these
routines and system calls, BSan can collect the metadata
of allocated heap objects, e.g., starting addresses and sizes.
Once a heap object is successfully allocated, BSan creates
a new identifier for the object and attaches the identifier

Return Address
Callee-Saved

Registers
Allocated by

subtracting a constant
value from rsp

…

Return Address
Callee-Saved

Registers

…

Memory Arguments

rsp at the entry of
the callee function

Stack
Object
Bounds

Stack
Object
Bounds

Low address of the
stack objects of the

caller function

Stack Variables
of the Callee

Function

Stack Variables
of the Callee

Function

Fig. 2. BSan collects the stack object bounds information based on the
stack structure. The left and right sides show x86-64 stacks without and with
memory arguments, respectively.

to the register that returns the pointer of the object, e.g.,
rax of x86-64 and x0 of AArch64. Also, BSan offers a
flexible programming interface for users to specify customer
memory management routines. This allows BSan to capture
application-specific heap object allocations and deallocations.

2) Stack Objects: Different from heap objects, stack objects
are allocated and deallocated implicitly, which renders it
challenging to monitor their allocations and deallocations. To
address this issue, BSan considers function calls and returns2

as indicators of allocating and deallocating stack objects,
respectively, inspired by the observation that stack objects are
typically allocated in stack frames of functions. Specifically,
BSan creates an identifier for stack objects at the entry of
a function and attaches the identifier to the stack pointer
register, e.g., rsp of x86-64 and sp of AArch64. The old
identifier attached to the stack pointer register, which was
created for the caller function, is saved and recovered when the
current function returns. Note that, due to the lack of the type
information in binaries, BSan only assigns a single identifier
for all stack objects residing in the same stack frame. That
means BSan cannot detect intra-stack-frame buffer overflows.
This is a common limitation of state-of-the-art binary-level
detectors, including RetroWrite and Dr. Memory.

After an identifier is created for the stack objects in a
function F , BSan needs to collect the bounds information for
the identifier, i.e., determining the high and low addresses.

High Address. Intuitively, we can use the stack pointer
register value Vsp at the entry of F as the high address. How-
ever, this may cause false alarms for memory error detection,
as the accesses to memory arguments—passed through the
stack and located in addresses higher than Vsp, as shown in
Figure 2—will be considered as out-of-bounds accesses. To
solve this issue, BSan uses the low address determined for
the identifier created at the caller function of F as the high
address. This way, BSan can include memory arguments in the
bounds. Since this will also include the return address stored
on the stack, BSan marks down the location of the return
address and reports a memory error if it is overwritten by a
memory access instruction.

2In general, function calls and returns can be identified through correspond-
ing instructions, e.g., call and ret of x86-64. However, the tail-call opti-
mization may complicate this process. BSan addresses this issue by detecting
tail-call-related branch instructions using state-of-the-art techniques [14], [22],
[34] and treating such branches in a similar way to function calls and returns.

Init

∀x ID[x]← Null

Reg ← Constant

ID[Reg]← Null

Mem← Constant

ID[Mem]← Null

Reg ←MemoryAllocation

ID[Reg]← New Id

Reg ←Mem

ID[Reg]← ID[Mem]

Mem← Reg

ID[Mem]← ID[Reg]

Reg ← UnaryOp X

ID[Reg]← ID[X]

Reg ← X BinaryOp Y ID[X] = Null ID[Y] = Null

ID[Reg]← Null

Reg ← X BinaryOp Y ID[X] ̸= Null ID[Y] = Null

ID[Reg]← ID[X]

Reg ← X BinaryOp Y ID[X] ̸= Null ID[Y] ̸= Null

ID[Reg]← Null

Fig. 3. Propagation rules of object identifiers in BSan.

Low Address. BSan determines the low address based on
the observation that the stack space is usually allocated by
subtracting a constant value from the stack pointer register in
the prologue of a function. The constant value indicates the
actual size of the allocated stack space. By identifying and
instrumenting such a subtraction instruction in F , BSan can
calculate the low address. Note that it is possible that there
is no such a subtraction instruction in a function because, for
example, the function has no stack variable, or all stack vari-
ables are promoted to registers by the compiler. In that case,
BSan simply counts the number of callee-saved registers saved
to the stack, e.g., through the push instruction of x86-64, in
the current function to calculate the low address. In addition,
BSan also monitors the invocations to the alloca() routine,
which dynamically allocates memory on the stack, to adjust
the low address if necessary.

3) Global Objects: BSan creates a single identifier for
global objects located in the data section of an executable
binary, which is loaded into the memory at the beginning of
the execution. BSan uses the start address and the size of the
loaded data section to calculate the high and low addresses
for the identifier. BSan attaches the identifier to the program
counter (PC) register, e.g., rip of x86-64, as most pointers
pointing to global objects are derived from the PC register.

B. Global Identifier Propagation

BSan creates a disjoint data structure, called identifier
mapping table, to maintain the identifiers attached to registers
and memory locations that contain pointers. After an identifier
is created for an object, it is initially attached to the first
pointer that points to the object, e.g., rax of x86-64 used
to return the address of an allocated heap object. Then,
BSan propagates the identifier in the following execution by
dynamically instrumenting executed instructions.

BSan propagates identifiers according to instruction types.
In general, there are two types of instructions that may produce
a new pointer from an existing pointer. First, a data movement
instruction that copies a pointer between two registers or a
register and a memory location. Second, an arithmetic/logic
instruction that calculates a new pointer from an old pointer
through an arithmetic/logic operation. For both types, BSan
propagates the identifier attached to the old pointer to the new

1 int *func(void) {
2 int *ptr = NULL;
3 ptr = malloc(sizeof(int));
4 ...
5 ptr[2] = 10; // Overflow
6 ...
7 return ptr;
8 }

1175: mov $0x4,%edi

117a: callq 1070 <malloc@plt> // rax ← 0x72a0; ID[rax] ← 1

117f: mov %rax,%rbx // ID[rbx] ← ID[rax]

...

1287: add $0x8,%rbx // rbx ← 0x72a8

128b: movl $0xa,(%rbx) // A heap buffer overflow is detected

ID Low Addr High Addr
1 0x72a0 0x72a4

PTR ID
rax 1
rbx 1
… …

...

...

Reg
Reg
…

(c) The binary code of (a) and the propagation of the identifier in BSan

(a) An example with a memory error
(b) The object table (top) and the

identifier mapping table (bottom) in BSan

Live
Yes

Fig. 4. An example showing how BSan detects a heap buffer overflow.

pointer by updating the identifier mapping table. Note that
BSan does not perform any memory error detection on the
new pointer until it is dereferenced to access the memory. In
other words, it is allowed to produce an invalid pointer if the
pointer is never used for any memory access. Figure 3 shows
the propagation rules used by BSan.

