
COMP 110-001 
Final Exam Review

Yi Hong
June 15, 2015

Final Exam
§  Wednesday, June 17th, 8am – 11am
§  The final exam will be similar to our

midterm, the number of questions will be
doubled

§  20% of your grade

Computer Basics
§  Hardware and software
§  CPU and memory
§  Bit and byte
§  Program and algorithm
§  Compiler and interpreter

Variables
§  A variable is a program component used to

store or represent data
•  A variable corresponds to a location in memory
•  Data types: primitive type and class type

§  Legal identifier
•  Letters, digits (0-9), and the underscore (_)
•  First character cannot be a digit
•  No spaces
•  You cannot name your variables using keywords
•  Java is case sensitive

Variables of a Primitive Type
§  A data value is stored in the location

assigned to a variable of a primitive type

int sum;

sum = 4;

 sum = sum + 1;

Memory	

Variables of a Primitive Type
§  A data value is stored in the location

assigned to a variable of a primitive type

int sum;

sum = 4;

 sum = sum + 1;

Memory	

00000000	

00000000	

00000000	

00000100	

Variables of a Primitive Type
§  A data value is stored in the location

assigned to a variable of a primitive type

int sum;

sum = 4;

 sum = sum + 1;

Memory	

00000000	

00000000	

00000000	

00000100	

00000000	

00000000	

00000000	

00000101	

Variable of Class Types
 Student anna = new Student();
 anna.PID = 1234;
 anna.year = 3;

Student aCopy = anna;
aCopy.year = 4;

System.out.println(anna.year);

Memory	

Arrays of Objects
Smiley[]	
 smilies	
 =	
 new	
 Smiley[3];	

for	
 (int	
 i	
 =	
 0;	
 i	
 <	
 smilies.length;	
 i++)	

{	

	
 	
 	
 	
 smilies[i]	
 =	
 new	
 Smiley();	

}	

	

smilies[0].bSmile	
 =	
 true;	

……	

1045 2584 2836 ? ? ?

true
GREEN
3

false
BLUE
1

false
CYAN
4

Type Casting
§  Implicit converting

•  Byte -> short -> int -> long -> float -> double
•  Automatically cast types when they are not

match
•  E.g.: double var = 3 / 2;

§  Explicit casting
•  Explicitly write the type casting
•  E.g.: int var = (int)(3.0 / 2.0);

String
§  A Class Type
§  Objects of String class can be defined as:

•  String myString = “UNC is Great!”;
•  Or String myString = new String(“UNC is Great!”);

§  Each String object consists of
•  A sequence of characters (char)

U N C i s G r e a t !
0 1 2 3 4 5 6 7 8 9 10 11 12

String
Indices:

String’s Methods
String myString = “UNC is Great!”

int strLength = myString.length();

char strFirstLetter = myString.charAt(0);

boolean bCheck = myString.equalsIgnoreCase(“unc is
great!”);

String subStr1 = myString.substring(0, 3);

String subStr2 = myString.substring(7);
int pos1 = myString.indexOf(“ ”);
int pos2 = myString.lastIndexOf(“ ”);

int, 13

U N C i s G r e a t !
0 1 2 3 4 5 6 7 8 9 10 11 12

char, ‘U’

boolean, true
String, “UNC”
String, “Great!”
int, 3
int, 6

String Concatenation
§  String name = “May”;
§  String sentence;
§  sentence = “My dog’s name is ” + name;

My dog’s name is May

Branch Statements: if-else
§  A branching statement that chooses between

two possible actions

if (Boolean_Expression)
 { statement 1; }
else
 { statement 2; }

•  If the boolean expression is true, run statement 1,

otherwise run statement 2

Or you can use one if statement

if (Boolean_Expression)
 { statements; }
Other statments

Boolean Expressions
§  A combination of values and variables by comparison

operators. Its value can only be true or false

•  E.g.: int num = 6;
 boolean var = (num % 2 == 0) && (num % 3 == 0)

 3.1 The if-else Statement 151

Notice that it is perfectly valid to use the quoted string "Hello" in the
invocation of equalsIgnoreCase String

String has.

