COMP 110-001
Exception Handling

Yi Hong
June 10, 2015

Announcement

= Lab 7 is due today

Today

= Exception Handling

* Important in developing Java code. But not a
major focus of this course

Recall Homework 2

= Homework 2: GUI Calculator

nput

Welcome to My GUI Calculator! > Division by 0 is not allowed

The following operations are supported:
+(addition), -(subtraction), *(multiplication)
/(division), %(mod), Alexponent)

([l

Enter your calculation separated by spaces and enter return.
(Example: 1.5 + 6)

1.5/0

Cancel OK

If the user try to divide by 0, prints out a message

Recall Homework 2

= Homework 2: GUI Calculator

« Each of you used an if-else statement to test

whether it is a division and the second
operand is O

* If it is divided by 0, did you still do the division
after you print out the message?

Recall Homework 2

» |f you choose not to do, you have handled this case by
skipping the result calculation part

= [f you still calculates the result, you will probably get the
output like this:

: 1.5 / 0 = Infinity
- for floating-point number

OK

If two numbers are integers, the program terminated due to the error.

Exception in thread "main"™ java.lang.ArithmeticException: / by zero
at Calculator.main(Calculator.java:63)

What Is The Right Thing To Do...

* When your code detects a problem?

* |n program 2, we printed out a message to indicate a
problem. And may choose to skip result calculation

* Not so many problems for a small program. We have
control of everything involved

= But things quickly become messy when we want to write
something slightly bigger

What If....

= What if you are writing some classes for others to use...

= What do you plan to do when your code detects some problem?

= Do you print out a message?
« What if the program that uses your class runs in graphical mode?

* Does the program really want some “uncontrolled” print-outs?

= Do you just let resulting errors terminate the program?
« Sounds like a terrible idea in most cases

« Butif your class should do something and it is not performed properly, how
to inform the program that uses the class?

« E.g., a method in your class is called and is supposed to return some value.
When your code sees error, should it still return any value?

 If yes, what value?

What If....

* You are using someone’s class for your program.

= E.g., you use the classes provided by Java to read from
or write to a file.

» |[f some problems happens in reading / writing (file not

found, cannot read/write), how does your program get
notified?

The Need of a Formal Mechanism

= A formal mechanism is needed to handle
“problems”

* “Problems” in one class should be
reported and handled differently in
different programs.

= This mechanism is different from return
values in method-calling

10

Try-Throw-Catch

* |[n Java, the mechanism is called “Exception
Handling”

* Try to execute some actions

« Throw an exception: report a problem and asks for
some code to handle it properly

« Catch an exception: a piece of code dedicated to
handle one or more specific types of problem

11

Another Implementation Using
Exception Handling

— try
{
Try if(secondOperand == @)
block throw new Exception("Division by @ is not allowed");
caluResult = firstOperand / secondOperand;
_}
— catch(Exception e)
Catch {
atcn System.out.println(e.getMessage());
block System.exit(0);
} An exception’s getMessage

method returns a description of
= A try bock detects an exception the exception

= A throw statement throws an exception

= A catch block deals with a particular exception >

More About Exception

» |[f an exception occurs within a try block,
the rest of the block is ignored

* |[f no exception occurs within a try block,
the catch blocks are ignored

= An exception is an object of the class
Exception

13

Handling Exceptions

» Syntax for the try and catch statements

try

{
Code _To _Try
Possibly Throw_An_Exception
More_Code

}

catch (Exception_Class_NameCatch_Block_Parameter)

{

Process_Exception_Of_Type Exception_Class_Name

}
Possibly Other_Catch_Blocks

= Syntax for the throw statement

throw new Exception_Class_Name(Possibly Some_Arguments);

14

O J o Ul b W DN

e
Ww N R O

Another Example

import java.util.Scanner;

public class ExceptionDemo ({
public static void main (String[] args) ({

Scanner scanner = new Scanner (System.in);
System.out.print ("Enter an integer: ");
int number = scanner.nextInt();

If an exception occurs on this
line, the rest of the lines in the

method are skipped and the

, : System.out.println (
program is terminated.

"The number entered is " + number);

\ 4 Terminated.

15

O ~J o U W DN

S I N e e e e e
O WNROWLWJo U s WN R O W

Another Example

import java.util.*;

public class HandleExceptionDemo {
public static void main (String[] args) {

Scanner scanner = new Scanner (System.in);
boolean continuelInput = true;
do {
try {
System.out.print ("Enter an integer:

int number = scanner.nextInt();

If an exception occurs on this line,
the rest of lines in the try block are // Display the result

skipped and the control is System.out.println (
transferred to the catch block.

continuelInput = false;

}

catch (InputMismatchException ex) {
> System.out.println ("Try again. (" +

"The number entered is " + number):;

"Incorrect input: an integer is required)");

scanner.nextLine(); // discard input

}

} while (continuelInput);

16

Predefined Exception Classes

= Java provides several exception classes
* The names are designed to be self-explanatory

« E.g.: BadStringOperationException,
ClassNotFoundException,
|OEXxception,
NoSuchMethodException,
InputMismatchException