In addition to the two types of instructions mentioned
above, BSan also pays special attention to other instructions
that may involve pointers. In particular, if an instruction
computes a result from two pointers and both of them have
identifiers, BSan will not propagate any of the identifiers to
the computation result. This is inspired by the observation
that the computation result is typically not a new pointer but
the offset between the two pointers. Thus, it should not have
an identifier. It is also worth pointing out that BSan does not
need to take extra care of function call/return instructions. The
reason is that for both caller-saved and callee-saved registers
if their values need to be preserved across a function call, the
compiler would generate necessary instructions to spill and
restore them. Hence, BSan only needs to propagate identifiers
for those instructions accordingly.

C. Memory Error Detection

BSan performs memory error detection before a memory
access instruction is executed. The detection process includes
three steps. (1) BSan uses the base register (or the index
register) in the memory operand of the instruction to look
up the identifier mapping table to get the identifier attached to
the register. (2) BSan uses the identifier to search the object
table to obtain the metadata information of the corresponding
object. (3) BSan checks the accessed memory address against
the metadata to detect spatial and temporal memory errors.
If no error is detected, the instruction proceeds to access the
memory. Otherwise, BSan will report a memory error.

Figure 4 uses an example to show how a memory error is
detected by BSan. As shown in the source code, there is an
out-of-bounds access to the heap object allocated at line 3.
BSan instruments the binary code and assigns the identifier
1 to the object after it is successfully allocated, i.e., after
the callq instruction. It also updates the identifier mapping

D P I
mov %rdi,0x40(%rax) ✓ ✓ ✓
mov %rsi,0x10(%rax) ✓ ✓ ✓
lea 0x28(%rax),%rcx ⛌ ✓ ✓
cmpl $0xfff7,(%rcx) ✓ ⛌ ✓
mov %rbx,%rcx ⛌ ✓ ✓
je $Label ⛌ ⛌ ⛌

Instrumentation at “mov %rdi, 0x40(%rax)”
1. Memory error detection
 1.1 (rax+0x40): temporal and spatial
 1.2 (rax+0x10): spatial
2. Object identifier propagation
 2.1 ID[(rax+0x40)] ← ID[rdi]
 2.2 ID[(rax+0x10)] ← ID[rsi]
 2.3 ID[rcx] ← ID[rbx]

D-OPT

P-OPT

I-OPT

Instrumentation
Plan

D P I
mov %rdi,0x40(%rax) ✓ ✓ ✓
mov %rsi,0x10(%rax) ✓ ✓ ✓
lea 0x28(%rax),%rcx ⛌ ✓ ✓
cmpl $0xfff7,(%rcx) ⛌ ⛌ ⛌
mov %rbx,%rcx ⛌ ✓ ✓
je $Label ⛌ ⛌ ⛌

D P I
mov %rdi,0x40(%rax) ✓ ✓ ✓
mov %rsi,0x10(%rax) ✓ ✓ ✓
lea 0x28(%rax),%rcx ⛌ ⛌ ⛌
cmpl $0xfff7,(%rcx) ⛌ ⛌ ⛌
mov %rbx,%rcx ⛌ ✓ ✓
je $Label ⛌ ⛌ ⛌

D P I
mov %rdi,0x40(%rax) ✓ ✓ ✓
mov %rsi,0x10(%rax) ✓ ✓ ⛌
lea 0x28(%rax),%rcx ⛌ ⛌ ⛌
cmpl $0xfff7,(%rcx) ⛌ ⛌ ⛌
mov %rbx,%rcx ⛌ ✓ ⛌
je $Label ⛌ ⛌ ⛌

Fig. 5. BSan conducts three static analysis passes to generate an instrumenta-
tion plan to optimize the performance of online memory error detection. “D”:
memory error detection; “P”: object identifier propagation; “I”: instruction
instrumentation; “✓”: the corresponding operation is required; “×”: the
corresponding operation is optimized out by the static analysis.

table to indicate that the identifier attached to the register
rax is 1, as the pointer of the allocated object is returned
through rax. Next, when the pointer in rax is copied to
rbx, BSan propagates the identifier to rbx by updating the
identifier mapping table. The add instruction does not change
the identifier attached to rbx. Finally, when the pointer in rbx
is dereferenced, BSan reports a memory error, as the address
in rbx is not within the bounds of the object indicated by the
identifier attached to rbx.

D. Offline Analysis

To optimize the performance efficiency of the online de-
tection part, particularly the high overhead incurred by prop-
agating object identifiers, BSan conducts an offline static
analysis on the target binary. The analysis essentially runs the
following three passes on the control-flow graph (CFG) of
each function in the target binary. (1) The detection optimiza-
tion (D-OPT) pass checks the necessity of performing memory
error detection on memory access instructions and removes
redundant detection. For example, if a memory object has
been checked at a previous instruction, the checks at following
instructions can be skipped if they are guaranteed to be safe.
(2) The propagation optimization (P-OPT) pass examines the
necessity of propagating identifiers for instructions based on
the analysis result of the D-OPT pass and removes unnecessary
propagation, e.g., a propagated identifier is never checked for
memory error detection. (3) Based on the analysis results of
the previous two passes, the instrumentation optimization (I-
OPT) pass aims to minimize dynamically instrumented in-
structions and generates an instrumentation plan to instruct
the following dynamic instrumentation.

To understand this process, let us consider the example in
Figure 5. In this example, without the offline static analysis,
BSan needs to instrument the first five instructions to perform
memory error detection and object identifier propagation. To
reduce the performance overhead, BSan first invokes the D-
OPT pass. Through this pass, BSan can identify that the
memory error detection for the cmpl instruction is redundant.
The reason is that it accesses the same object as the previous
two memory access instructions, and the accessed bounds are
within the bounds accessed by the previous instructions. That
means, if the previous instructions do not cause any memory
error, it will not also. Note that BSan separately determines the
necessity of temporal and spatial error detection for a memory
access instruction. Next, the P-OPT pass is conducted. With
this pass, BSan finds out that the identifier propagation for the
lea instruction can be removed, given that the destination
register rcx is not used for memory error checking. Finally,
the I-OPT pass combines the remaining memory error detec-
tion and identifier propagation to produce an instrumentation
plan, which indicates that only the first instruction needs to
be instrumented. Note that BSan also includes the address of
each source instruction that requires memory error detection
in the instrumentation plan for memory error reporting.

It is worth pointing out that the offline static analysis in
BSan is conservative in the sense that it only removes the
detection/propagation for an instruction if the static analysis
can completely ensure the safety of the removal. That means
BSan may miss optimization opportunities due to the natural
inaccuracy of the static analysis, e.g., the aliasing between
different pointers. But, it will not miss any memory errors
because of applying the static analysis.

V. EVALUATION

We have implemented a research prototype of BSan us-
ing Dyninst [5] (version 10.1.0, for offline analysis) and
DynamoRIO [7] (version 9.0.1, for online detection). The
prototype currently supports x86-64 binaries. The source code
of the prototype is publicly available on GitHub.