FIGURE 3.7 The Effect of the Boolean Operators && (and), || (or),
and ! (not) on Boolean Values

Value of A Value of B Value of
A && B

Value of !(A)

true true true true false

true false false true false

false true false true true

false false false false true

Value of
A || B

LISTING 3.2 Testing Strings for Equality (part 1 of 2)

import java.util.Scanner;
public class StringEqualityDemo
{
 public static void main(String[] args)
 {
 String s1, s2;
 System.out.println("Enter two lines of text:");
 Scanner keyboard = new Scanner(System.in);
 s1 = keyboard.nextLine();
 s2 = keyboard.nextLine();

 if (s1.equals(s2))
 System.out.println("The two lines are equal.");
 else
 System.out.println("The two lines are not equal.");

 if (s2.equals(s1))
 System.out.println("The two lines are equal.");
 else
 System.out.println("The two lines are not equal.");

 if (s1.equalsIgnoreCase(s2))
 System.out.println(
 "But the lines are equal, ignoring case.");
 else
 System.out.println(
 "Lines are not equal, even ignoring case.");
 }
}

(continued)

These two invocations of
the method equals are
equivalent.

Branch Statements: switch
switch (Controlling_Expression)
{
 case Case_label:
 statements;
 break;
 case Case_label:
 statements;
 break;
 default:
 statements;
 break;
}

§  byte, short, char, int, enum,
String, and some wrap
classes (Character, Byte,
Short, and Integer) can be
used in the controlling
expression

§  Case labels must be of same
type as controlling
expression

§  The break statement ends
the switch statement, go to
the next step outside the
braces in the code

§  The default case is optional

Loop Statements
§  while loop

•  Repeats its body while a boolean expression
is true

§  do while loop
•  Loop iterates at least ONCE

§  for loop
•  Usually knows the number of iterations

Loop Statements
§  Sample question:

•  Write the output for

•  Answer: 7 2

Loop Statements

� Sample question:
– Write the output for:

– Answer: 7,2
� In the first iteration, no

condition is tested. 7 is the
output, and x is set to 2

� x > 0 and found is false, the
second iteration starts, output 2 and set found as true

� x > 0 but found is true. No more iteration will be executed

int x = 7;
boolean found = false;

do {
 System.out.print(x + " ");
 if (x <= 2)
 found = true;
 else
 x = x - 5;
} while (x > 0 && !found);

Loop Statements
§  Connection with arrays

•  E.g: Write code to declare, initialize, and fill in
an array of type int, as follows

•  One way:

•  Using loop:

Loop Statements

� Sample question:
– Write some code that will declare, initialize, and fill in an

array of type int. After your code executes, the array
should look as follows

 0 2 4 6 8 10 12 14 16 18

Loop Statements

� Sample question:
– Write some code that will declare, initialize, and fill in an

array of type int. After your code executes, the array
should look as follows

� A “cheating” answer

0 2 4 6 8 10 12 14 16 18

int[] a = { 0, 2, 4, 6, 8, 10, 12, 14, 16, 18 };

Loop Statements

� Sample question:
– Write some code that will declare, initialize, and fill in an

array of type int. After your code executes, the array
should look as follows

� Expected answer:

0 2 4 6 8 10 12 14 16 18

int[] b = new int[10];
for (int i = 0; i < 10; i++) {
 b[i] = 2 * i;
}

Loop Statements
§  How about an array of Class type?

•  E.g: Create an array with 5 objects of Class
Student

Student [] arr = new Student [5];
for(int i = 0; i < arr.length; i++)
{
 arr[i] = new Student();
}

Loop Statements
§  Nested loops

•  E.g.: Initialize each elements in a 2D array to
be 30

int	
 [][]	
 table	
 =	
 new	
 int[4][3];	

for(int	
 row	
 =	
 0;	
 row	
 <	
 table.length;	
 row++)	

{	

	
 	
 	
 	
 for(int	
 column=0;	
 column	
 <	
 table[row].length;	
 column++)	

	
 	
 	
 	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 table[row][column]	
 =	
 30;	

	
 	
 	
 	
 }	

}

Classes
§  Classes and objects
§  Instance variables, local variables, and static

variables
§  Methods with/without return values
§  Call-by-value and call-by-reference
§  Public and private
§  Constructors
§  Static variables and methods
§  Method parameters: overloading

Class and Object
§  A class is the definition of a kind of object

•  A blueprint for constructing specific objects

§  Important: classes usually do not have data;
individual objects have data.

