
COMP 110-001 
Exception Handling

Yi Hong
June 10, 2015

Announcement
§  Lab 7 is due today

2	

Today
§  Exception Handling
•  Important in developing Java code. But not a

major focus of this course

3	

Recall Homework 2

§  Homework 2: GUI Calculator

 If	 the	 user	 try	 to	 divide	 by	 0,	 prints	 out	 a	 message	
4	

Recall Homework 2
§  Homework 2: GUI Calculator
•  Each of you used an if-else statement to test

whether it is a division and the second
operand is 0

•  If it is divided by 0, did you still do the division
after you print out the message?

5	

Recall Homework 2
§  If you choose not to do, you have handled this case by

skipping the result calculation part
§  If you still calculates the result, you will probably get the

output like this:

If	 two	 numbers	 are	 integers,	 the	 program	 terminated	 due	 to	 the	 error.	

for	 floa:ng-‐point	 number	

6	

What Is The Right Thing To Do…
§  When your code detects a problem?

§  In program 2, we printed out a message to indicate a
problem. And may choose to skip result calculation

§  Not so many problems for a small program. We have
control of everything involved

§  But things quickly become messy when we want to write
something slightly bigger

7	

What If….
§  What if you are writing some classes for others to use…

§  What do you plan to do when your code detects some problem?

§  Do you print out a message?
•  What if the program that uses your class runs in graphical mode?

•  Does the program really want some “uncontrolled” print-outs?

§  Do you just let resulting errors terminate the program?
•  Sounds like a terrible idea in most cases

•  But if your class should do something and it is not performed properly, how
to inform the program that uses the class?

•  E.g., a method in your class is called and is supposed to return some value.
When your code sees error, should it still return any value?

•  If yes, what value?
8	

What If….
§  You are using someone’s class for your program.
§  E.g., you use the classes provided by Java to read from

or write to a file.

§  If some problems happens in reading / writing (file not
found, cannot read/write), how does your program get
notified?

9	

The Need of a Formal Mechanism

§  A formal mechanism is needed to handle
“problems”

§  “Problems” in one class should be
reported and handled differently in
different programs.

§  This mechanism is different from return
values in method-calling

10	

Try-Throw-Catch
§  In Java, the mechanism is called “Exception

Handling”
•  Try to execute some actions
•  Throw an exception: report a problem and asks for

some code to handle it properly
•  Catch an exception: a piece of code dedicated to

handle one or more specific types of problem

11	

Another Implementation Using
Exception Handling

Try
block

Catch
block

§  A try bock detects an exception
§  A throw statement throws an exception
§  A catch block deals with a particular exception

An	 excep:on’s	 getMessage	
method	 returns	 a	 descrip:on	 of	
the	 excep:on	

12	

More About Exception
§  If an exception occurs within a try block,

the rest of the block is ignored
§  If no exception occurs within a try block,

the catch blocks are ignored
§  An exception is an object of the class

Exception

13	

Handling Exceptions
§  Syntax for the try and catch statements

§  Syntax for the throw statement

9.1 Basic Exception Handling 667

RECAP Throwing Exceptions

The throw statement throws an exception.

SYNTAX

throw new Exception_Class_Name(Possibly_Some_Arguments);

A throw statement is usually embedded in an if statement or an
if-else statement. A try block can contain any number of explicit
statements or any number of method invocations that might throw
exceptions.

EXAMPLE

throw new Exception("Unexpected End of Input.");

RECAP Handling Exceptions

The try and catch statements, used together, are the basic mechanism
for handling exceptions.

try
{

Code_To_Try
Possibly_Throw_An_Exception
More_Code

}
catch (Exception_Class_NameCatch_Block_Parameter)
{
 Process_Exception_Of_Type_Exception_Class_Name
}
Possibly_Other_Catch_Blocks

If an exception is thrown within the try block, the rest of the try block is
ignored and execution continues with the first catch block that matches
the type of the thrown exception. After the catch block is completed,
any code after the last catch block is executed.

If no exception is thrown in the try block, after it completes execution,
program execution continues with the code after the last catch block. In
other words, if no exception is thrown, the catch blocks are ignored.

More than one block is allowed for each try block, but each catch block
can handle only one class of exceptions. Catch_Block_Parameter is an
identifier that serves as a place holder for an exception that might

(continued)

9.1 Basic Exception Handling 667

RECAP Throwing Exceptions

The throw statement throws an exception.

SYNTAX

throw new Exception_Class_Name(Possibly_Some_Arguments);

A throw statement is usually embedded in an if statement or an
if-else statement. A try block can contain any number of explicit
statements or any number of method invocations that might throw
exceptions.