Experimental Methodology. Our evaluation aims to answer
two key questions. (1) Detection Effectiveness. Can BSan
detect memory errors in binaries and outperform state-of-the-
art binary-level detectors in terms of reporting more memory
errors? (2) Detection Efficiency. How much performance and
memory overheads does BSan introduce, and are the overheads
comparable to existing binary-level detectors?

To this end, we conduct comprehensive experiments to
evaluate BSan, covering a wide range of benchmark suites
and real-world applications. More specifically, we evaluate the
detection effectiveness of BSan using the Juliet Test Suite [19]
and a list of 22 real-world memory errors, which were found
from real-world applications and the common vulnerabilities
and exposures (CVE) website [13]. Some of these memory
errors were also used by previous research work for evaluation.
Juliet contains a collection of test cases under different com-
mon weakness enumerations (CWEs). Since BSan only detects

TABLE I
DETECTION RESULTS OF JULIET TEST CASES. FOR EACH SPECIFIC MEMORY ERROR, JULIET INCLUDES TWO TEST CASES WITH AND WITHOUT THE

ERROR, RESPECTIVELY. THE “#CASES” COLUMN SHOWS THE TOTAL NUMBER OF TEST CASES WITH AND WITHOUT MEMORY ERRORS IN EACH CWE
CATEGORY. “FN”: FALSE NEGATIVE RATE; “FP”: FALSE POSITIVE RATE. ∗THE DETECTION RESULTS OF MTSAN ARE FROM THE MTSAN PAPER [10].

CWE-ID Description #Cases
Dr. Memory Memcheck RetroWrite MTSan∗ BSan

FN FP FN FP FN FP FN FP FN FP

121 Stack Buffer Overflow 3100+3100 80.58% 0 71.39% 0 50.39% 0 44.65% 0 44.48% 0
122 Heap Buffer Overflow 3870+3870 34.01% 0 34.37% 0 18.53% 0 19.69% 0 14.75% 0
124 Buffer Underflow 1168+1168 45.55% 0 32.28% 0 32.21% 0 1.46% 0 18.32% 0
126 Buffer Over-Read 870+870 53.56% 0 55.17% 0 52.87% 0 53.10% 0 28.32% 0
127 Buffer Under-Read 1168+1168 52.48% 0 53.51% 0 37.33% 0 9.85% 0 8.31% 0
415 Double Free 818+818 0 0 0 0 0 0 0 0 0 0
416 Use After Free 393+393 0 0 0 0 0 0 3.05% 0 0 0

Total 11387+11387 47.64% 0 37.34% 0 30.59% 0 24.17% 0 20.71% 0

memory errors, we focus our evaluation on memory-error-
related CWEs. To evaluate the detection efficiency of BSan,
we use the SPEC CPU 2017 benchmark suite [12] for single-
threaded performance, the PARSEC benchmark suite [6] for
multi-threaded performance, and a set of 10 real-world ap-
plications from different domains, such as PDF reader, XML
language parsing, image library, audio processing, etc.

We also compare BSan with four state-of-the-art binary-
level detectors, including DynamoRIO-based Dr. Memory [8],
Valgrind [27]-based Memcheck [32], RetroWrite [15], and
MTSan [10]. Since the source code of MTSan is unavailable3,
we cannot evaluate it on our platform. Fortunately, MTSan
was also evaluated with the Juliet Test Suite and some CVE
vulnerabilities used in our experiments [10]. Thus, we reuse
the data presented in the MTSan paper for the comparison.
Note that we cannot evaluate all bugs used in the MTSan paper
because of the lack of bug-triggering inputs. For RetroWrite,
due to the brittleness of static binary rewriting, we encountered
various errors when running it in our experiments, though
we have carefully selected the same compiler version and
options mentioned in the paper [15]. We also contacted the
authors of RetroWrite, but the communication did not lead
to any solutions. As a result, we can only present results for
experiments RetroWrite can successfully run.

The experimental platform is equipped with an octa-core
Intel i9-9900 CPU running at 3.10GHz and 64GB of main
memory. The operating system is Ubuntu 20.04 with the Linux
kernel (version 5.4.0). We use GCC (version 9.4.0) to compile
test programs. The platform is occupied exclusively during our
experiments. In addition, we run each program five times and
use the average execution time as its final performance.

A. Detection Effectiveness

We first present experimental results to demonstrate the
detection effectiveness of BSan.

1) Juliet: Table I shows the detection results of Juliet
test cases. As we can see, none of the evaluated detectors
reports false positives. This is because these detectors monitor

3The link in the MTSan paper https://github.com/vul337/mtsan-repo is not
accessible. We also contacted the authors but did not receive any response.

program execution to detect memory errors, and thus have
a very low chance to report false positives. Regarding false
negatives, BSan outperforms other detectors in four CWE
categories, i.e., CWE-121, CWE-122, CWE-126, and CWE-
127. That is, BSan can detect more memory errors than other
detectors in these CWE categories. For memory errors in the
two CWE categories, i.e., CWE-415 and CWE-416, BSan
does not miss any of them. This aligns with Dr. Memory,
Memcheck, and RetroWrite, but is better than MTSan, which
misses some memory errors. For CWE-124, MTSan achieves
the best detection result, though BSan can detect more memory
errors than the other three detectors. Our further study shows
that MTSan tries to guess object boundaries during the fuzzing
process, allowing it to occasionally detect some intra-buffer
memory errors. Since we run each test case only once, we
believe that it is extremely difficult, if not impossible, to
recover accurate object boundaries with a single run.

We also find that the major reason why the evaluated
detectors, including BSan, cannot detect some missed memory
errors is the lack of the data type information in binary
code, which makes it hard to detect intra-heap-buffer and
intra-stack-frame memory errors. Apart from this reason,
Dr. Memory and Memcheck have very limited support for
detecting memory errors related to stack objects, e.g., CWE-
121. Due to the shadow-memory-based detection approach,
Dr. Memory, Memcheck, and RetroWrite can miss many
memory errors, e.g., CWE-122, CWE-126, and CWE-127.
In addition, RetroWrite suffers from various static binary
rewriting errors, which can either fail the static rewriting
process or produce binaries that behave differently compared
to the original binaries, e.g., exhibiting infinite executions and
segmentation faults.

In summary, the detection results of Juliet test cases show
that BSan can effectively detect memory errors. For four
CWEs, it outperforms state-of-the-art binary-level detectors.

2) Real-World Memory Errors: Table II shows the detection
results of the 22 real-world memory errors. As the table shows,
BSan successfully detects all memory errors. In contrast,
state-of-the-art detectors cannot detect many of them due to
different reasons. Dr. Memory and Memcheck miss stack-
based memory errors due to their limited support for stack

https://github.com/vul337/mtsan-repo

TABLE II
DETECTION RESULTS OF REAL-WORLD MEMORY ERRORS AND CVE VULNERABILITIES. “OPT”: COMPILER OPTIMIZAITON LEVEL; “BINSIZE”: BINARY
SIZE MEASURED IN KILOBYTES (KB); “DM”: DR. MEMORY; “MC”: MEMCHECK;“RW”: RETROWRITE; “MT”: MTSAN; “BS”: BSAN. “SW”: STACK

OUT-OF-BOUNDS WRITE; “HW”: HEAP OUT-OF-BOUNDS WRITE; “HR”: HEAP OUT-OF-BOUNDS READ; “HF”: HEAP USE-AFTER-FREE; “SF”: STACK
USE-AFTER-FREE; “F”: STATIC BINARY REWRITING FAILURE; “-”: NOT EVALUATED. ∗DETECTION RESULTS OF MTSAN ARE FROM THE PAPER [10].

