COMP 110-001
Array Basics

Yi Hong
June 05, 2015

Revisit Lab 4

* You wrote a program to read in a list of
basketball scores from the user and output
a bunch of statistics

Let’'s Get Rid of Extra Stuff for Now

System.out.println("Enter the list of basketball scores " +
"(enter a negative number to end your list): ");

while ((score = keyboard.nextInt()) >= 0)

{
totalGames++;
scoreSum += score;
}
if (totalGames > 0)
{

double average = (double)scoreSum / (double)totalGames;
System.out.println("Average score: " + average);

What If...

= _.we wanted to know which scores were
« above average?

* below average”?

= How would we do it?

One Possibility...

System.out.println("Enter 5 basketball scores:");

int scorel = keyboard.nextInt();
int score2 = keyboard.nextInt();
int score3 = keyboard.nextInt();
int score4 = keyboard.nextInt();
int score5 = keyboard.nextInt();

double average =
(double) (scorel + score2 + score3 + score4 + score5) / 5.0;

System.out.println(“Average score: + average);
// repeat this for each of the 5 scores
if (scorel > average)
System.out.println(scorel +
else if (scorel < average)
System.out.println(scorel +
else
System.out.println(scorel +

: above average");

: below average");

: equal to the average");

What If We Had 80 Scores?

System.out.println("Enter 80 basketball scores:");

int scorel = keyboard.nextInt();
int score2 = keyboard.nextInt();
int score3 = keyboard.nextInt();
// ...are we done yet?

int score23 = keyboard.nextInt();
int score24 = keyboard.nextInt();
int score25 = keyboard.nextInt();
// ...how about now?

int score67 = keyboard.nextInt();
int score68 = keyboard.nextInt();
// ...all typing and no play makes Homer...go crazy?
int score8@ keyboard.nextInt();
// ...whew!

double average = (double) (scorel + score2 + score3 + score4d +
. score23 + score24 + score25 + ...) / 80.0;

System.out.println("Average score: " + average);

// now do below/above average check for all 80 scores

Well, That Was a Pain

= Arrays to the rescue!

= An arrayis a collection of
items of the same type

= |ike a list of variables, but
with a nice, compact way
to name them

= A special kind of object in
Java

Creating an Array

int[] scores = new int[5];

* This is like declaring 5 strangely named
variables of type int:
e scores[O]

 scores|

A W N

 scores|

Indexing

» Variables such as scores[0] and scores[1]
that have an integer expression in square
brackets are known as:

 Indexed variables, subscripted variables,
array elements, or simply elements

= An /index or subscriptis an integer
expression inside the square brackets that
iIndicates an array element

Indexing

= \Where have we seen the word index
before?

» String’s indexOf method

* |ndex numbers start with 0. They do NOT
start with 1 or any other number.

10

Indexing

* The number inside square brackets can be any
iInteger expression

* An integer: scores|3]
» Variable of type int: scores[index]
« EXxpression that evaluates to int: scores[index*3]

= Can use these strangely named variables just like
any other variables:
e scores[3] = 68;
e scores[4] = scores[4] + 3; // just made a 3-pointer!

 System.out.println(scores[1]);

11

Array

= The array itself is referred to by the name
scores (in this particular case)

Indices

0 1 2 3 4

/,{ 68 73 57 102 94

the array scores

scores[3]

Go Back to Our Example...

System.out.println("Enter 5 basketball scores:");

int[] scores = new int[5];

int scoreSum Q;

for (int i = @; i < 5; i++)

{
scores[i] = keyboard.nextInt();
scoreSum += scores[i];

}

double average = (double) scoreSum / 5;
System.out.println("Average score: " + average);

for (int i = @; i < 5; i++)

{
if (scores[i] > average)
System.out.println(scores[i] + ": above average");
else if (scores[i] < average)
System.out.println(scores[i] + ": below average");
else
System.out.println(scores[i] + ": equal to the average");
}

13

Array Detalls

= Syntax for creating an array
Base Type[] Array_Name = new Base Type[lLength]

= Example

int[] pressure

= Alternatively

int[] pressure;

pressure

new int[100];

new int[100];

14

Array Detalls

* The base type can be any type

double[] temperature = new double[7];
Student|[] students = new Student[35];

= The number of elements in an array is its
length, size, or capacity
* temperature has 7 elements, temperature[0]
through temperature[6]

 students has 35 elements, students[0] through
students[34]

15

Finding the Length of an Existing Array

= An array is a special kind of object
* It has one public instance variable: length

 length is equal to the length of the array

Pet[] pets = new Pet[20];
pets.length has the value 20

* You cannot change the value of /ength
» Once declared, an array cannot be resized!

