COMP 110-001
Final Exam Review

Yi Hong
June 15, 2015

Final Exam

= \Wednesday, June 17, 8am — 11am

= The final exam will be similar to our
midterm, the number of questions will be
doubled

= 20% of your grade

Computer Basics

= Hardware and software
= CPU and memory

» Bit and byte

= Program and algorithm
= Compiler and interpreter

Variables

= A variable is a program component used to
store or represent data
* A variable corresponds to a location in memory

« Data types: primitive type and class type

= Legal identifier
* Letters, digits (0-9), and the underscore (_)

 First character cannot be a digit

* No spaces
* You cannot name your variables using keywords

e Java is case sensitive

Variables of a Primitive Type

= A data value is stored in the location
assigned to a variable of a primitive type

wa) Int sum;

sum = 4;

sum = sum + 1;
Memory

Variables of a Primitive Type

= A data value is stored in the location
assigned to a variable of a primitive type

Int sum;

00000000 jre
00000000 |

) sum = 4; 00000000
00000100

sum = sum + 1;
Memory

Variables of a Primitive Type

= A data value is stored in the location
assigned to a variable of a primitive type

00000000

- . 00000000
Int sum;
00000000 | L

00000100
sum = 4: l 7/

7

W) sum =sum + 1; 00000000 /

00000000
00000000
00000101

Memory

Variable of Class Types

Student anna = new Student();
anna.PID = 1234;

anna.year = 3;

Student aCopy = anna;

aCopy.year = 4; Memory

System.out.printin(anna.year);

Arrays of Objects

Smiley[] smilies = new Smiley[3];
for (int i = @0; i < smilies.length; i++)

{

smilies[i] = new Smiley(); 2 ? ?

}

smilies[@].bSmile = true; / / \

...... true false false
GREEN BLUE CYAN
3 1 4

Type Casting

= Implicit converting
* Byte -> short -> int -> long -> float -> double

« Automatically cast types when they are not
match

* E.g.: double var = 3/ 2;

= Explicit casting
« Explicitly write the type casting
* E.g.:int var = (int)(3.0 / 2.0);

String

= A Class Type

= Objects of String class can be defined as:
« String myString = “UNC is Great!”;
* Or String myString = new String("UNC is Great!”);

= Each String object consists of
* A sequence of characters (char)

String U|N|C I | s Glr|le|la|t]|]
Indices: |0 | 1|2|3|4|5|6|7|8|9/10|11]12

String’s Methods
String myString = “UNC is Great!”

U| N|C | | s G|lr|leja|t]|!
01112 |3 |4 67|89 ([10(11(12

int strLength = myString.length(); int, 13
char strFirstLetter = myString.charAt(0); char, ‘U’

boolean bCheck = myString.equalsignoreCase(“unc is

great!”);

String subStr1 = myString.substring(0, 3);
String subStr2 = myString.substring(7);
int pos1 = myString.indexOf(“ ”);

int pos2 = myString.lastindexOf(“ ”);

boolean, true
String, “UNC”
String, “Great!”
int, 3

int, 6

String Concatenation

= String name = “May’;
= String sentence;
» sentence = "My dog’s name is ” + name;

My dog's nhame is May

Branch Statements: if-else

* A branching statement that chooses between
two possible actions

if (Boolean_Expression)
{ statement 1; }

else
{ statement 2; }

 If the boolean expression is true, run statement 1,
otherwise run statement 2

Or you can use one if statement
if (Boolean_Expression)

{ statements; }
Other statments

Boolean Expressions

= A combination of values and variables by comparison

operators. Its value can only be true or false

Value of A | Value of B | Value of Value of Value of! (A)
A&&B A||B
true true true true false
true false false true false
false true false true true
false false false false true
 E.g.: int num = 6;

boolean var = (num % 2 == 0) && (num % 3 == 0)

Branch Statements: switch

switch (Controlling_Expression) = byte, short, char, int, enum,

{ ®. oSftring, and some wrap
_ classes (Character, Byte,
case Case_label. Short, and Integer) can be
statements; used in the controlling
break: expression
case Case label » Case labels must be of same
statements; type as controlling
break: < expression
default: The break statement ends
_ the switch statement, go to
slatements; the next step outside the
break; braces in the code

) The default case is optional

Loop Statements

= while loop

* Repeats its body while a boolean expression
IS true

= do while loop
* Loop iterates at least ONCE

* for loop
« Usually knows the number of iterations

Loop Statements

= Sample question:
* Write the output for

int x = 7;
boolean found = false;

do {
System.out.print(x + " ");
if (x <= 2)
found = true;
else
X =X - 5;
} while (x > @ & !found);

e Answer: 7 2

Loop Statements

= Connection with arrays

* E.g: Write code to declare, initialize, and fill in
an array of type int, as follows

O 2 4 6 8 10 12 14 16 18

* One way:
int[] a={ e, 2, 4, 6, 8, 10, 12, 14, 16, 18 };

» Using loop:

int[] b = new int[10];

for (int 1 = 0; i < 10; i++) {
b[i] = 2 * 1i;

}

Loop Statements

= How about an array of Class type?

