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Abstract

In this paper we propose a new method for shape analysis based on the ordering of shapes using band-depth. We use this band-depth
to non-parametrically define a global depth for a shape with respect to a reference population, typically consisting of normal control
subjects. This allows us to globally quantify differences with respect to “normality”. Using the depth-ordering of shapes also allows
the detection of localized shape differences by using α-central values of shapes. We propose permutation tests to statistically assess
global and local shape differences. We further determine the directionality of shape differences (local inflation versus deflation).
The method is evaluated on a synthetically generated striatum dataset, and applied to detect shape differences in the hippocampus
between subjects with first-episode schizophrenia and normal controls.
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1. Introduction

Analyzing and comparing three-dimensional brain structures
or objects in general can be as simple as comparing volumes.
While informative, such a global measure cannot fully describe
changes between objects. Shape analysis approaches have been
proposed to assess object properties beyond global volume and
to characterize shape variations across subjects and between
subject populations (see Nitzken et al. (2014) for a brief sur-
vey). For instance, many shape analysis methods are based
on the classical point distribution model (PDM) (Cootes and
Taylor, 2004), which captures shape variations by computing
a mean shape and the major modes around the mean of corre-
sponding points in a set of shapes as illustrated in Fig. 1(a). The
PDM assumes a Gaussian distribution of the points around the
mean shape.

In contrast, shape characterizations built on concepts of or-
der statistics have been explored recently (Whitaker et al.,
2013; Hong et al., 2013, 2014a). These methods utilize depth-
ordering of shapes to generalize order statistics, for example,
the median and the inter-quartile range (IQR), to shapes, ef-
fectively obtaining the equivalent of a box-plot for shapes.
Fig. 1(b) illustrates the depth-ordering model (DOM). Using
shape-descriptions based on depth-ordering makes it possible
to perform shape analysis without making strong distributional
assumptions. While current approaches focus on using DOM to
analyze shape variations within one population, this paper ad-
dresses the challenge of differentiating subject populations, for
example subjects with a disorder versus normal controls, based
on the depth-ordering model.

Existing methods for population-based shape analysis can
be roughly subdivided into two categories: methods for global
analysis and methods for local analysis. Global analysis meth-
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(a) Point distribution model (PDM) (b) Depth-ordering model (DOM)

Figure 1: Comparison between two types of models for capturing shape varia-
tions. The three shapes in PDM (a) correspond to the mean and varying shapes
along the first mode at ±3 standard deviations. In DOM (b), the red shape is
the median of the shape population, and the grey area is the region covered
by 50% of the shapes at the top ranking list of the populations, similar to the
inter-quartile range (IQR) for scalar values visualized as part of a box-plot.

ods are designed to detect whether population shape differences
exist (Loncaric, 1998; Reuter et al., 2009; Wachinger et al.,
2014), but they generally cannot locate or characterize these
shape differences. This limits interpretability of results and con-
sequentially insights into the underlying biological processes.
The main attraction of such methods is that they often avoid es-
tablishing dense correspondences between shapes through reg-
istration. In contrast, local analysis methods require some form
of point-to-point correspondence between shapes to allow pre-
cise local shape analysis. Establishing these correspondences is
highly non-trivial and arguably one of the main sources of in-
accuracy, because any misregistration may create artifacts with
respect to the final shape analysis results. Nevertheless, a vari-
ety of methods for local shape analysis have been proposed and
successfully used (Miller, 2004; Davies et al., 2008; Cates et al.,
2008; Chung et al., 2008; Hosseinbor et al., 2014). Shape rep-
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Figure 2: Overview of the depth-ordering-based shape analysis. Based on the depth and the ordering of a shape population, statistical tests are defined to globally
separate control and disease groups using global analysis with a scalar value (depth) for each shape. Statistical difference for global analysis results can be established
through permutation testing. Equivalently, local shape differences can be detected using local analysis with a corresponding local permutation test, resulting in p-
values on the surface of a shape to establish local shape differences between populations. The directionality of the shape differences (inflation versus deflation) can
also be determined.

resentations that fit an a-priori model to the data have also been
used successfully, although they still need to establish some
form of one-to-one correspondence via model fitting (Styner
et al., 2004; Yushkevich and Zhang, 2013).