§  But, a class can have variables that are static
as well as methods that are static.

§  Static variables and static methods belong to
a class as a whole and not to an individual
object

public	
 class	
 Student	

{	

	
 	
 	
 	
 public	
 String	
 name;	

	
 	
 	
 	
 public	
 int	
 classYear;	

	
 	
 	
 	
 public	
 double	
 gpa;	
 	

	
 	
 	
 	
 public	
 String	
 major;	

	
 	
 	
 	
 //	
 ...	

	

	
 	
 	
 	
 public	
 String	
 getMajor()	

	
 	
 	
 	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 return	
 major;	

	
 	
 	
 	
 }	

	

	
 	
 	
 	
 public	
 void	
 increaseYear()	

	
 	
 	
 	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 classYear++;	

	
 	
 	
 	
 }	

}	

Defining a Class
Class	
 name	

Data	

(instance	
 variables)	

Methods	

Instance variables and
methods are members

of a class

§  Data defined in the class are called
instance variables

 private String name;
 private int classYear;

 private double gpa;
 private String major;

Instance Variables

public or private
modifier

Data type: int, double,
String…

variables

public String getMajor()
{
 return major;
}

public void increaseYear()
{
 classYear++;
}

Methods
returns a String

returns nothing

return type

Method with Parameters
public void increaseYear(int increment)
{
 classYear += increment;
}
public void increaseYear(int increment, boolean check)
{

 if (check && classYear + increment <= MaxYear) {
 classYear += increment;

 }
}
§  Parameters are used to hold the values that you pass to the method
§  Multiple parameters are separated by comma
§  The parameters are local variables

Data type Name of parameter

Call-by-Value
§  When a method with parameter of primitive type

is called:

public void increaseByOne(int num) {
 num = num + 1;

}

public void doSomething () {
 int someNum = -2;
 increaseByOne(someNum);
 System.out.println(someNum);

}

What	
 do	
 you	
 get?	

Call-by-Value
§  When a method with parameter of Class type is

called (call-by-reference):

public void increaseByOne(Student s) {

 s.year = s.year + 1;
}

public void doSomething () {

 Student anna = new Student();
 anna.PID = 1234;
 anna.year = 3;

 increaseByOne(anna);
 System.out.println(anna.year);

}

What	
 do	
 you	
 get?	

§  public void setMajor()
§  private int classYear;

§  public: there is no restriction on how you
can use the method or instance variable

§  private: can not directly use the method or
instance variable’s name outside the class

public/private Modifier

public class Student
{
 public int classYear;
 private String major;
}

Student jack = new Student();

jack.classYear = 1;

jack.major = “Computer Science”;

Example

OK,
classYear is public

Error!!!
major is private

Information Hiding and Encapsulation
§  Imagine a wall between interface and

implementation
318 CHAPTER 5 / Defining Classes and Methods

provide public methods for any other basic needs that a programmer will

public mutator methods.

how to use the method.

details.

The comments in a class definition that describe how to use both the class
and each public method are part of the class interface. As we indicated, these
comments are usually placed before the class definition and before each
method definition. Other comments clarify the implementation. A good rule
to follow is to use the /** */ style for class-interface comments and the // style
for implementation comments.

go back and change the implementation details of the class definition without
requiring changes in any program that uses the class. This is a good way to
test whether you have written a well-encapsulated class definition. Often,
you will have very good reasons for changing the implementation details of
a class definition. For example, you may come up with a more efficient way
to implement a method so that the method invocations run faster. You might

FIGURE 5.3 A Well-Encapsulated Class Definition

Implementation:

Private instance variables
Private constants
Private methods
Bodies of public methods

Programmer who
uses the class

 Class De!nition

Interface:

Comments
Headings of public methods
Public named constants

Encapsulation
guidelines

Constructors
§  Constructor is a special method that is

called when a new object is created

 Student berkeley; // not called

 Student berkeley = new Student();
 // called with new keyword

Constructors
§  Define a constructor

public class Student {
 private int PID;
 private int year;
 …. Accessors & mutators …..

public Student(int PID, int year) {
 this.PID = PID;
 this.year = year;
}

}
If you define at least one constructor, the default
constructor will not be created for you

There	
 is	
 no	
 return	

type	
 or	
 “void”	
 keyword	

Constructor	
 has	
 the	
 same	

name	
 as	
 the	
 class	

Multiple Constructors
§  You can have multiple constructors in one class

§  They all have the same name, just different parameters

public class Student {

….
public Student(int PID, int year) {
 this.PID = PID;
 this.year = year;
}
public Student(int PID) {
 this.PID = PID;
 this.year = 1; // default case – the 1st year
}

}

Default Constructor
§  What if you did not write any constructor?

public class Student {
 private int PID;
 private int year;
 …. No constructor …..

}

 Student berkeley = new Student();

Java gives each class a default constructor if you did not write any
constructor. It assigns a default value to each instance variable.

 - integer, double: 0
 - String and other class-type variables: null
 - boolean: false

Static Members
§  static variables and methods belong to a

class as a whole, not to an individual
object
•  One copy that all instances of the class can

assess

§  Static variables and methods can be
accessed using the class name itself:
•  No need of an instance of the class to access

it

static Version of pow Method
public	
 class	
 Math	

{	

	
 	
 	
 	
 public	
 static	
 double	
 PI	
 =	
 3.1415926;	

	
 	
 	
 	
 //	
 Returns	
 x	
 raised	
 to	
 the	
 yth	
 power,	
 where	
 y	
 >=	
 0	

	
 	
 	
 	
 public	
 static	
 int	
 pow(int	
 x,	
 int	
 y)	

	
 	
 	
 	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 int	
 result	
 =	
 1;	

	
 	
 	
 	
 	
 	
 	
 	
 for	
 (int	
 i	
 =	
 0;	
 i	
 <	
 y;	
 i++)	

	
 	
 	
 	
 	
 	
 	
 	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 result	
 *=	
 x;	

	
 	
 	
 	
 	
 	
 	
 	
 }	

	
 	
 	
 	
 	
 	
 	
 	
 return	
 result;	

	
 	
 	
 	
 }	

}	

static	

keyword	

System.out.println(
 Math.PI	
);	

int	
 z	
 =	
 Math.pow(2,	
 4);	

static vs non-static
§  All static members are at class level. They

are accessed without creating any
instance.

§  static methods has no access to non-static
members (since they belong to instances)

§  Non-static methods can access both static
and non-static members

Overloading
§  Using the same method name for two or more

methods within the same class
•  Example: constructors

§  Parameter lists must be different
◦  public double average(double n1, double n2)
◦  public double average(double n1, double n2, double n3)

§  Java knows what to use based on the number
and types of the arguments

Method signature
§  A method’s name and the number and

types of its parameters

§  signature does NOT include return type

§  Cannot have two methods with the same
signature in the same class

Inheritance
§  What is inheritance

•  Subclasses (child/derived classes) inherit some
properties from superclass (Parent/base class)

§  What is overriding
•  A subclass defines a method of the same

signature and the same return type as the
superclass

§  What is polymorphism
•  “Many forms”, each subclass object can perform

its own action from overridden methods

Polymorphism and Overriding
Polymorphism and Overriding

public class Animal {
 private String animalName;
 public void speak() {
 // default method -- can be empty
 }

 public static void main(String[] args)
 {
 Animal a[] = new Animal[3];
 a[0] = new Cat();
 a[1] = new Dog();
 a[2] = new Duck();
 for (int i = 0; i < 3; i++) {
 a[i].speak();
 }
 }
}

public class Cat extends Animal {
 public void speak() {
 System.out.println("MEW");
 }
}

public class Dog extends Animal {
 public void speak() {
 System.out.println("WOOF");
 }
}

public class Duck extends Animal {
 public void speak() {
 System.out.println("QUACK");
 }
}