EXAMPLE

throw new Exception("Unexpected End of Input.");

RECAP Handling Exceptions

The try and catch statements, used together, are the basic mechanism
for handling exceptions.

try
{

Code_To_Try
Possibly_Throw_An_Exception
More_Code

}
catch (Exception_Class_NameCatch_Block_Parameter)
{
 Process_Exception_Of_Type_Exception_Class_Name
}
Possibly_Other_Catch_Blocks

If an exception is thrown within the try block, the rest of the try block is
ignored and execution continues with the first catch block that matches
the type of the thrown exception. After the catch block is completed,
any code after the last catch block is executed.

If no exception is thrown in the try block, after it completes execution,
program execution continues with the code after the last catch block. In
other words, if no exception is thrown, the catch blocks are ignored.

More than one block is allowed for each try block, but each catch block
can handle only one class of exceptions. Catch_Block_Parameter is an
identifier that serves as a place holder for an exception that might

(continued)

14	

Another Example

import java.util.Scanner;

public class ExceptionDemo {
 public static void main(String[] args) {
 Scanner scanner = new Scanner(System.in);
 System.out.print("Enter an integer: ");
 int number = scanner.nextInt();

 // Display the result
 System.out.println(
 "The number entered is " + number);
 }
}

If an exception occurs on this
line, the rest of the lines in the
method are skipped and the
program is terminated.

Terminated.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

15	

import java.util.*;

public class HandleExceptionDemo {
 public static void main(String[] args) {
 Scanner scanner = new Scanner(System.in);

boolean continueInput = true;

 do {
 try {
 System.out.print("Enter an integer: ");
 int number = scanner.nextInt();

 // Display the result
 System.out.println(
 "The number entered is " + number);

 continueInput = false;
 }
 catch (InputMismatchException ex) {
 System.out.println("Try again. (" +
 "Incorrect input: an integer is required)");
 scanner.nextLine(); // discard input
 }
 } while (continueInput);
 }
}

If an exception occurs on this line,
the rest of lines in the try block are
skipped and the control is
transferred to the catch block.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
13

Another Example

16	

Predefined Exception Classes
§  Java provides several exception classes
•  The names are designed to be self-explanatory
•  E.g.: BadStringOperationException,
 ClassNotFoundException,
 IOException,
 NoSuchMethodException,
 InputMismatchException

•  Use the try and catch statements

17	

An Example

§  If you think that continuing with program execution is
infeasible after the exception occurs, use System.exit(0)
to end the program in the catch block

670 CHAPTER 9 / Exception Handling

exception classes are

BadStringOperationException
ClassNotFoundException
IOException
NoSuchMethodException

When you catch an exception of one of these predefined exception classes,
the string returned by the getMessage method will usually provide you with
enough information to identify the source of the exception. Thus, if you have
a class called SampleClass, and this class has a method called doStuff, which
throws exceptions of the class IOException, you might use the following code:

SampleClass object = new SampleClass();
try
{
 <Possibly some code>
 object.doStuff(); //may throw IOException
 <Possibly some more code>
}
catch(IOException e)
{
 <Code to deal with the exception, probably including the

following:>
 System.out.println(e.getMessage());
}

If you think that continuing with program execution is infeasible after the
exception occurs, the catch block can include a call to System.exit to end
the program, as follows:

catch(IOException e)
{
 System.out.println(e.getmessage());
 System.out.println("Program aborted");
 System.exit(0);
}

! PROGRAMMING TIP Catch Specific Exceptions

You can use the class Exception in a catch block, as we did in our initial
examples, but catching a more specific exception, such as IOException, is
more useful. !

! PROGRAMMING TIP Importing Exceptions

Most of the exceptions you will see in this book do not need to be imported,
as they are in the package java.lang. Some, however, are in different packages

Java provides
several exception
classes

VideoNote
Using predefined exception
classes

18	

Declaring Exceptions

method1() {

 try {
 invoke method2;
 }
 catch (Exception ex) {
 Process exception;
 }
}

method2() throws Exception {

 if (an error occurs) {

 throw new Exception();
 }
}

catch exception throw exception

declare exception

§  When we want to delay handling of an
exception

§  A method might not catch an exception that
its code throws

19	

Throwing Exceptions Example
 /** Set a new radius */
 public void setRadius(double newRadius)
 throws IllegalArgumentException {
 if (newRadius >= 0)
 radius = newRadius;
 else
 throw new IllegalArgumentException(
 "Radius cannot be negative");
 }

Step	 1:	 add	 throws	 clause,	 “throws	 Excep:onType”,	 in	 the	
method’s	 heading	
Step	 2:	 when	 problem	 occurs,	 use	 a	 throw	 statement	 throws	 an	
excep:on,	 “throw	 new	 Excep:onType(….);	 ”	

20	

The Java Exception Hierarchy

LinkageError

Error

AWTError

AWTException

Throwable

ClassNotFoundException

VirtualMachineError

IOException

Exception

RuntimeException

Object

ArithmeticException

NullPointerException

IndexOutOfBoundsException

Several more classes

Several more classes

Several more classes

IllegalArgumentException

Unchecked	
excep:on.	