* E.g: Create an array with 5 objects of Class
Student

Student [] arr = new Student [5];
for(inti = 0; i < arr.length; i++)

{

arr[i] = new Student();

}

Loop Statements

= Nested loops

* E.g.: Initialize each elements in a 2D array to
be 30

int [][] table = new int[4][3];
for(int row = @; row < table.length; row++)

{

for(int column=0; column < table[row].length; column++)

{

}
¥

table[row][column] = 30;

Classes

» Classes and objects

= Ins’gance variables, local variables, and static
variables

= Methods with/without return values
» Call-by-value and call-by-reference
= Public and private

= Constructors

= Static variables and methods

= Method parameters: overloading

Class and Object

» A class is the definition of a kind of object
* A blueprint for constructing specific objects

= Important: classes usually do not have data;
individual objects have data.

= But, a class can have variables that are static
as well as methods that are static.

= Static variables and static methods belong to
a class as a whole and not to an individual
object

Defining a Class

?ublic class Student < Class name

public String name;

public int classYear;

public double gpa; < Data

public String major; (instance variables)

public String getMajor()

{
return major; P

}) < Methods

public void increaseYear()

{ .
Classyears+: Instance variables and

} methods are members

of a class

Instance Variables

= Data defined in the class are called
instance variables

(private)
private
private

|private

(String |
Int
double

‘name:;

~

classYear;

gpa,

String

\Jnajor;

— variables

J

\

public or privat

modifier

String...

e\ Data type: int, double,

Methods

returns a String

return type

classYear++: returns nothing

Method with Parameters

public void increaseYear(int increment)

classYear += increment;\ \

! Data type | | Name of parameter

public void increaseYear(int increment, boolean check)

{

If (check && classYear + increment <= MaxYear) {
classYear += increment;

= Parameters are used to hold the values that you pass to the method
= Multiple parameters are separated by comma
= The parameters are local variables

Call-by-Value

» When a method with parameter of primitive type
IS called:

public void increaseByOne(int num) {

num = num + 1;

What do you get?
public void doSomething () {

int someNum = -2;
increaseByOne(someNum);

System.out.printin(someNum);

Call-by-Value

* When a method with parameter of Class type is
called (call-by-reference):

public void increaseByOne(Student s) {

s.year = s.year + 1;

public void doSomething () {
Student anna = new Student(); What do you get?
anna.PID = 1234;

anna.year = 3;

increaseByOne(anna);

System.out.println(anna.year);

public/private Modifier

= public void setMajor()
= private int classYear;

= public: there is no restriction on how you
can use the method or instance variable

= private: can not directly use the method or
Instance variable’s name outside the class

Example

public class Student

{

public int classYear;
private String major;

}
OK,

Student jack = new Study classYearis public

jack.classYear = 1;
Error!!!
jack.major = “Computer Science”; <« majoris private

Information Hiding and Encapsulation

* Imagine a wall between interface and
Implementation

Class Definition
Implementation:
Private instance variables Interface:
Private constants Comments Programmer who
Private methods Headings of public methods uses the class

Bodies of public methods Public named constants

Constructors

= Constructor is a special method that is
called when a new object is created

Student berkeley; // not called

Student berkeley = new Student();
// called with new keyword

Constructors

= Define a constructor

public class Student {
private int PID;

private int year; There is no return
.... Accessors & mutators .. type or “void” keyword

public Student(int PID, int year) {
this.PID =RID;

this.year = year,
} Constructor has the same

} name as the class

If you define at least one constructor, the default
constructor will not be created for you

Multiple Constructors

* You can have multiple constructors in one class

= They all have the same name, just different parameters

public class Student {

public Student(int PID, int year) {
this.PID = PID;
this.year = year;
}
public Student(int PID) {
this.PID = PID;
this.year = 1; // default case — the 15! year

Default Constructor

= What if you did not write any constructor?

public class Student {

private int PID;
private int year;
.... No constructor

}
Student berkeley = new Student();

Java gives each class a default constructor if you did not write any
constructor. It assigns a default value to each instance variable.