In this work, we explore an alternative method that allows
for both global and local shape analyses, and only needs very
limited (e.g., rigid or affine) spatial alignment of shapes. This
is achieved by using the notion of band-depth (López-Pintado
and Romo, 2009; Hong et al., 2013), which provides a notion
of centrality of a shape with respect to a reference dataset. The
deeper the shape the more similar it is to all other shapes in the
dataset. We use this notion to detect small morphometric differ-
ences between two populations of neuroanatomical structures.
Fig. 2 shows the general principle of the approach. First, shapes
are depth-ordered with respect to a reference dataset. We then
define a global statistical test directly on the shape depth, as
well as a local statistical test to assess local shape differences.
Our method is free from strong distributional assumptions by
using principles from non-parametric order-statistics.

Our main contributions in this paper are:

1) We propose using depth-ordering on shapes for statistical
shape analysis.

2) We develop an algorithm for the fast computation of band-
depth for shapes represented by binary indicator functions.

3) We define statistical tests to detect potential global and lo-
cal differences between shape populations without an ex-
plicit computation of dense correspondences.

4) We provide the directionality of shape differences to aug-
ment local measurements.

The method described in this paper is an extension of pre-
liminary ideas presented in a recent conference paper (Hong
et al., 2014b). This paper provides further details of our algo-
rithms including the permutation tests for both global and local
analyses, presents an additional technique for providing direc-
tionality of shape differences, and includes more comprehen-
sive experiments on both synthetic and real datasets.

The paper is organized as follows: Section 2 describes how
to order shapes by depth and how to compute such a depth-
ordering fast. Section 3 proposes statistical approaches using
depth-ordering for shape analysis. Section 4 discusses how to

augment local analysis with directionality of shape differences.
Section 5 presents experimental results on synthetic and real
datasets. Section 6 concludes the paper with a summary.

2. Depth-ordering of shapes

Generalizing concepts from order-statistics to shape analy-
sis faces the challenge that there is no canonical ordering of
shapes. To define such an ordering we make use of the con-
cept of band-depth and ordering of functions as developed in
the statistics literature (López-Pintado and Romo, 2009) and
extend it to shapes. Sun and Genton (2011) first proposed func-
tional boxplots to order functions using the band-depth concept
in López-Pintado and Romo (2009). The intuition of ordering
functions based on band-depth is that the deeper a function is
buried within a dataset the more central it is. The deepest func-
tion corresponds to the within-sample median function. Once
defined, this ordering can be used to generalize traditional order
statistics, such as the median or the inter-quartile range, to func-
tions. For example, Whitaker et al. (2013) adapted traditional
boxplots to functional contour boxplots for quantifying uncer-
tainty in fluid simulations and for the visualization of ensemble
data. What makes band-depth attractive for shape-ordering is
that shapes can be represented by indicator functions, i.e., by
binary functions that are 1 inside and 0 outside of a shape (Hong
et al., 2013, 2014a).

Band-depth for binary shape representations relates to the
amount of overlap between shapes, because the minimum and
maximum operators on indicator functions correspond to the set
intersections and unions respectively. Therefore, band-depth is
a natural and intuitive choice to order a shape population for an
indicator-function-based shape representation. In our current
work, we use this binary function representation to compare
shape populations. To improve the computational efficiency of
our model, we propose a novel fast algorithm to compute the
band-depth of shapes represented by binary maps. Most impor-
tantly we demonstrate how band-depth can be used to provide
both global and local statistical tests to differentiate between
shape populations.

Given a set of n shapes represented as 3D binary volumes,
{Y1,Y2, ...,Yn}, with dimension of (sx, sy, sz), we vectorize
them into binary vectors yi ∈ {0, 1}p (1 ≤ i ≤ n), where
p = sx × sy × sz. The band-depth for each shape y is defined as
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follows:

BDn,J(y) =

J∑
j=2

BD( j)
n (y)

where

BD( j)
n (y) =

1
C

∑
1≤i1<i2<···<i j≤n

I{G(y) ⊆ B(yi1 , · · · , yi j )} .