Type OPT BinSize DM MC RW MT∗ BS Type OPT BinSize DM MC RW MT∗ BS

CVE-2018-20004 SW

O0 121.17 × × F ✓ ✓

CVE-2020-11528 SW

O0 16.30 × × ✓ - ✓
O1 175.80 × × F ✓ ✓ O1 21.03 × × ✓ - ✓
O2 178.82 × × F ✓ ✓ O2 22.12 × × ✓ - ✓
O3 327.66 × × F ✓ ✓ O3 22.12 × × ✓ - ✓

CVE-2020-21676 SW

O0 1333.98 × × F × ✓

CVE-2023-31981 SW

O0 519.24 × × F - ✓
O1 2095.13 × × F × ✓ O1 729.62 × × F - ✓
O2 2315.62 × × F × ✓ O2 762.37 × × F - ✓
O3 3060.34 × × F × ✓ O3 824.14 × × F - ✓

CVE-2021-20294 SW

O0 4060.40 × × F ✓ ✓

Fdkaac Bug#55 SW

O0 238.41 × × F - ✓
O1 4637.23 × × F ✓ ✓ O1 341.70 × × F - ✓
O2 5298.74 × × F ✓ ✓ O2 432.41 × × F - ✓
O3 5613.40 × × F ✓ ✓ O3 520.92 × × F - ✓

CVE-2016-10270 HR

O0 63.22 ✓ ✓ F ✓ ✓

GPAC Bug#1348 SW

O0 275.73 × × F - ✓
O1 105.71 ✓ ✓ F ✓ ✓ O1 373.38 × × F - ✓
O2 112.74 ✓ ✓ F ✓ ✓ O2 377.43 × × F - ✓
O3 169.19 ✓ ✓ F ✓ ✓ O3 385.21 × × F - ✓

CVE-2018-20005 HF

O0 139.63 ✓ ✓ F ✓ ✓

CVE-2022-27135 HW

O0 1234.94 ✓ ✓ F - ✓
O1 252.61 ✓ ✓ F ✓ ✓ O1 2193.06 ✓ ✓ F - ✓
O2 283.19 ✓ ✓ F ✓ ✓ O2 2498.78 ✓ ✓ F - ✓
O3 362.68 ✓ ✓ F ✓ ✓ O3 2658.07 ✓ ✓ F - ✓

CVE-2017-14408 SW

O0 104.98 × × × ✓ ✓

CVE-2023-36274 HW

O0 181.14 ✓ ✓ F - ✓
O1 118.73 × × × ✓ ✓ O1 191.15 ✓ ✓ F - ✓
O2 118.53 × × × ✓ ✓ O2 191.18 ✓ ✓ F - ✓
O3 150.03 × × × ✓ ✓ O3 191.18 ✓ ✓ F - ✓

CVE-2017-9047 SW

O0 131.59 × × × ✓ ✓

CVE-2020-18430 HR

O0 739.22 × ✓ F - ✓
O1 203.77 × × × ✓ ✓ O1 769.45 × ✓ F - ✓
O2 216.43 × × × ✓ ✓ O2 799.15 × ✓ F - ✓
O3 225.49 × × × ✓ ✓ O3 971.75 × ✓ F - ✓

CVE-2016-10271 HF

O0 63.22 ✓ ✓ ✓ ✓ ✓

CVE-2023-0645 HR

O0 164.57 ✓ ✓ F - ✓
O1 105.71 ✓ ✓ ✓ ✓ ✓ O1 195.48 ✓ ✓ F - ✓
O2 112.74 ✓ ✓ ✓ ✓ ✓ O2 200.66 ✓ ✓ F - ✓
O3 169.19 ✓ ✓ ✓ ✓ ✓ O3 220.88 ✓ ✓ F - ✓

CVE-2013-4243 HF

O0 34.72 ✓ ✓ ✓ ✓ ✓

Vim Bug#11923 HR

O0 8530.87 ✓ ✓ F - ✓
O1 50.34 ✓ ✓ ✓ ✓ ✓ O1 11935.98 ✓ ✓ F - ✓
O2 51.97 ✓ ✓ ✓ ✓ ✓ O2 13287.80 ✓ ✓ F - ✓
O3 52.66 ✓ ✓ ✓ ✓ ✓ O3 17035.57 ✓ ✓ F - ✓

CVE-2020-21675 SW

O0 1417.95 × × × ✓ ✓

CVE-2023-5535 HF

O0 15122.07 ✓ ✓ F - ✓
O1 2401.31 × × × ✓ ✓ O1 19726.23 ✓ ✓ F - ✓
O2 2655.22 × × × ✓ ✓ O2 21462.36 ✓ ✓ F - ✓
O3 3066.47 × × × ✓ ✓ O3 26232.16 ✓ ✓ F - ✓

CVE-2019-8356 SW

O0 126.96 × × F - ✓

PH7 Bug#37 SF

O0 952.19 × × F - ✓
O1 179.09 × × F - ✓ O1 1633.72 × × F - ✓
O2 186.41 × × F - ✓ O2 2157.17 × × F - ✓
O3 206.00 × × F - ✓ O3 2750.61 × × F - ✓

objects, though they can find most heap-based memory errors.
For RetroWrite, it can only detect one CVE vulnerability
because it fails to rewrite other binaries to generate runnable
binaries. Regarding MTSan, we only have limited detection
results, as it is not available for us to evaluate. According to the
MTSan paper, it fails to detect CVE-2020-21676, a stack out-
of-bounds write, because this error modifies the stack canary,
which causes the crashed execution of the application before
MTSan can detect it. To summarize, we can conclude from
the detection results that BSan is more effective than state-of-
the-art detectors in detecting real-world memory errors.

From Table II, we can also observe that BSan is insensitive
to different compiler optimization levels, i.e., from O0 to O3.
This demonstrates that BSan does not need to take special care
of compiler optimization levels, as its design is general and
not specific to any optimization levels.

