COMP 110-001
Recursion, Searching, and Selection

Yi Hong
June 12, 2015

Announcements

= Homework 4 deadline extended to June
131, by 11:59pm

* Final exam, comprehensive
« \Wednesday, June 171, 8am — 11am

* Review on Monday

Today
= |ntroduction to Recursion

= |ntroduction to Search & Selection

 Not the focus of the final exam

« But, you should be able to understand the
code in the slides (and know how to use the
code in similar problems by making slight
modifications).

Recursion

Whenever an algorithm has one subtask that is a

smaller version of the entire algorithm’s task, it is
said to be recursive

Recursion: you write a method to solve a big task,

and the method invokes itself to solve a smaller

subtask

 E.g., | want to eat 5 apples now. My subtask can be
eating 4 apples, eating 3 apples, eating 2 apples,

et.....

 To eat 5 apples, | can do:

« Eat 3 apples +

Eat 2 apples f

« Eat 1 apple + Eat 4 apples

Eat 1 apple

Eat 1 apple

Recursion

= Eating 1 apple is the smallest task that | can
have. | cannot divide it anymore.

= This is the base case in recursion.

= Recursion is to divide a big task into smaller
tasks. Smaller tasks are then divided further.
Until we reach base case.

Recursion

= Let's start with a simple example: calculating
factorial
« Factorialln)=n*(n-1)*(n-2) *.....*3*2* 1

= How do you solve atask . .

with smaller task(s)? t
. return 5 * Factorial(4) = 120
- Factorial(n) = t
n > Factorial(n-1) return 4 * Factorial(3) = 24

return 3 * Factorial(2) = 6

return 2 * Factorial(l) = 2

1

Recursion

» Translate this into Java code
public static int factorial(int n)

{

iIf (n==1) return 1; // base case

Factorial(5)

T

return 5 * Factorial(4) = 120

else

return n * factorial(n-1);

return 4 * Factorial(3) = 24

return 3 * Factorial(2) = 6

return 2 * Factorial(1l) = 2

1

Recursion

= The recursion form can be more natural in
many problems (than using loops)

= Some problems can be hard to formulate
using naive looping (but such problems are
beyond the scope of this course)

= Let's see more recursion examples:
 Digits to Words from textbook

Recursion: Digits to Words

» Define a method that takes a single integer
as an argument and displays the digits of that
integer as words.

* For example, if the argument is the number 223,
the method should display:

two two three

= Base case?
= Recursive rule?

Recursion: Digits to Words

= Base case: only 1 digit
 print word for 1 digit

= Recursive rule:
Print words for n digits -->

(print words for first n-1 digits) + (print word
for last digit)

Recursion: Digits to Words

public static void displayAsWords(int number)
{
If (number < 10) // base case
System.out.print(getWordFromDigit(number) + " ");
else //number has two or more digits

{
displayAsWords(number / 10);
System.out.print(getWordFromDigit(number % 10) + " ");

}

}

You)should be able to write out: getWordFromDigit(int
num

Recursion: Digits to Words

{//Code for invocation of displayAsWords (987)
if (987 < 10)

System.out.print(getWordFromDigit(987) + " ");

else//987 has two or more digits
{

displayAsWords(987 / 10);

System.out.print(getWordFromDigit(987 % 10) + " ");

= displayAsWords(987);

if (98 < 10)

{

{//Code for invocation of displayAsWords (98)

System.out.print(getWordFromDigit(98) + " ");
else//98 has two or more digits

~=displayAsWords (98 / 10);
System.out.print(getWordFromDigit(98 % 10) + " ");

{//Code for invocation of displayAsWords(9)
if (9 < 10)
System.out.print(getWordFromDigit(9) + " ");
else//9 has two or more digits
{
displayAsWords(9 / 10);
System.out.print(getWordFromDigit(9 % 10) + "

Search

= Given a list of numbers (in an array), how
do you search for a number?

 Return index if the number is found in the
array

 Return -1 if the number is not found

Sequential (Linear) Search

= Basic idea
 For each item in the list:

« if that item has the desired value, stop the search and return
the item's location.

 Return Not Found.

= Can you do better than this (by making it faster)?

* The general answer is no
* No assumptions made on array (unsorted)

* In worst case, have to examine each array element at
least once

Search

= How about sorted array”? (numbers are In
ascending or descending order)

= Can you make the linear search faster?

Search

» Let’'s see an example: searching for 76

l

2 19 (11 |15(28 |33 |40 (47 |51 |64 |76 |77 |82 85|94

Search

= Given n numbers:

* In linear search, you need to explore one possible
choice in each iteration

« Worst case, n comparisons needed

« With the new search algorithm (which only works
for sorted array), we can reduce half of the search

space in each iteration!

 How many comparisons | Z |
do | need in the worst case?

amount of data remaining o

I n/2]

(T
—
Jil

log, n steps

Binary Search

int binary_search(int A[], int key, int imin, int imax) {
// test if search range is empty

T (imax < imin) {

return KEY_NOT_FOUND:; //set is empty
} else {

// calculate midpoint to cut set in half
int imid = midpoint(imin, imax);
// three-way comparison
T (Alimid] > key) // key is in lower subset
return binary_search(A, key, imin, imid-1);
else it (A[imid] < key) // key is in upper subset
return binary_search(A, key, imid+1, imax);
else // key has been found
return imid;

Search Algorithms

* A lot of search algorithms, here we just
covered two simplest cases:

 Linear search in a list (array) of numbers
» Binary search in sorted array

= More with different data structures:

e Search in graphs and trees (computer science
concepts, not the usual graph/tree)

* E.g., search for a move in chess game

« Search for relations/patterns in social network
communication graph

Selection

* One selection problem:

* Find the smallest / largest number in a given list
(array)

* No assumption made on the list (so it is not
sorted)

= \We have solved this in lab 4

* Loop through each element, keep the largest/
smallest

= Let’s relax the problem a bit

Selection

* Find the k-th smallest (or largest) element
In a list of numbers

* How to solve this problem??

* Go through each element, for each element,
check its position in list

« How many operations in the worst case?

« Sort array first. Then get the k-th element

 How many operations in the worst case

Selection

Quickselect (quick in practice, but not in the worst case)

» To find k-th smallest number in n numbers:
« Randomly pick a number from the list, call it p

 Partition the array into two parts:

« Numbers that are < p (m numbers)
« Numbers that are > p (n—m - 1 numbers)

 |f m==k-1, p is the k-th smallest
* |[f m >k, find the k-th smallest in the m numbers

 If m <Kk, find the (k-m-1)-th smallest in the (n-m-1)
numbers

* On average, this requires ~n*constant operations
= But in the worst case, it is ~n*2*constant

Next Class

= |[ntroduction to sorting