Output: MEW, WOOF, QUACK

Polymorphism and Overriding

public class Animal {
 private String animalName;
 public void speak() {
 // default method -- can be empty
 }

 public static void main(String[] args)
 {
 Animal a[] = new Animal[3];
 a[0] = new Cat();
 a[1] = new Dog();
 a[2] = new Duck();
 for (int i = 0; i < 3; i++) {
 a[i].speak();
 }
 }
}

public class Cat extends Animal {
 public void speak() {
 System.out.println("MEW");
 }
}

public class Dog extends Animal {
 public void speak() {
 System.out.println("WOOF");
 }
}

public class Duck extends Animal {
 public void speak() {
 System.out.println("QUACK");
 }
}

Output: MEW, WOOF, QUACK

§  Dynamic binding

The is-a Relationship
§  This inheritance relationship is known as an

is-a relationship

§  A Doctoral student is a Grad student
§  A Grad student is a Student
§  A Student is a Person

§  Is a Person a Student?
•  Not necessarily!

Person	

Student	
 Employee	

Undergrad	
 Grad	

Masters	
 Doctoral	
 Nondegree	

Faculty	
 Staff	

Type Compatibilities
§  Person	
 per1	
 =	
 new	
 Person();	

§  Student	
 std1	
 =	
 new	
 Student();	

§  Person	
 per2	
 =	
 std1;	

•  Yes! A student is a person

§  Student	
 Std2	
 =	
 Per1;	

•  No! A person is not necessarily a student

Creating an Array
int[]	
 scores	
 =	
 new	
 int[5];	

§  This is like declaring 5 strangely named
variables of type int:
•  scores[0],	
 scores[1],	
 scores[2],	
 scores[3],	
 scores[4]	

§  The base type can be any type
double[]	
 temperature	
 =	
 new	
 double[7];	

Student[]	
 students	
 =	
 new	
 Student[35];	

§  Indices MUST be within bounds
§  Temperature[7]	
 =	
 0.0;	
 //ERROR!	
 Index	
 out	
 of	

bounds	

Finding the Length of an Existing Array

§  An array is a special kind of object
•  It has one public instance variable: length
•  length is equal to the length of the array

Pet[]	
 pets	
 =	
 new	
 Pet[20];	

pets.length	
 has	
 the	
 value	
 20	

•  You cannot change the value of length
•  Once declared, an array cannot be resized!

47!

Arrays as Instance Variables
public	
 class	
 Weather	

{	

	
 	
 	
 	
 private	
 double[]	
 temperature;	

	
 	
 	
 	
 private	
 double[]	
 pressure;	

	

	
 	
 	
 	
 public	
 void	
 initializeTemperature(int	
 len)	

	
 	
 	
 	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 temperature	
 =	
 new	
 double[len];	

	
 	
 	
 	
 }	

}	

Arrays as Parameters
public	
 void	
 changeArray(int[]	
 arr)	

{	

	
 	
 	
 	
 int	
 len	
 =	
 arr.length;	

	
 	
 	
 	
 arr[len	
 –	
 1]	
 =	
 25;	

}	

23 47 52 14 7 25!

Arrays as Return Types
public	
 double[]	
 buildArray(int	
 len)	

{	

	
 	
 	
 	
 double[]	
 retArray	
 =	
 new	
 double[len];	

	
 	
 	
 	
 for	
 (int	
 i	
 =	
 0;	
 i	
 <	
 retArray.length;	
 i++)	

	
 	
 	
 	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 retArray[i]	
 =	
 i	
 *	
 1.5;	

	
 	
 	
 	
 }	

	

	
 	
 	
 	
 return	
 retArray;	

}	

Declaring and Creating 2D Arrays

int[][]	
 table	
 =	
 new	
 int[4][3];	

or

int[][]	
 table;	

table	
 =	
 new	
 int[4][3];	

How do you use a 2D array?
§  How about a 2D array?

	
 int[][]	
 table	
 =	
 new	
 int[4][3];	

	

§  Use a nested loop
	

for(int	
 row	
 =	
 0;	
 row	
 <	
 table.length;	
 row++)	

{	

	
 	
 	
 	
 for(int	
 column=0;	
 column	
 <	
 table[row].length;	
 column++)	

	
 	