(1)

Here, 2 ≤ j ≤ J, and J ∈ [2, n] is the number of observa-
tions used to define the band. C is a normalization constant

equal to the number of admissible permutations, i.e.,
(
n
j

)
. G(y)

is the graph of the function, G(y) = {(x, y(x)) : x ∈ I}, and I
denotes the index range of the binary vector y. B is the band
delimited by the observations given as its arguments. That is,
B(yi1 , · · · , yi j ) = {(x, y(x)) : x ∈ I,minr=i1,··· ,i j yr(x) ≤ y(x) ≤
maxr=i1,··· ,i j yr(x)}. I{·} denotes the indicator function, which
evaluates to 1 if the graph of the function is within the band,
or to 0, otherwise.

Intuitively, the more central a particular vector y is in the
data population the more likely it will be “surrounded” by other
vectors; and hence it results in many evaluations of the indica-
tor function to 1 and therefore a large value for the band-depth.
Conversely, a vector at the fringes of the data population will
rarely be surrounded by other vectors and therefore will be as-
signed a comparatively low value for its band-depth.

Using the indicator function to define depth has limitations.
For example many ties in depth may exist among shapes within
the population. To address this issue, the band depth can be
modified (Sun and Genton, 2011) to

MBDn,J(y) =

J∑
j=2

MBD( j)
n (y)

where

MBD( j)
n (y) =

1
C

∑
1≤i1<i2<...<i j≤n

λp{A(y; yi1 , ..., yi j )} ,

(2)

where A j(y) ≡ A(y; yi1 , ..., yi j ) and A j(y) ≡ {x ∈ I :
minr=i1,...,i j yr(x) ≤ y(x) ≤ maxr=i1,...,i j yr(x)}, λp(y) =

λ(A j(y))/λ(I), λ is the Lebesgue measure on Rp and p is the
observation’s dimension, i.e., the number of voxels in a binary
represented shape.

In other words, for shapes represented as discrete binary vec-
tors, computing the modified band depth (MBD) of a shape is
equivalent to calculating the depth of each one of its element
and reporting an average of the proportion of the shape con-
tained within bands. This is different from the original band-
depth (BD, see Equation (1)), which computes an average of
being fully contained within bands. Because measuring the pro-
portion of being contained within a band provides more infor-
mation about the relationship of a shape with a band, MBD has
fewer ties in the resulting depth values than BD. Hence, in our
work we used this modified measure in all the experiments.

Albeit its conceptual simplicity, one of the main limita-
tions of band-depth is its computational complexity. Take
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Figure 3: Illustration of the computational complexity of band-depth calcu-
lation for all observations. The computational complexity of the original algo-
rithm is cubic, and our algorithm reduces it to linear, with respect to the number
of observations.

J = 2 for example, that is, the band is defined by two ob-
servations1. Because each observation needs to be compared
with the band formed by two out of n observations, the origi-
nal algorithm (Sun and Genton, 2011) has O(pn3) complexity
for computing band-depth for all observations, as illustrated in
Fig. 3(a). This makes this algorithm unsuitable for large num-
bers of functions. To allow for faster computations recently
a fast method to compute band-depth has been proposed (Sun
et al., 2012). This method is based on computing local curve
ranks and requires sorting of values from all curves at the same
position. The algorithm uses a rank list to compute the fre-
quency with which one point of a curve is contained by other
curves at the same location. However, the proposed algorithm
is ill-suited for binary shape representations as it does not con-
sider ranking ties during sorting, which frequently appear when
sorting binary values. Fig. 3(b) illustrates this ranking ap-
proach.

We observed that for binary representations sorting can be
avoided, as at any location only two values are possible, that
is, no sorting, but simple addition and subtraction, is enough to
measure whether a point of a shape is contained by the band
formed by shapes of a population at that location. The compu-
tation of MBD can then be accomplished efficiently for J = 2
using our algorithm as follows:

S0) Given n binary volumes, {Yi}
n
i=1, vectorize them: yi ∈

{0, 1}p, p is the number of voxels in a binary volume.