» Use the try and catch statements

17

An Example

SampleClass object = new SampleClass();

try

{
<Possibly some code>
object.doStuff(); //may throw IOException
<Possibly some more code>

}
catch(IOException e)
{
<Code to deal with the exception, probably including the
following:>
System.out.printin(e.getMessage());
}

* |f you think that continuing with program execution is
infeasible after the exception occurs, use System.exit(0)
to end the program in the catch block

18

Declaring Exceptions

* \When we want to delay handling of an
exception

= A method might not catch an exception that
its code throws

methodl () { e Ee_declare CXCCptiOH
et s s s e ens . T method2 () ithrows Exception i{
i : _,——”7' ; :
3 ry { / B
i invoke method?2; if (an error occurs) f{
) S .

catch exception _egcatch (Exception ex) (i ithrow new Exception(); §é_throw exception
i Process exception; i } i :

...

19

Throwing Exceptions Example

/** Set a new radius */
public void setRadius (double newRadius)
throws IllegalArgumentException {
if (newRadius >= 0)
radius = newRadius;
else
throw new IllegalArgumentException (
"Radius cannot be negative");

Step 1: add throws clause, “throws ExceptionType”, in the
method’s heading
Step 2: when problem occurs, use a throw statement throws an
exception, “throw new ExceptionType(....);”

20

The Java Exception Hierarchy

Exception

Object

Throwable

ArithmeticException

ClassNotFoundException
IOException
AWTException
RuntimeException Q—

L Several more classes

LinkageError

VirtualMachineError

Error

AWTError

L Several more classes

NullPointerException

IndexOutOfBoundsException

Illegal ArgumentException

L Several more classes

4

Unchecked
exception.

21

Checked Exceptions vs. Unchecked
Exceptions

« RuntimeException, Error and their subclasses
are known as unchecked exceptions

* no need to be caught or declared in a throws
clause of a method’s heading

* All other exceptions are known as checked
exceptions

* must be either caught or declared in a throws
clause
22

Unchecked Exceptions

* |n most cases, unchecked exceptions reflect
programming logic errors that are not recoverable

= E.g., a NullPointerException is thrown if you access an
object through a reference variable before an object is
assigned to it

= an ArraylndexOutOfBoundsException is thrown if you
access an element outside the bounds of the array

Exception in thread "main"™ java.lang.ArraylndexOutOfBoundsException: 5
at HandleExceptionDemo.main(HandleExceptionDemo. java:12)

» Logic errors that should be corrected in the program,
Java does not mandate you to write code to catch

unchecked exceptions
23

The finally Bolck

try {
statements;

}

catch (TheException ex) {
handling ex;

}

finally {
finalStatements;

)

= A finally block always executes
= Put cleanup code in a finally block, e.g., closing a file

24

Trace a Program Execution

try A
statements;

}

catch (TheException ex) {
handling ex;

}
finally {

finalStatements;

}

Next statement;

25

Trace a Program Execution

try A
statements;

}

catch (TheException ex) {
handling ex;

}
finally {

finalStatements;

}

Next statement;

26

Trace a Program Execution

try A
statements;

}

catch (TheException ex) {
handling ex;

}
finally {

finalStatements;

}

Next statement;

27

Trace a Program Execution

try A
statementl;

statement?2;

statement3;

}

catch (Exceptionl ex) {
handling ex;

}
finally {

finalStatements;

Next statement;

28

Trace a Program Execution

try {
statementl;
statement?2;

statement3;

}

catch (Exceptionl ex

handling ex;

}
finally {

finalStatements;

Next statement;

29

Trace a Program Execution

try {
statementl;
statement?2;
statement3;

}

catch (Exceptionl ex) {
handling ex;

}

finally {

finalStatements;

Next statement;

30

Trace a Program Execution

try {
statementl;
statement?2;
statement3;

}

catch (Exceptionl ex) {
handling ex;

}

finally {
finalStatements;

Next statement;

31

Trace a Program Execution

try {

statementl;

statement?2;

statement3;

}

catch (Exceptionl ex) {

handling ex;

}

catch (Exception2 ex) {
handling ex;
throw ex;

}

finally {
finalStatements;

}

Next statement;

32

Trace a Program Execution

try |
statementl;
statement?2;
statement3;

}

catch (Exceptionl ex) {

handling ex;

}

catch (Exception2 ex) {

handling ex;

throw ex;

}
finally {

finalStatements;

}

Next statement;

33

Trace a Program Execution

try |
statementl;
statement?2;
statement3;

}

catch (Exceptionl ex) {

handling ex;

}

catch (Exception2 ex) {
handling ex;
throw ex;

}
finally {

finalStatements;

}

Next statement;

34

Trace a Program Execution

try |
statementl;
statement?2;
statement3;

}

catch (Exceptionl ex) {
handling ex;

}

catch (Exception2 ex) {

handling ex;

throw ex;

}
finally {

finalStatements;

}

Next statement;

35

Next Class

= Streams and File I/O

36