- integer, double: 0
- String and other class-type variables: null

- boolean: false

Static Members

= static variables and methods belong to a
class as a whole, not to an individual
object

* One copy that all instances of the class can
assess

» Static variables and methods can be
accessed using the class name itself:

* No need of an instance of the class to access
it

static Version of pow Method

public class Math

{
public static double PI = 3.1415926;
// Returns x raised to the yth power, where y >= 0
public static int pow(int x, int y)
{
int result
for (int 1 = 0; i < y; i++ static
{ keyword
result *= x;
}
return result;
}
} System.out.println(Math.PI);

int z = Math.pow(2, 4);

static vs non-static

= All static members are at class level. They
are accessed without creating any
Instance.

= static methods has no access to non-static
members (since they belong to instances)

= Non-static methods can access both static
and non-static members

Overloading

» Using the same method name for two or more
methods within the same class

 Example: constructors

» Parameter lists must be different
> public double average(double n1, double n2)
> public double average(double n1, double n2, double n3)

= Java knows what to use based on the number
and types of the arguments

Method signature

= A method’s name and the number and
types of its parameters

= signature does NOT include return type

= Cannot have two methods with the same
signature in the same class

Inheritance

= \What is inheritance

* Subclasses (child/derived classes) inherit some
properties from superclass (Parent/base class)

= What is overriding

A subclass defines a method of the same
signature and the same return type as the
superclass

= What is polymorphism
* “Many forms”, each subclass object can perform
its own action from overridden methods

Polymorphism and Overriding

= Dynamic binding

public class Animal {
private String animalName;
public void speak() {
// default method -- can be empty
}

public static void main(String[] args)
{

Animal a[] = new Animal[3];

a[@] = new Cat();

a[1] = new Dog();

a[2] = new Duck();

for (int i = @; i < 3; i++) {

al[i].speak();
}

public class Cat extends Animal {
public void speak() {
System.out.println("MEW");
}
}

public class Dog extends Animal {
public void speak() {
System.out.println("WOOF");
}
}

public class Duck extends Animal {
public void speak() {
System.out.println("QUACK");
}

Output: MEW, WOOF, QUACK

The /s-a Relationship

= This inheritance relationship is known as an
Is-a relationship

= A Doctoral student /s a Grad student

= A Grad student js a Student Person

= A Student is @ Person S d/\l
tudent Employee

= |s a Person a Student? /\ /\

Undergrad Grad Faculty Staff

* Not necessarily! /\

Masters Doctoral Nondegree

Type Compatibilities

Person perl = new Person();
Student stdl = new Student();

Person per2 = stdl;
* Yes! A student is a person

Student Std2 = Peril;
* No! A person is not necessarily a student

Creating an Array
int[] scores = new int[5];

* This is like declaring 5 strangely named
variables of type int:

e scores[@], scores[1l], scores[2], scores[3], scores[4]

* The base type can be any type
double[] temperature = new double[7];

Student[] students = new Student[35];

* Indices MUST be within bounds
= Temperature[7] = 0.0;

Finding the Length of an Existing Array

= An array is a special kind of object
* It has one public instance variable: length

 length is equal to the length of the array

Pet[] pets = new Pet[20];
pets.length has the value 20

* You cannot change the value of /ength
» Once declared, an array cannot be resized!

47

Arrays as Instance Variables

public class Weather

{

private double[] temperature;
private double[] pressure;

public void initializeTemperature(int len)

{
}

temperature = new double[len];

Arrays as Parameters

public void changeArray(int[] arr)

{

¥

int len = arr.length;

arr[len - 1] = 25;

23

47

52

14

25

Arrays as Return Types

public double[] buildArray(int len)

{

double[] retArray
for (int 1 = 0; 1

{
}

retArray[i] =

return retArray,;

<

i

new double[len];
retArray.length; i++)

* 1.5;

Declaring and Creating 2D Arrays

int[][] table = new int[4][3];
or

int[][] table;
table = new int[4][3];

How do you use a 2D array?