Figure 6 shows the simplified source code of PH7 Bug#37,
a real-world stack use-after-free bug. In this bug, the local

1 static ph7_hashmap_node *
2 HashmapNodeMerge(ph7_hashmap_node *pA, ...) {
3 ph7_hashmap_node result, *pTail;
4 result.pNext = result.pPrev = 0;
5 pTail = &result;
6 ...
7 if (xCmp(pA, pB, pCmpData) < 0) {
8 pTail->pPrev = pA;
9 pA->pNext = pTail; // The local pointer pTail

10 pTail = pA; // escapes from the current
11 pA = pA->pPrev; // function via pA->pNext.
12 }
13 ...
14 }

Fig. 6. PH7 Bug#37, a stack use-after-free bug. Note that state-of-the-art
binary-level detectors cannot detect this bug due to their shadow memory-
based approach, while BSan can successfully report this bug.

pointer pTail is initialized with the address of the local
variable result at line 5. However, this pointer is later prop-
agated out of the function through the pointer pA->pNext at

600.perlbench
602.gcc

605.mcf

620.omnetpp

623.xalancbmk
625.x264

631.deepsjeng
641.leela

648.exchange
657.xz

603.bwaves

607.cactuBSSN
619.lbm

621.wrf
627.cam4

628.pop2

638.imagick
644.nab

649.fotonik3d
654.roms

geomean

25
50
75

100
125
150

No
rm

al
ize

d
Ex

ec
ut

io
n

Ti
m

e
Dr.Memory Memcheck BSan

Fig. 7. Normalized execution times of SPEC CPU 2017 benchmarks with different detectors. The baseline is the native execution time without any detector.
RetroWrite is excluded due to the errors it has when statically rewriting the binaries.

600.perlbench
602.gcc

605.mcf

620.omnetpp

623.xalancbmk
625.x264

631.deepsjeng
641.leela

648.exchange
657.xz

603.bwaves

607.cactuBSSN
619.lbm

621.wrf
627.cam4

628.pop2

638.imagick
644.nab

649.fotonik3d
654.roms

geomean
1

100

200

300

400

No
rm

al
ize

d
Ex

ec
ut

io
n

Ti
m

e

No-OPT D-OPT D-OPT+P-OPT D-OPT+P-OPT+I-OPT

Fig. 8. Normalized execution times of SPEC CPU 2017 benchmarks with BSan using different optimizations. The baseline is the native execution time without
any detector. “No-OPT”: no offline optimization; “D-OPT”: applying offline detection optimization only; “D-OPT+P-OPT”: applying offline detection and
propagation optimizations only; “D-OPT+P-OPT+I-OPT”: applying all offline optimizations, i.e., detection, propagation, and instrumentation optimizations.

1 2 4 8 16

40
80

120
blackscholes

1 2 4 8 16

20
40
60

bodytrack

1 2 4 8 16

40
80

120
ferret

1 2 4 8 16

35
70

105
fluidanimate

1 2 4 8 16

45
90

135
swaptions

1 2 4 8 16
Number of Threads

35
70

105

No
rm

al
ize

d
Ex

ec
ut

io
n

Ti
m

e

facesim

1 2 4 8 16

45
90

135
vips

1 2 4 8 16

25
50
75

raytrace

1 2 4 8 16

40
80

120
freqmine

1 2 4 8 16

55
110
165

x264

Dr. Memory Memcheck BSan

Fig. 9. Normalized execution times of PARSEC benchmarks with different detectors under different numbers of threads. The baseline is the native execution
time without any detector under the corresponding thread number. RetroWrite is excluded in this experiment due to its static binary rewriting errors.

line 9. As a consequence, a stack use-after-free error will hap-
pen when pA->pNext is dereferenced later. Unfortunately,
none of the evaluated binary-level detectors can find this bug
because when pA->pNext is dereferenced, it points to a
valid address on the stack, rendering the shadow memory-
based approach ineffective. Thanks to the identifier-based
approach, BSan can successfully report this bug by checking
the identifier attached to pA->pNext, which corresponds to
a deallocated stack object when this pointer is dereferenced.

B. Performance Efficiency

We next study the runtime performance of BSan and com-
pare it with other detectors.

1) Single-Threaded Performance: Figure 7 shows the per-
formance efficiency of SPEC CPU 2017 benchmarks running

with different detectors. Here, although RetroWrite is not
included because it fails to perform static binary rewriting
for the benchmark binaries, it is worth noting that RetroWrite
is expected to have better runtime performance than the
detectors in the figure, including BSan, as it eliminates the high
performance overhead incurred by dynamic instrumentation.

As shown in Figure 7, BSan consistently achieves the best
performance efficiency for all benchmarks among the three
evaluated detectors. This demonstrates the high performance
efficiency of BSan compared to existing detectors. On av-
erage, BSan incurs 24.07× performance slowdown, while
Dr. Memory and Memcheck result in 30.06× and 33.85× per-
formance slowdown, respectively. Given that Dr. Memory and
Memcheck are widely adopted in practice to detect memory
errors in application binary code, this result shows the strong

readelf
objdump size

fig2dev xpdf sox
sngrep

mxml
libtifffdkaac

geomean
0

20

40

60

80

100
No

rm
al

ize
d

Ex
ec

ut
io

n
Ti

m
e

Dr.Memory Memcheck BSan

Fig. 10. Normalized execution times of real-world applications with different
detectors. The baseline is the native execution time without any detector.

practicability of BSan in terms of detection efficiency.
To understand the optimization effectiveness of the offline

analysis in BSan, we further measure its performance with
different optimizations applied. Figure 8 shows the results.
As we can see, without applying any offline optimizations,
BSan introduces significant performance slowdown, 129.88×
on average and as high as 412.03× for 600.perlbench. This is
because it needs to instrument most of the executed instruc-
tions to conduct memory error detection and object identifier
propagation. This result echoes the necessity of developing
optimizations to improve the detection efficiency. As the figure
shows, with more optimizations applied, the performance
slowdown is reduced substantially, from 129.88× to 75.72×
with D-OPT, 49.71× with D-OPT and P-OPT, and 24.07×
with all optimizations, i.e., D-OPT, P-OPT, and I-OPT. This
demonstrates the effectiveness of the offline analysis in BSan
in removing redundant detection and propagation.

2) Multi-Threaded Performance: Figure 9 shows the per-
formance results of PARSEC benchmarks running with dif-
ferent detectors under different numbers of threads. Again,
RetroWrite is not included because of its static binary rewrit-
ing errors. From the figure, we can clearly see that BSan
achieves better performance efficiency than the other two
detectors. Overall, the three detectors introduce 91.51× (Dr.
Memory), 101.21× (Memcheck), and 55.83× (BSan) perfor-
mance slowdown, respectively, when running the benchmarks
with 16 threads. This shows that BSan is more applicable when
detecting memory errors in multi-threaded applications.

An interesting observation we can make from Figure 9 is
that as the thread number increases, the performance overhead
incurred by memory error detection also increases for all three
detectors. A possible explanation for this phenomenon is that
memory error detection may contend with application threads
for limited computing resources, e.g., CPU Cache, which
can offset the performance benefit achieved by increasing the
number of threads.

3) Real-World Applications: Figure 10 shows the perfor-
mance efficiency of the 10 real-world applications running
with different detectors. BSan again surpasses Dr. Memory
and Memcheck, benefiting from its offline optimizations. On
average, compared to the baseline, BSan brings in a 16.40×
performance slowdown, while Dr. Memory and Memcheck

TABLE III
OFFLINE ANALYSIS TIMES (IN SECONDS) OF BSAN FOR SPEC CPU 2017

BENCHMARKS AND THEIR BINARY SIZES (IN KB).