 	
 	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 table[row][column]	
 =	
 30;	

	
 	
 	
 	
 }	

}	

2D Array of Irregular Shape

int[][]	
 x	
 =	
 new	
 int[3][];	

x[0]	
 =	
 new	
 int[1];	

x[1]	
 =	
 new	
 int[2];	

X[2]	
 =	
 new	
 int[3];	

	

System.out.println(x[0].length);	

System.out.println(x[1].length);	

System.out.println(x[2].length);	

Array and ArrayList
§  Array: fixed size. Good if the size is known and

fixed
•  my1DArray[index], my2DArray[i][j] : use as variables
•  my1DArray.length, my2Darray[i].length : this is a public

instance variable. Not a method
•  1D, 2D, … n-D, 2D array does not have to be rectangle

§  ArrayList: dynamic size. Use methods to
manipulate data
•  add, get, set, size, remove …..
•  Only stores objects. Need wrapper class for primitive

values

Example: ArrayList
§  //ArrayList to Store only String objects
 ArrayList<String> stringList
 = new ArrayList<String>();

§  stringList.add("Item");
§  String item = stringList.get(i);
§  int size = stringList.size();
§  boolean result = stringList.isEmpty();
§  int index = stringList.indexOf("Item");
§  stringList.remove(item); or
stringList.remove(0);

Recursion
§  Recursive: an algorithm has one subtask

that is a smaller version of the entire
algorithm’s task

§  Recursion: you write a method to solve a
big task, and the method invokes itself to
solve a smaller subtask

§  Base case: the smallest task
§  Recursive rule: relationship between the

big task and its subtasks

Sequential (Linear) Search
§  Basic idea

•  For each item in the list:
•  if that item has the desired value, stop the search

and return the item's location.
•  Return Not Found.

§  No faster algorithm for unsorted array
§  For sorted array, we can use binary

search

Binary Search
§  Works for sorted array, reduces half

searching space in each iteration

Selection
§  One selection problem:

•  Find the smallest / largest number in a given
list (array)

•  No assumption made on the list (so it is not
sorted)

Sorting
§  Bubble sort
§  Selection sort
§  Merge sort

Bubble Sort (or Sinking Sort)
§  Basic idea (Wikipedia)

•  Start from the beginning of the list
•  Compare every adjacent pair, swap their

positions if they are not in the right order
•  After each iteration, one less element (the last

one) is needed to be compared until there is
no more elements left to be compared

AnimaDon	
 from	

Wikipedia:	

Selection Sort
§  Given an array of length n, each time

select the smallest one among the rest
elements:
•  Search elements 0 through n-1 and select the

smallest
•  Swap it with the element at location 0

•  Search elements 1 through n-1 and select the
smallest

•  Swap it with the element at location 1
•  Search elements 2 through n-1 and select the

smallest
•  Swap it with the element at location 2

•  Search elements 3 through n-1 and select the
smallest

•  Swap it with the element at location 3
•  Continue until there’s no element left

AnimaDon	
 from	

Wikipedia:	

30 24 7 12 14 4 20 21 33 38 10 55 9 23 28 16

33 38 10 55 9 23 28 16 30 24 7 12 14 4 20 21

Split the array into
two or more parts	

Sort each part individually	

4 7 12 14 20 21 24 30 9 10 16 23 28 33 38 55

Merge	

4 7 9 10 12 14 16 20 21 23 24 28 30 33 38 55

Merge	
 Sort	

Merge Sort

Exception Handling
§  Try-throw-catch

•  Try block: detects exceptions
•  Throw an exception: report a problem and asks for

some code to handle it properly
•  Catch block: catches an exception, a piece of code

dedicated to handle one or more specific types of
problem

64	

Creating a Text File
§  Opening a file connects it to a stream
§  The class PrintWriter in the package

java.io is for writing to a text file

730 CHAPTER 10 / Streams and File I/O

SELF-TEST QUESTIONS

1. Why would anybody write a program that sends its output to a file instead
of to the screen?

to a file or from a file to the program?

3. What is the difference between a text file and a binary file?

10.2 TEXT-FILE I/O

Proper words in proper places,

make the true definition of a style.