S1) At each location of a volume, k (1 ≤ k ≤ p), for a given
value v(k) ∈ {0, 1}, we count the number of functions that
have a value larger (na), smaller (nb) or equal (nt) to v(k):

a) if v(k) = 0, then na =
∑n

i=1 yi(k), nb = 0, and nt =

n − na − 1;

b) if v(k) = 1, then na = 0, nb =
∑n

i=1(1 − yi(k)), and
nt = n − nb − 1.

This procedure allows us to evaluate how often a voxel of a
volume is larger (or smaller) than voxels of other volumes
at the same location.

1Due to computational complexity this is typically how band-depth is eval-
uated, because choosing J > 2 results in even higher computational costs.
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S2) Based on the numbers na and nb defined in step S1, we
can calculate the number of bands containing v(k), for ex-
ample, from yi. First, let B be a band such that yi is not
one of its observations, and its bounds at k are denoted as
bmin and bmax. For J = 2, we have the following possible
scenarios, i.e., the combinations of possible B that contain
v(k):

a) bmin < v(k) < bmax (nanb such combinations).

b) bmin = v(k) and v(k) < bmax (nant such combina-
tions).

c) bmin < v(k) and v(k) = bmax (nbnt such combina-
tions).

d) bmin = v(k) and v(k) = bmax (nt(nt − 1)/2 such com-
binations).

In addition, we have to account for bands that have yi as
one of its observations. There are n − 1 such bands. By
collecting all combinations the total number of bands (J =

2) containing the value v(k) is:

Ck(v(k)) = nanb + nant + nbnt + nt(nt − 1)/2 + (n − 1) .

For binary functions na and nb cannot simultaneously be
different from zero, which simplifies the expression to

Ck(v(k)) = (na + nb)nt + nt(nt − 1)/2 + n − 1 .

The above equation provides us with the number of times
a voxel of a volume is contained by voxels of any two vol-
umes at the same location.

S3) The modified band-depth for a shape yi is then

MBD(yi) =
1
p

(
n
2

)−1 p∑
k=1

Ck(yi(k)) ,

where the notation Ck(yi(k)) denotes computing Ck in step
S2 based on the coefficients na, nb, nt given by the value
of yi at location k.

We can connect this special case scenario to the original
MBD definition (Equation (2)) as follows. First, for bands

made of two observations we have J = 2 and thus C =

(
n
2

)
.

Second, for volumes of size p, we have λ(I) = p. Finally,
for binary volumes

∑
1≤i1<i2<···<i j≤n λ(A j(yi)) is equivalent

to
∑p

k=1 Ck(yi(k)).

This algorithm computes MBD of all shapes in a population
at the same time, not sequentially. Compared to the original
band-depth algorithm our computational complexity is reduced
from O(pn3) to O(pn), as shown in Fig. 3. This makes it pos-
sible to compute band-depth for large populations and large
multi-dimensional shapes (we focus on 2D surfaces in 3D space
in this paper).

Note that, when choosing two shapes from a population to
define a band, we do not exclude the one that is being eval-
uated from the the admissible permutations of the population.

Training set (control) 

Test set (control) 

Test set (disease) 

Depth 

Figure 4: Illustration of global shape analysis. A group of control subjects is
chosen as a training set, and the band-depth of each test shape from control
or disease groups, is computed with respect to the training set. The boxplots
on the right show that in general the control group would have larger depths
than the disease group if control subjects are selected as the reference/training
population.

Instead, all the shapes in the population will be considered to
define the bands. So, in the algorithm the number of observa-
tions is n, i.e., the number of shapes in a population. One can
also exclude the current shape and compute its depth value with
respect to a population of the remaining shapes. This will not
change the ranking because the current shape is always con-
tained within the band formed by shapes including itself, re-
sulting in the same constant difference in the depth value of
each shape, compared to using n shapes as a population in the
algorithm.

