
COMP 110-001 
Recursion, Searching, and Selection

Yi Hong
June 12, 2015

Announcements
§  Homework 4 deadline extended to June

13th, by 11:59pm

§  Final exam, comprehensive
•  Wednesday, June 17th, 8am – 11am
•  Review on Monday

Today
§  Introduction to Recursion

§  Introduction to Search & Selection

•  Not the focus of the final exam
•  But, you should be able to understand the

code in the slides (and know how to use the
code in similar problems by making slight
modifications).

Recursion
§  Whenever an algorithm has one subtask that is a

smaller version of the entire algorithm’s task, it is
said to be recursive

§  Recursion: you write a method to solve a big task,
and the method invokes itself to solve a smaller
subtask
•  E.g., I want to eat 5 apples now. My subtask can be

eating 4 apples, eating 3 apples, eating 2 apples,
et…..

•  To eat 5 apples, I can do:
•  Eat 3 apples + Eat 2 apples
•  Eat 1 apple + Eat 4 apples

Eat	 1	 apple	

Eat	 1	 apple	

Recursion
§  Eating 1 apple is the smallest task that I can

have. I cannot divide it anymore.
§  This is the base case in recursion.
§  Recursion is to divide a big task into smaller

tasks. Smaller tasks are then divided further.
Until we reach base case.

Recursion
§  Let’s start with a simple example: calculating

factorial
•  Factorial(n) = n * (n-1) * (n-2) * ….. * 3 * 2 * 1

§  How do you solve a task
with smaller task(s)?
•  Factorial(n) =

n * Factorial(n-1)

Recursion
§  Translate this into Java code

public static int factorial(int n)
{
 if (n==1) return 1; // base case
 else
 return n * factorial(n-1);
}

Recursion
§  The recursion form can be more natural in

many problems (than using loops)

§  Some problems can be hard to formulate
using naïve looping (but such problems are
beyond the scope of this course)

§  Let’s see more recursion examples:
•  Digits to Words from textbook

Recursion: Digits to Words
§  Define a method that takes a single integer

as an argument and displays the digits of that
integer as words.
•  For example, if the argument is the number 223,

the method should display:

 two two three

§  Base case?
§  Recursive rule?

Recursion: Digits to Words
§  Base case: only 1 digit
•  print word for 1 digit

§  Recursive rule:
Print words for n digits -->

 (print words for first n-1 digits) + (print word
for last digit)

Recursion: Digits to Words
public static void displayAsWords(int number)
{

if (number < 10) // base case
 System.out.print(getWordFromDigit(number) + " ");
else //number has two or more digits
{

displayAsWords(number / 10);
System.out.print(getWordFromDigit(number % 10) + " ");

}

}
You should be able to write out: getWordFromDigit(int
num)

Recursion: Digits to Words

§  displayAsWords(987);

Search
§  Given a list of numbers (in an array), how

do you search for a number?

•  Return index if the number is found in the
array

•  Return -1 if the number is not found

Sequential (Linear) Search
§  Basic idea
•  For each item in the list:

•  if that item has the desired value, stop the search and return
the item's location.

•  Return Not Found.

§  Can you do better than this (by making it faster)?

§  The general answer is no
•  No assumptions made on array (unsorted)
•  In worst case, have to examine each array element at

least once

Search
§  How about sorted array? (numbers are in

ascending or descending order)

§  Can you make the linear search faster?

Search
§  Let’s see an example: searching for 76

Search
§  Given n numbers:
•  In linear search, you need to explore one possible

choice in each iteration
•  Worst case, n comparisons needed

•  With the new search algorithm (which only works
for sorted array), we can reduce half of the search
space in each iteration!
•  How many comparisons
do I need in the worst case?

Binary Search
int binary_search(int A[], int key, int imin, int imax) {

// test if search range is empty
if (imax < imin) {

return KEY_NOT_FOUND; // set is empty
} else {

 // calculate midpoint to cut set in half
 int imid = midpoint(imin, imax);
 // three-way comparison
 if (A[imid] > key) // key is in lower subset
 return binary_search(A, key, imin, imid-1);
 else if (A[imid] < key) // key is in upper subset
 return binary_search(A, key, imid+1, imax);
 else // key has been found
 return imid;

 }
}

Search Algorithms
§  A lot of search algorithms, here we just

covered two simplest cases:
•  Linear search in a list (array) of numbers
•  Binary search in sorted array

§  More with different data structures:
•  Search in graphs and trees (computer science

concepts, not the usual graph/tree)
•  E.g., search for a move in chess game
•  Search for relations/patterns in social network

communication graph

Selection
§  One selection problem:
•  Find the smallest / largest number in a given list

(array)
•  No assumption made on the list (so it is not

sorted)

§  We have solved this in lab 4
•  Loop through each element, keep the largest/

smallest

§  Let’s relax the problem a bit

Selection
§  Find the k-th smallest (or largest) element

in a list of numbers

§  How to solve this problem?
•  Go through each element, for each element,

check its position in list
•  How many operations in the worst case?

•  Sort array first. Then get the k-th element
•  How many operations in the worst case

Selection
Quickselect (quick in practice, but not in the worst case)
§  To find k-th smallest number in n numbers:

•  Randomly pick a number from the list, call it p
•  Partition the array into two parts:

•  Numbers that are < p (m numbers)
•  Numbers that are > p (n – m – 1 numbers)

•  If m==k-1, p is the k-th smallest
•  If m > k, find the k-th smallest in the m numbers
•  If m < k, find the (k-m-1)-th smallest in the (n-m-1)

numbers

§  On average, this requires ~n*constant operations
§  But in the worst case, it is ~n^2*constant

Next Class
§  Introduction to sorting