Size Time Size Time

600.perlbench 7107 321.10 602.gcc 38035 801.48
605.mcf 97 2.09 620.omnetpp 15188 302.94
623.xalancbmk 51439 754.75 625.x264 1853 36.84
631.deepsjeng 353 5.77 641.leela 2436 33.23
648.exchange 151 1.86 657.xz 622 19.94
603.bwaves 106 1.23 607.cactuBSSN 12799 198.44
619.lbm 75 14.23 621.wrf 5574 28.49
627.cam4 7170 27.98 628.pop2 4782 24.48
638.imagick 4835 260.82 644.nab 488 15.04
649.fotonik3d 672 1.42 654.roms 2344 1.43

readelf
objdump size

fig2dev xpdf sox
sngrep

mxml
libtifffdkaac

geomean
0

10

20

No
rm

al
ize

d
M

em
or

y
Co

ns
um

pt
io

n

Dr.Memory
Memcheck

BSan

Fig. 11. Normalized memory consumption with different detectors. The
baseline is the memory size used by the native execution without any detector.

lead to 24.57× and 25.37× slowdown, respectively. With this
result, we are confident that it is practical to apply BSan for
detecting memory errors in COTS binary code.

C. Cost Analysis

We finally study the analysis time of the offline analysis
and the memory overhead of the online detection in BSan.

1) Offline Analysis Time: Table III shows the offline anal-
ysis times for SPEC CPU 2017 benchmarks. As shown in the
table, for most benchmarks, BSan can complete the offline
analysis in less than 60 seconds. For some benchmarks, e.g.,
602.gcc and 623.xalancbmk, the analysis times are longer than
10 minutes because of their large binary sizes. On average,
BSan needs 89.93 seconds to analyze a binary application.
We further investigate the offline analysis process and find
that the three optimization passes, i.e., detection, propagation,
and instrumentation, consume an average of 14.12%, 17.36%,
and 15.59% of the total offline analysis time, respectively.
The remaining 52.93% analysis time is used by the Dyninst
infrastructure to disassemble the binaries and construct CFGs.
Since the offline analysis of BSan is a one-time cost, we
consider the analysis times acceptable in practice.

2) Memory Overhead of Online Detection: Figure 11 shows
the normalized memory consumption of the 10 real-world
applications running with different detectors. From the figure,
we can clearly see that BSan incurs much less memory over-
head than the other two detectors. Overall, they respectively
introduce 11.56× (Dr. Memory), 11.88× (Memcheck), and
3.65× (BSan) memory overhead. The major reason for the

TABLE IV
THE COMPARISON BETWEEN BSAN AND STATE-OF-THE-ART

BINARY-LEVEL DETECTORS. “DT”: DETECTION TECHNIQUE; “IM”:
INSTRUMENTATION MECHANISM; “HI”: HARDWARE INDEPENDENCE.

“OA”: OFFLINE ANALYSIS; “SM”: SHADOW MEMORY; “HF”: HARDWARE
FEATURE; “ID”: OBJECT IDENTIFIER; “DBI”: DYNAMIC BINARY

INSTRUMENTATION; “SBR”: STATIC BINARY REWRITING.

DT IM HI
Error Type Object Type

Spatial Temporal Heap Stack Global

Undangle [9] OA DBI ✓ × ✓ ✓ × ×
QASan [18] SM DBI ✓ ✓ ✓ ✓ × ×
Dr. Memory [8] SM DBI ✓ ✓ ✓ ✓ × ×
Memcheck [32] SM DBI ✓ ✓ ✓ ✓ × ×
RetroWrite [15] SM SBR ✓ ✓ ✓ ✓ ✓ ×
MTSan [10] HF SBR × ✓ ✓ ✓ ✓ ✓

BSan ID Hybrid ✓ ✓ ✓ ✓ ✓ ✓

high memory overhead of the other detectors is their adoption
of the shadow-memory-based approach, which requires the
allocation of a large region of shadow memory and populating
it with meaningful shadow bits even if the corresponding
application memory is not allocated. In contrast, BSan uses the
identifier-based approach, which allows it to allocate memory
for the detection metadata on demand.

VI. RELATED WORK

Due to the high impact of memory errors and the popularity
of binary code, many binary-level memory error detectors have
been developed. Notable examples include Dr. Memory [8],
QASan [18], Undangle [9], Memcheck [32], RetroWrite [15],
and MTSan [10]. Among them, Undangle is an offline detector,
which analyzes the execution traces of binary applications to
detect heap use-after-free errors. QASan, Dr. Memory, and
Memcheck are shadow-memory-based detectors using three
different dynamic binary instrumentation frameworks, i.e.,
QEMU [3], DynamoRIO [7], and Valgrind [27], respectively.
RetroWrite uses static binary rewriting to implement a binary
version of AddressSanitizer [31], which is a source-level
shadow-memory-based detector. Differently, MTSan relies on
the recently introduced memory tagging extension in ARM
processors to detect memory errors.

Table IV summarizes the differences between BSan and
state-of-the-art binary-level memory error detectors. Particu-
larly, BSan adopts an identifier-based approach for memory
error detection. This allows it to detect more deeply hidden
memory errors in binary code compared to existing shadow-
memory-based detectors, as evidenced in our experimental
results. Also, it is a software-only detector with no dependence
on any hardware-specific features. Though the identifier-based
approach has been implemented at the source code level [24],
[25], BSan addresses several unique technical challenges of
applying it to binary code, e.g., creatively combining offline
analysis and online detection to reduce the high runtime
overhead caused by propagating object identifiers.

In addition, the techniques developed in BSan are not soft-
ware substitutions of prior hardware-based solutions for mem-

ory safety [30], [33], [38], [40]. For instance, HeapCheck [30]
assumes the availability of source code and relies on compiler-
based instrumentation to leverage the unused bits in 64-bit
pointers to store pointer metadata for heap memory safety
checks. As discussed in §III, this cannot work for binary code.
As another example, REST [33] modifies the instruction set
to add new instructions for memory error detection, and as
a consequence, it has to recompile program source code to
generate new binaries to utilize the added instructions.

VII. CONCLUSION

In this paper, we have presented BSan, a powerful software-
only memory error detector for COTS binaries. The distinctive
feature that differentiates it from state-of-the-art binary-level
detectors is the adoption of an identifier-based approach. This
enables BSan to detect more deeply hidden memory errors in
binary code. The development of BSan also addresses several
unique technical challenges of implementing the identifier-
based approach at the binary code level. Experimental results
show that BSan can achieve desirable detection effectiveness.
Moreover, the detection efficiency of BSan, including both
performance and memory overheads, is comparable to existing
dynamic instrumentation-based detectors.