21	

Checked Exceptions vs. Unchecked
Exceptions

•  RuntimeException, Error and their subclasses
are known as unchecked exceptions
•  no need to be caught or declared in a throws

clause of a method’s heading

•  All other exceptions are known as checked
exceptions
•  must be either caught or declared in a throws

clause
22	

Unchecked Exceptions
§  In most cases, unchecked exceptions reflect

programming logic errors that are not recoverable
§  E.g., a NullPointerException is thrown if you access an

object through a reference variable before an object is
assigned to it

§  an ArrayIndexOutOfBoundsException is thrown if you
access an element outside the bounds of the array

§  Logic errors that should be corrected in the program,
Java does not mandate you to write code to catch
unchecked exceptions

23	

The finally Bolck

§  A finally block always executes
§  Put cleanup code in a finally block, e.g., closing a file

try {
 statements;
}
catch(TheException ex) {
 handling ex;
}
finally {
 finalStatements;
}	

24	

Trace a Program Execution

try {
 statements;
}
catch(TheException ex) {
 handling ex;
}
finally {
 finalStatements;
}

Next statement;

Suppose	 no	
excep:ons	 in	 the	
statements	

25	

Trace a Program Execution

try {
 statements;
}
catch(TheException ex) {
 handling ex;
}
finally {
 finalStatements;
}

Next statement;

The	 final	 block	 is	
always	 executed	

26	

Trace a Program Execution

try {
 statements;
}
catch(TheException ex) {
 handling ex;
}
finally {
 finalStatements;
}

Next statement;

Next	 statement	 in	
the	 method	 is	
executed	

27	

Trace a Program Execution
try {
 statement1;
 statement2;
 statement3;
}
catch(Exception1 ex) {
 handling ex;
}
finally {
 finalStatements;
}

Next statement;

Suppose	 an	 excep:on	
of	 type	 Excep:on1	 is	
thrown	 in	 statement2	

28	

Trace a Program Execution
try {
 statement1;
 statement2;
 statement3;
}
catch(Exception1 ex) {
 handling ex;
}
finally {
 finalStatements;
}

Next statement;

The	 excep:on	 is	
handled.	

29	

Trace a Program Execution
try {
 statement1;
 statement2;
 statement3;
}
catch(Exception1 ex) {
 handling ex;
}
finally {
 finalStatements;
}

Next statement;

The	 final	 block	 is	
always	 executed.	

30	

Trace a Program Execution
try {
 statement1;
 statement2;
 statement3;
}
catch(Exception1 ex) {
 handling ex;
}
finally {
 finalStatements;
}

Next statement;

The	 next	 statement	 in	
the	 method	 is	 now	
executed.	

31	

Trace a Program Execution
try {

 statement1;

 statement2;

 statement3;

}

catch(Exception1 ex) {

 handling ex;

}

catch(Exception2 ex) {

 handling ex;

 throw ex;

}

finally {

 finalStatements;

}

Next statement;

statement2	 throws	 an	
excep:on	 of	 type	
Excep:on2.	

32	

Trace a Program Execution
try {

 statement1;

 statement2;

 statement3;

}

catch(Exception1 ex) {

 handling ex;

}

catch(Exception2 ex) {

 handling ex;

 throw ex;

}

finally {

 finalStatements;

}

Next statement;

Handling	 excep:on	

33	

Trace a Program Execution
try {

 statement1;

 statement2;

 statement3;

}

catch(Exception1 ex) {

 handling ex;

}

catch(Exception2 ex) {

 handling ex;

 throw ex;

}

finally {

 finalStatements;

}

Next statement;

Execute	 the	 final	 block	

34	

Trace a Program Execution
try {

 statement1;

 statement2;

 statement3;

}

catch(Exception1 ex) {

 handling ex;

}

catch(Exception2 ex) {

 handling ex;

 throw ex;

}

finally {

 finalStatements;

}

Next statement;

Rethrow	 the	 excep:on	
and	 control	 is	
transferred	 to	 the	 caller	

35	

Next Class
§  Streams and File I/O

36	

