COMP 110-001
More About Classes

Yi Hong
May 22, 2015

Review

public class Student

{

public String name;
public int classYear;
public double gpa; [:::3

public String major;

public String getMajor()
{

return major;
} %

public void increaseYear()

{
classYear++; [:::1

}
/] ...

Class Name: Student

- name: String

- year: int

- gpa: double

- major: String

- credits: int

- gpaSum: double

+ getName(): String

+ getMajor(): String

+ printData(): void

+ increaseYear(): void

+ calcGpa(double grade): void

Today

* Methods
= Code block and variable scope

Classes, Objects, and Methods

= Class: a definition of a kind of object

»= Object: an instance of a class

» Contains instance variables (data) and
methods

= Methods

* Performs actions defined by a set of
statements

Methods

= Two kinds of methods
 Methods that return a value

« Examples: String’s substring() method,
String’s indexOf() method, etc.
* Methods that return nothing

« Perform some action other than returning an item
« Example: System.out.printin()

Methods

returns a String

return type

classYear++: returns nothing

Defining Methods That Return Nothing

public void increaseYear()

{

}
* Method heading:

public: no restriction on how to use the method (more
details later)

* void: a void method that returns nothing

classYear++;

« Method parameters (no parameters in this example)

* Method body: statements executed when the
method is called (invoked)
* Must be inside a pair of braces {}

Example: Method printData

= As usual, inside a block (defined by
braces), you can have multiple statements

public void printData()

{
System.out.printin(*Name: ” + name);
System.out.printin(*Major: ” + major);
System.out.printin("GPA: " + gpa);

}

Example of Method with Parameters

public void increaseYear(int increment)

classYear += increment;\ \

} Data type | | Name of parameter

public void increaseYear(int increment, boolean check)

{

if (check && classYear + increment <= MaxYear) {
classYear += increment;

}

= Parameters are used to hold the values that you pass to the method
= Multiple parameters are separated by comma

Calling Methods That Return Nothing

* Object, followed by dot, then method name,
then ()

* Order, type, and number of arguments must
match parameters specified in method heading

= Use them as Java statements

Student jack = new Student();
jack.classYear = 1,

jack.increaseYear();

System.out.printin("Jack’s class year is " + jack.classYear);

10

Defining Methods That Return a Value

public String getMajor()
{

}
* Method heading:

* public: no restriction on how to use the method (more
details later)

« Type: the data type of value that the method returns
 Method name & parameters

return major;

* Method body: statements executed
« Must be inside a pair of braces {}

 Must have a return statement

11

return Statement

= A method that returns a value must have aft least
one return statement

* Terminates the method’s execution, and provides
a value returned by the method. More statements
follow the return statement will not be executed

= Syntax:
* return Expression;

= Expression can be any expression that produces a
value of the type specified in the heading of the
method

12

Methods That Return a Value

- Example: = A better one:

public String getClassYear() public String getClassYear()
{ {

If (classYear == 1) String str = "
return “Freshman”: if (C|aSS)(ear ==)”
else if (classYear == 2) St". = "Freshman’;
« . else if (classYear == 2)
return “Sophomore”; N
Ise if str = “Sophomore”;
© else if ...
} return str;

13

Calling Methods That Return a Value

» Object, followed by dot, then method name,
then () (the same as before)

» Use them as a value of the type specified by
the method’s return type

Student jack = new Student();
jack.major = "Computer Science’;

String major = jack.getMajor();

System.out.printin(“Jack’s full name is ” + jack.getName());
System.out.printin(“Jack’s major is 7 + major);

14

return Statement

= Can also be used in methods that return
nothing

= Terminates the method
= Syntax:

 Return;

public void increaseYear()
{
if (classYear >=4)
return;
classYear++;

}

15

Summary of Method Definitions

= Syntax

public Return_Type Method_Name(Parameters)
{

Statements

}
* Return_Type

* void (don’t need a return statement, but it can have
one if you want to end the method invocation
before the physical end of the code: return;)

 a data type (Statements must contain at least one
return statement of the form: return Expression;)

Calling Methods from Methods

* |n a method’s body, we can call another
method

* receiving_object.method();

= |f calling a method in the same class, we
do not need receiving_object:

* method();

= Alternatively, use the this keyword
* this.method();

this

= \Within a class definition, this is a name for
the receiving object

* The object is understood to be there, but
its name usually is omitted

* this.name
* this.major

* this.getMajor()
= See textbook p.282 for details

Code Block

= A section of code enclosed by { ... }
= For grouping purpose

if (x<0)
{
IsPositive = false;
X = -X;
}
for(inti = 0; i<10; i++)
{

System.out.printin(™”);

}

Code Block

= Code blocks can be nested

public class Hello

{
public static void main(String arg[])
{
System.out.printin("Hello."); Outer block
}
}

public class Hello{
public static void main(String arg[])
{
System.out.printin("Hello."); Inner block

}
}

Another Example of Code Block

for(int i = 0; i<100; i++)

{
if (1% 2==0)
{
System.out.printin(i + " is even"); Outer block
}
}
for(inti = 0; i<100; i++)
{
if (1% 2==0)
{
System.out.printin(i + " is even"); Inner block
}

}

Variable Scope

* The scope of a variable is the part of the program
over which the variable name can be referenced

= Variables here include local / instance variables,
and method parameters

= Two rules:
* You cannot refer to a variable before its declaration

« Variables defined in a block are only accessible within
the block

Variable Scope
= Rule 1: (Use after definition)

s.nextInt(): X

Variable Scope

» Rule 1: (Use after definition)

* Method parameters (ready for use in the
method body)

public Color getColorFromString(String input) {

/[input is available for using in the whole method body

Variable Scope

= Rule 2: Variables defined in a block are only
accessible within the block

int outer = 1;

{
int inner = 2;
System.out.printin("inner =" + inner);
System.out.printin("outer =" + outer);

} Cannot reference
iInner here

System.out.printin("inner =" + inner); x

System.out.printin("outer =" + outer);

Variable Scope

= Rule 2: Variables defined in a block are only
accessible from within the block

int outer = 1;
inner = 2
{' i outer = 1
int inner = 2; _
System.out.printin("inner =" + inner); inner = 3
System.out.printin("outer =" + outer); outer = 1
}

int inner = 3; // why | can define inner again?
System.out.printin("inner =" + inner);
System.out.printin("outer =" + outer);

Variable Scope

= What is the scope of
instance variables?

Scope —

public class Student
p={
public String name;
public int classYear;
public double GPA;
public String major;

/] ...

public String getMajor()
{

}

return major;

public void increaseYear()

{

classYear++;

}

—}

Revisit Local and Instance Variables

public class Student

{

(public String name; A
public int classYear;
kpublic String major;

y,
public void printinfo()

{

String info = name + “: ” + major + “: ” + classYear ;
System.out.printin(info);

}

public void increaseYear(int inc)

{

classYear +=inc;
String info = “classYear updated”;
System.out.printin(info);

}
}

Next Class

= No Class next Monday (Memorial Day)
= We will have Lab 4 & 5 next Tuesday
» Homework 2 due next Tuesday