ACKNOWLEDGMENT

We would like to thank the anonymous reviewers for their
insightful comments and feedback. This work was supported
in part by the U.S. National Science Foundation under grants
CNS-2238264, CNS-2330752, and CNS-2401873. This work
was also partially supported by the M. G. Michael Award
funded by the Franklin College of Arts and Sciences at the
University of Georgia and a faculty startup funding offered by
the University of Georgia.

REFERENCES

[1] ARM. Armv8.5-A Memory Tagging Extension White Paper, Ac-
cessed: August 2024. https://documentation-service.arm.com/static/
624ea580caabfd7b3c13e23f.

[2] Yechan Bae, Youngsuk Kim, Ammar Askar, Jungwon Lim, and Taesoo
Kim. Rudra: Finding Memory Safety Bugs in Rust at the Ecosystem
Scale. In Proceedings of the ACM SIGOPS 28th Symposium on
Operating Systems Principles, SOSP ’21, page 84–99, New York, NY,
USA, 2021. Association for Computing Machinery.

[3] Fabrice Bellard. QEMU, a Fast and Portable Dynamic Translator.
In 2005 USENIX Annual Technical Conference (USENIX ATC 05),
Anaheim, CA, April 2005. USENIX Association.

[4] Emery D. Berger and Benjamin G. Zorn. DieHard: Probabilistic Memory
Safety for Unsafe Languages. In Proceedings of the 27th ACM SIGPLAN
Conference on Programming Language Design and Implementation,
PLDI ’06, page 158–168, New York, NY, USA, 2006. Association for
Computing Machinery.

[5] Andrew R. Bernat and Barton P. Miller. Anywhere, Any-Time Binary
Instrumentation. In Proceedings of the 10th ACM SIGPLAN-SIGSOFT
Workshop on Program Analysis for Software Tools, PASTE ’11, page
9–16, New York, NY, USA, 2011. ACM.

[6] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. The
parsec benchmark suite: Characterization and architectural implications.
In Proceedings of the 17th International Conference on Parallel Ar-
chitectures and Compilation Techniques, PACT ’08, page 72–81, New
York, NY, USA, 2008. Association for Computing Machinery.

https://documentation-service.arm.com/static/624ea580caabfd7b3c13e23f
https://documentation-service.arm.com/static/624ea580caabfd7b3c13e23f

[7] Derek Bruening, Timothy Garnett, and Saman Amarasinghe. An
Infrastructure for Adaptive Dynamic Optimization. In Proceedings of
the International Symposium on Code Generation and Optimization:
Feedback-Directed and Runtime Optimization, CGO ’03, page 265–275,
USA, 2003. IEEE Computer Society.

[8] Derek Bruening and Qin Zhao. Practical Memory Checking with Dr.
Memory. In Proceedings of the 9th Annual IEEE/ACM International
Symposium on Code Generation and Optimization, CGO ’11, page
213–223, USA, 2011. IEEE Computer Society.

[9] Juan Caballero, Gustavo Grieco, Mark Marron, and Antonio Nappa.
Undangle: Early Detection of Dangling Pointers in Use-after-Free and
Double-Free Vulnerabilities. In Proceedings of the 2012 Interna-
tional Symposium on Software Testing and Analysis, ISSTA 2012, page
133–143, New York, NY, USA, 2012. ACM.

[10] Xingman Chen, Yinghao Shi, Zheyu Jiang, Yuan Li, Ruoyu Wang,
Haixin Duan, Haoyu Wang, and Chao Zhang. MTSan: A Feasible
and Practical Memory Sanitizer for Fuzzing COTS Binaries. In 32nd
USENIX Security Symposium (USENIX Security 23), pages 841–858,
Anaheim, CA, August 2023. USENIX Association.

[11] Haehyun Cho, Jinbum Park, Adam Oest, Tiffany Bao, Ruoyu Wang,
Yan Shoshitaishvili, Adam Doupé, and Gail-Joon Ahn. ViK: Practical
Mitigation of Temporal Memory Safety Violations through Object ID
Inspection. In Proceedings of the 27th ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems, ASPLOS ’22, page 271–284, New York, NY, USA, 2022.
Association for Computing Machinery.

[12] Standard Performance Evaluation Corporation. SPEC CPU 2017,
Accessed: 2017. https://www.spec.org/cpu2017/.

[13] The MITRE Corporation. Common Vulnerabilities and Exposures
(CVE)), Accessed: August 2024. https://www.cve.org.

[14] Alessandro Di Federico, Mathias Payer, and Giovanni Agosta. REV.NG:
A Unified Binary Analysis Framework to Recover CFGs and Function
Boundaries. In Proceedings of the 26th International Conference on
Compiler Construction, CC 2017, page 131–141, New York, NY, USA,
2017. Association for Computing Machinery.

[15] Sushant Dinesh, Nathan Burow, Dongyan Xu, and Mathias Payer.
RetroWrite: Statically Instrumenting COTS Binaries for Fuzzing and
Sanitization. In 2020 IEEE Symposium on Security and Privacy (SP),
pages 1497–1511, 2020.

[16] The Linux Kernel documentation. Memory Layout on AArch64 Linux,
Accessed: August 2024. https://www.kernel.org/doc/html/latest/arch/
arm64/memory.html.

[17] The Linux Kernel documentation. x86 64 Memory Management,
Accessed: August 2024. https://www.kernel.org/doc/html/latest/arch/
x86/x86 64/mm.html.

[18] Andrea Fioraldi, Daniele Cono D’Elia, and Leonardo Querzoni. Fuzzing
Binaries for Memory Safety Errors with QASan. In 2020 IEEE Secure
Development (SecDev), pages 23–30, 2020.

[19] NSA Center for Assured Software. Juliet C/C++ 1.3, Accessed: October
2017. https://samate.nist.gov/SARD/test-suites/112.

[20] Chris Hawblitzel, Shuvendu K. Lahiri, Kshama Pawar, Hammad
Hashmi, Sedar Gokbulut, Lakshan Fernando, Dave Detlefs, and Scott
Wadsworth. Will You Still Compile Me Tomorrow? Static Cross-Version
Compiler Validation. In Proceedings of the 2013 9th Joint Meeting on
Foundations of Software Engineering, ESEC/FSE 2013, page 191–201,
New York, NY, USA, 2013. Association for Computing Machinery.

[21] Trevor Jim, Greg Morrisett, Dan Grossman, Michael Hicks, James
Cheney, and Yanling Wang. Cyclone: A Safe Dialect of C. In 2002
USENIX Annual Technical Conference (USENIX ATC 02), Monterey,
CA, June 2002. USENIX Association.

[22] Xiaozhu Meng and Barton P. Miller. Binary Code is Not Easy. In
Proceedings of the 25th International Symposium on Software Testing
and Analysis, ISSTA 2016, page 24–35, New York, NY, USA, 2016.
Association for Computing Machinery.

[23] Matt Miller. Trends, challenges, and strategic shifts in
the software vulnerability mitigation landscape, Accessed:
August 2024. https://github.com/Microsoft/MSRC-Security-
Research/blob/master/presentations/2019 02 BlueHatIL/2019 01%20-
%20BlueHatIL%20-%20Trends%2C%20challenge%2C%20and%
20shifts%20in%20software%20vulnerability%20mitigation.pdf.