= How about a 2D array?

int[][] table = new int[4][3];

= Use a nested loop

for(int row = @; row < table.length; row++)
for(int column=0; column < table[row].length; column++)

table[row][column] = 30;

¥
}

2D Array of lrregular Shape

int[J[] x

x[0] =
x[1] =
X[2] =

System.
System.
System.

new

new

new

out.
out.

out.

new int[3][];
int[1];
int[2];
int[3];

println(x[@].length);
println(x[1].Llength);
println(x[2].length);

Array and ArrayList

. fArra : fixed size. Good if the size is known and
IXe
 my1DArray[index], my2DArray[i][j] : use as variables

 my1DArray.length, my2Darray[i].length : this is a public
Instance variable. Not a method

1D, 2D, ... n-D, 2D array does not have to be rectangle

* ArrayList: dynamic size. Use methods to
manipulate data

* add, get, set, size, remove

* Only stores objects. Need wrapper class for primitive
values

Example: ArrayList

» /J/ArrayList to Store only String objects

ArrayList<String> stringList
= new ArrayList<String> () ;

" stringList.add ("Item");

* String item = stringlList.get (i);

= int size = stringlist.sizel();
= boolean result = stringList.isEmpty() ;
"= int index = stringlList.indexOf ("Item")

" stringList.remove (item); or
stringList.remove (0) ;

Recursion

= Recursive: an algorithm has one subtask
that is a smaller version of the entire
algorithm’s task

= Recursion: you write a method to solve a
big task, and the method invokes itself to
solve a smaller subtask

= Base case: the smallest task

= Recursive rule: relationship between the
big task and its subtasks

Sequential (Linear) Search

= Basic idea
 For each item in the list:

« if that item has the desired value, stop the search
and return the item's location.

 Return Not Found.

» No faster algorithm for unsorted array

* For sorted array, we can use binary
search

Binary Search

= Works for sorted array, reduces half
searching space in each iteration
J,
2 |19 |11 |15 (28 3340 |47 |51 |64 |76 |77 |82 |85 |94

Selection

* One selection problem:
* Find the smallest / largest number in a given
list (array)

* No assumption made on the list (so it is not
sorted)

Sorting

= Bubble sort
= Selection sort
* Merge sort

Bubble Sort (or Sinking Sort)

» Basic idea (Wikipedia)
« Start from the beginning of the list

« Compare every adjacent pair, swap their
positions if they are not in the right order

 After each iteration, one less element (the last
one) is needed to be compared until there is
no more elements left to be compared

Animation from

Wikipedia: 6 53 187 2 4

Selection Sort

= Given an array of length n, each time

select the smallest one among the rest

elements:

Search elements 0 through n-1 and select the
smallest

« Swap it with the element at location 0
Search elements 1 through n-1 and select the
smallest

« Swap it with the element at location 1
Search elements 2 through n-1 and select the
smallest

« Swap it with the element at location 2
Search elements 3 through n-1 and select the
smallest

« Swap it with the element at location 3
Continue until there’s no element left

Animation from
Wikipedia:

NO L, aWLQWOWONO O

Merge Sort

30124

/

12

14

4

2021

33

38

10

55

9

23

28

16

/

Split the array into
two or more parts

30

24| 7

12

14 4

20(21

14

20

21

2430

Merge

AN
~N

10

12

14

16]20

\

33

38

10

55

9123

28|16

\l Sort each part individually L

9

10

16

23

28

33

38|55

21

23

24

28

30

33

38

55

Exception Handling

= Try-throw-catch
* Try block: detects exceptions

* Throw an exception: report a problem and asks for
some code to handle it properly

« Catch block: catches an exception, a piece of code

dedicated to handle one or more specific types of
problem

64

Creating a Text File

»= Opening a file connects it to a stream

* The class PrintWriter in the package
java.io is for writing to a text file

String fileName = "out.txt";//Could read file name from user
PrintWriter outputStream = null;
try
{
outputStream = new PrintWriter(fileName);
}
catch(FileNotFoundException e)
{

System.out.println("Error opening the file " + fileName);
System.exi1t(0);
}

Creating a Text File

= After we connect the file to the stream, we
can write data to it

* outputStream.printin(“This is line 1.7);

» outputStream.printin(“Here is line 2.”);

» Closing a file disconnects it from a stream
* outputStream.close();

Reading From a Text File

» Use Scanner to open a text file for input

Scanner Stream_Name = new Scanner(new File(File_Name));

* E.g.: Scanner inputStream = new Scanner(new File(“out.txt™));
» Use the methods of Scanner to read

while (AnputStream.hasNextLine())

{
String line = inputStream.nextLine();
System.out.printin(line);

Thank you !l