16

Returning to Our Example...

System.out.println("Enter 5 basketball scores:");

int[] scores =[new int[S];]
int scoreSum =0,
for (int 1 = @; i < scores.length; i++)

{

scores[i] = keyboard.nextInt();

scoreSum += scores[i];
}
double average = (double) scoreSum / 5;
System.out.println("Average score: " + average);

for (int 1 = 0; i <[scores.1engthﬂ i++)

{

if (scores[i] > average)
System.out.println(scores[i] +
else if (scores[i] < average)
System.out.println(scores[i] +
else
System.out.println(scores[i] +
average");

: above average");

: below average");

: equal to the

¥

17

Be Careful with Your Indices

= |ndices MUST be within bounds

double[] entries = new double[5];
entries[5] = 3.7;

* Your code will compile if you are using an
index that is out of bounds, but it will give
you an error when you run your program

18

A Typical Problem in Programming

= We do not know the size of input data

= E£.9., a program reads a list of numbers
from user or a file.

= The program does not know how many
numbers are there beforehand.

= But we have to create an array beforehand
to store input and the array cannot be
resized!

How to Solve This Problem?

» Fixed array size VS unknown data size

A naive solution:
Declare a very large array.

But how large is large enough?
Also it is a waste of memory.

A More Practical Solution

= Replace the old array with a new bigger array
when it gets full
* Initialize an array
 Fill in data.
* If the array is full,
— we create a new array of twice the size

— Copy all data from the old array to the new array
— Make the new array the “current” array

* How many copy operations do we need in the
worst case?

ArrayList

= “Dynamic Array”

* This is a common problem and the
solution is quite complicated

= Java has several built-in classes that
implements a “dynamic array” — array that
can be resized

= A popular one is ArrayList in java.ultil

ArrayList

* Internally, it maintains an array of specified type
= You can view it as a list of data
* To initialize a list of particular type:

ArrayList<Data_type> var = new ArrayList<Data_type>();
e.g.: ArrayList<Student> myList = new ArrayList<Student>();

or

ArraylList<Data_type> var =
new ArrayList<Data_type>(initial_capacity);

ArrayList

* You cannot access ArrayList elements with
direct indices: [..]

= But you can use many methods provided:

add(Type element), < element must be of the same type
get(intindex), € getthe element at the index

remove(int index),

indexOf(Type element),

set(int index, Type element),

size()

ArrayList

= ArrayList can only store objects (class type). It
cannot store primitive types (int, double ...)

ArrayList<int> numbers = new ArrayList<int>();
This cannot be compiled

= \What if we want to store a list of integer
numbers?

= Use wrapper class!

Wrapper classes

= All primitive types have an associated
wrapper class

= Start with upper case letters
o Byte
o Short
o Integer
o Long
o Float
> Double
o Character
o Boolean

26

Use ArrayList to Store Primitive Values

ArrayList<Integer> numbers = new ArrayList<Integer>();
numbers.add(1); // a shortcut to numbers.add(new Integer(1));
numbers.add(2);

numbers.add(3);

System.out.printin(numbers.size()); // this prints out 3
for(inti = 0; i< numbers.size(); i++) {

System.out.printin(numbers.get(i)); // print out all elements

numbers.remove(0); // we have 2 & 3 left

numbers.set(1, 15); // we have 2 & 15 now

Summary

= Array: fixed size. Good if the size is known and
fixed

 myArray[index] : use as variable

* myArray.length : this is a public instance variable. Not
method

* ArrayList — dynamic size. Use methods to
manipulate data

« add, get, set, size, remove Check documentation

* Only stores objects. Need wrapper class for primitive
values

Next Class

= More about arrays