[24] Santosh Nagarakatte, Jianzhou Zhao, Milo M.K. Martin, and Steve
Zdancewic. SoftBound: Highly Compatible and Complete Spatial
Memory Safety for C. In Proceedings of the 30th ACM SIGPLAN

Conference on Programming Language Design and Implementation,
PLDI ’09, page 245–258, New York, NY, USA, 2009. Association for
Computing Machinery.

[25] Santosh Nagarakatte, Jianzhou Zhao, Milo M.K. Martin, and Steve
Zdancewic. CETS: Compiler Enforced Temporal Safety for C. In Pro-
ceedings of the 2010 International Symposium on Memory Management,
ISMM ’10, page 31–40, New York, NY, USA, 2010. Association for
Computing Machinery.

[26] George C. Necula, Scott McPeak, and Westley Weimer. CCured:
Type-Safe Retrofitting of Legacy Code. In Proceedings of the 29th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’02, page 128–139, New York, NY, USA, 2002.
Association for Computing Machinery.

[27] Nicholas Nethercote and Julian Seward. Valgrind: A Framework for
Heavyweight Dynamic Binary Instrumentation. In Proceedings of the
28th ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI ’07, page 89–100, New York, NY, USA, 2007.
Association for Computing Machinery.

[28] Chengbin Pang, Ruotong Yu, Yaohui Chen, Eric Koskinen, Georgios
Portokalidis, Bing Mao, and Jun Xu. SoK: All You Ever Wanted to
Know About x86/x64 Binary Disassembly But Were Afraid to Ask. In
2021 IEEE Symposium on Security and Privacy (SP), pages 833–851,
2021.

[29] The Chromium Projects. Memory safety, Accessed: August 2024. https:
//www.chromium.org/Home/chromium-security/memory-safety.

[30] Gururaj Saileshwar, Rick Boivie, Tong Chen, Benjamin Segal, and Alper
Buyuktosunoglu. HeapCheck: Low-cost Hardware Support for Memory
Safety. ACM Trans. Archit. Code Optim., 19(1), Jan 2022.

[31] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and
Dmitriy Vyukov. AddressSanitizer: A Fast Address Sanity Checker. In
2012 USENIX Annual Technical Conference (USENIX ATC 12), pages
309–318, Boston, MA, June 2012. USENIX Association.

[32] Julian Seward and Nicholas Nethercote. Using Valgrind to Detect
Undefined Value Errors with Bit-Precision. In 2005 USENIX Annual
Technical Conference (USENIX ATC 05), Anaheim, CA, April 2005.
USENIX Association.

[33] Kanad Sinha and Simha Sethumadhavan. Practical Memory Safety with
REST. In Proceedings of the 45th Annual International Symposium on
Computer Architecture, ISCA ’18, page 600–611. IEEE Press, 2018.

[34] Matthew Smithson, Khaled ElWazeer, Kapil Anand, Aparna Kotha, and
Rajeev Barua. Static Binary Rewriting without Supplemental Informa-
tion: Overcoming the Tradeoff between Coverage and Correctness. In
2013 20th Working Conference on Reverse Engineering (WCRE), pages
52–61, 2013.

[35] Chengnian Sun, Vu Le, Qirun Zhang, and Zhendong Su. Toward
Understanding Compiler Bugs in GCC and LLVM. In Proceedings
of the 25th International Symposium on Software Testing and Analysis,
ISSTA 2016, page 294–305, New York, NY, USA, 2016. Association
for Computing Machinery.

[36] László Szekeres, Mathias Payer, Tao Wei, and Dawn Song. SoK: Eternal
War in Memory. In 2013 IEEE Symposium on Security and Privacy,
pages 48–62, 2013.

[37] Wenwen Wang. MLEE: Effective Detection of Memory Leaks on Early-
Exit Paths in OS Kernels. In 2021 USENIX Annual Technical Conference
(USENIX ATC 21), pages 31–45. USENIX Association, July 2021.

[38] Shengjie Xu, Wei Huang, and David Lie. In-Fat Pointer: Hardware-
Assisted Tagged-Pointer Spatial Memory Safety Defense with Subobject
Granularity Protection. In Proceedings of the 26th ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS ’21, page 224–240, New York, NY, USA,
2021. Association for Computing Machinery.

[39] Wei Xu, Daniel C. DuVarney, and R. Sekar. An Efficient and Backwards-
Compatible Transformation to Ensure Memory Safety of C Programs.
In Proceedings of the 12th ACM SIGSOFT International Symposium
on Foundations of Software Engineering, SIGSOFT ’04/FSE-12, page
117–126, New York, NY, USA, 2004. Association for Computing
Machinery.

[40] Mohamed Tarek Ibn Ziad, Miguel A. Arroyo, Evgeny Manzhosov, Ryan
Piersma, and Simha Sethumadhavan. No-FAT: Architectural Support
for Low Overhead Memory Safety Checks. In Proceedings of the 48th
Annual International Symposium on Computer Architecture, ISCA ’21,
page 916–929. IEEE Press, 2021.

https://www.spec.org/cpu2017/
https://www.cve.org
https://www.kernel.org/doc/html/latest/arch/arm64/memory.html
https://www.kernel.org/doc/html/latest/arch/arm64/memory.html
https://www.kernel.org/doc/html/latest/arch/x86/x86_64/mm.html
https://www.kernel.org/doc/html/latest/arch/x86/x86_64/mm.html
https://samate.nist.gov/SARD/test-suites/112
https://github.com/Microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%20-%20Trends%2C%20challenge%2C%20and%20shifts%20in%20software%20vulnerability%20mitigation.pdf
https://github.com/Microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%20-%20Trends%2C%20challenge%2C%20and%20shifts%20in%20software%20vulnerability%20mitigation.pdf
https://github.com/Microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%20-%20Trends%2C%20challenge%2C%20and%20shifts%20in%20software%20vulnerability%20mitigation.pdf
https://github.com/Microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%20-%20Trends%2C%20challenge%2C%20and%20shifts%20in%20software%20vulnerability%20mitigation.pdf
https://www.chromium.org/Home/chromium-security/memory-safety
https://www.chromium.org/Home/chromium-security/memory-safety

	Introduction
	Background and Motivation
	Memory Errors
	Shadow-Memory-Based Detection
	Identifier-Based Detection

	Technical Challenges
	System Design of BSan
	Object Identifier Management
	Heap Objects
	Stack Objects
	Global Objects

	Global Identifier Propagation
	Memory Error Detection
	Offline Analysis

	Evaluation
	Detection Effectiveness
	Juliet
	Real-World Memory Errors

	Performance Efficiency
	Single-Threaded Performance
	Multi-Threaded Performance
	Real-World Applications

	Cost Analysis
	Offline Analysis Time
	Memory Overhead of Online Detection

	Related Work
	Conclusion
	References