—JONATHAN SWIFT, LETTER TO A YOUNG CLERGYMAN (JANUARY 9,1720)

Creating a Text File
The class PrintWriter
will need to create and write to a text file. This class is the preferred one for
writing to a text file. It is in the package java.io, so we will need to begin our
program with an import statement. Actually, we will be using other classes as
well, so we will import them also, as you will see soon.

Before we can write to a text file, we must connect it to an output stream.
That is, we open the file. To do this, we need the name of the file as a string.
The file has a name like out.txt that the operating system uses. We also must

stream variable. Its data type in this case
is PrintWriter PrintWriter’s
constructor and passing it the file name as its argument. Since this action can
throw an exception, we must place the call to the constructor within a try block.

The following statements will open the text file out.txt

String fileName = "out.txt";//Could read file name from user
PrintWriter outputStream = null;
try
{
 outputStream = new PrintWriter(fileName);
}
catch(FileNotFoundException e)
{
 System.out.println("Error opening the file " + fileName);
 System.exit(0);
}

Opening a file
connects it to a
stream

Creating a Text File
§  After we connect the file to the stream, we

can write data to it
•  outputStream.println(“This is line 1.”);
•  outputStream.println(“Here is line 2.”);

§  Closing a file disconnects it from a stream
•  outputStream.close();

Reading From a Text File
§  Use Scanner to open a text file for input

•  E.g.: Scanner inputStream = new Scanner(new File(“out.txt”));

§  Use the methods of Scanner to read

10.2 Text-File I/O 739

Scanner
System.in as an argument to Scanner's constructor.

Unfortunately, we cannot pass a file name to Scanner's constructor.
Although Scanner
string is interpreted as data, and not the name of a file. Scanner

standard class, File, and File has a constructor to which we can pass a file
name. (The next section will describe the class File in more detail.) So a

Scanner Stream_Name = new Scanner(new File(File_Name));

If your program attempts to open a file for reading, but there is no such
file, Scanner's constructor will throw a FileNotFoundException. As you saw
earlier in this chapter, a FileNotFoundException is also thrown in certain
other situations.

try-catch blocks, does something with the file, and then closes the file. Let’s

while (inputStream.hasNextLine())
{
 String line = inputStream.nextLine();
 System.out.println(line);
}

This loop reads and then displays each line in the file, one at a time, until the

that the file out.txt is the one we created in Listing 10.1.
All the methods of Scanner

us and work in the same way. Some of these methods, including nextLine, are

hasNextLine
input. Figure 10.3 summarizes this method and a few other analogous methods.

Using Scanner to
open a text file
for input

Reading and

entire text file

RECAP Reading a Text File

SYNTAX

// Open the file
Scanner Input_Stream_Name = null;
try
{

Input_Stream_Name = new Scanner(new File(File_Name));
}

(continued)

10.2 Text-File I/O 739

Scanner
System.in as an argument to Scanner's constructor.

Unfortunately, we cannot pass a file name to Scanner's constructor.
Although Scanner
string is interpreted as data, and not the name of a file. Scanner

standard class, File, and File has a constructor to which we can pass a file
name. (The next section will describe the class File in more detail.) So a

Scanner Stream_Name = new Scanner(new File(File_Name));

If your program attempts to open a file for reading, but there is no such
file, Scanner's constructor will throw a FileNotFoundException. As you saw
earlier in this chapter, a FileNotFoundException is also thrown in certain
other situations.

try-catch blocks, does something with the file, and then closes the file. Let’s

while (inputStream.hasNextLine())
{
 String line = inputStream.nextLine();
 System.out.println(line);
}

This loop reads and then displays each line in the file, one at a time, until the

that the file out.txt is the one we created in Listing 10.1.
All the methods of Scanner

us and work in the same way. Some of these methods, including nextLine, are

hasNextLine
input. Figure 10.3 summarizes this method and a few other analogous methods.

Using Scanner to
open a text file
for input

Reading and

entire text file

RECAP Reading a Text File

SYNTAX

// Open the file
Scanner Input_Stream_Name = null;
try
{

Input_Stream_Name = new Scanner(new File(File_Name));
}

(continued)

Thank you !!!