3. Statistics using depth-ordering

Band-depth computed in Section 2 measures the relationship
between a shape and a reference population. A higher value
indicates the shape is closer to the median of the reference
population, and a lower one indicates the shape is a potential
outlier with respect to the reference population. Based on this
property of band-depth we can perform global shape analysis
as described in Section 3.1 as well as local shape analysis as
described in Section 3.2. For all these analyses we assume that
shapes have been pre-aligned as appropriate. Typically, this will
either involve a rigid, similarity or affine alignment of shapes to
a given template or to a template obtained by some form of
unbiased atlas-building method. The choice of transform will
depend on the objective of a given study. For example, if size
differences should be included, rigid alignment would be ap-
propriate.

The key ingredient to performing statistics using depth-
ordering is to compute depth-ordering with respect to a refer-
ence population of shapes that are used as a non-parametric
model of shapes. In particular, while band-depth would typi-
cally be computed for each shape of a population with respect
to all the shapes, in our definition of statistical tests we will
make use of a reference population to which other shapes are
compared, one at a time. Intuitively, one establishes a refer-
ence population (for example a population of normal control
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Figure 5: Global shape analysis on synthetic data using band-depth computed
with (a) and without (b) a training population. The training population allows
detection of global shape differences.

subjects) and then for another given shape not part of this pop-
ulation, one tests how deep this shape would be buried with
respect to the reference. Note that if a new subject is added into
the reference population, the band-depth of each shape should
be recomputed with respect to the new reference population.

3.1. Global shape analysis

The goal of global shape analysis is to establish if there are
shape differences between two different groups. To this end we
assign a scalar description of shape, here a measure of depth,
to each shape. Given a dataset {Ri} containing a training popu-
lation of shapes, we compute the band-depth for a given datum
D, from a set of input test shapes {D j}. We first compute the
band-depth for all the data in a population of {Ri}

⋃
D using

the algorithm described in Section 2, and then assign the result-
ing band-depth of D to the datum D, denoted as BD(D; {Ri}),
as illustrated in Fig. 4. A larger depth value indicates the test
shape being closer to the training set. Typically, we choose a
subgroup of control subjects as the training population, so in
general, the control test set would have larger depths than the
disease test set.

In the proposed method the training population forms a
“yard-stick” by which to judge data-depth. This is substantially
different from directly computing the band-depths for the full
dataset {D j}, which would be problematic. Most easily this
effect is illustrated by considering scalar-valued data of two
groups with the same variance, but strongly different means.
The most central element (the median) in such a case would be
half-way between the means. This median element will have
the largest band-depth. Band-depth will decrease moving away
from this median element towards smaller and larger elements.
Hence, the groups would become indistinguishable even though
they are clearly different. Equally problematic would be to
compute band-depth separately for both groups in which case
they cannot be meaningfully compared directly as the band-
depth values become relative to each group. To illustrate this
effect Fig.5 shows the results of the proposed approach using
a reference population and the approach using separate band-
depth computations for the groups of the synthetic striatum data
described in detail in Section 5.1. Our proposed approach us-
ing a reference group can clearly differentiate the populations
whereas a computation of the band-depth without a reference
group is not successful.

Functions Shapes 

Figure 6: Illustration of the median and α-central region. The median func-
tion / shape (red) is the most central one of a population, and the α-central
region (grey) is the band delimited by the α proportion of the deepest functions
/ shapes. For example, the grey region is the 0.6-central region because it is
built by three out of five functions / shapes.

3.1.1. Permutation test
To measure if global shape differences are statistically signif-

icant between control and disease groups, we use a permutation
test on the mean depth of the control group versus that of the
disease group. The null hypothesis of the permutation test is
that both the control and the disease groups have the same mean
depth with respect to the training group. Specifically, since the
depth of each test shape has been computed with respect to the
training group, we first compute the mean depth difference be-
tween the control test group and the disease test group with no
permutation. Then, in each permutation we exchange the sub-
jects in the two test groups and compute the mean depth dif-
ference between the two permuted test groups2. We count the
number of times that the mean depth difference is larger than
the one computed without permutation, and the proportion of
larger values to the total number of values is the associated p-
value. We test for statistical significance at a level of 0.05, i.e.,
we declare statistical significance for a p-value ≤ 0.05.

3.2. Local shape analysis

For the local shape analysis the goal is not only to establish
whether there are shape differences, but also where these shape
differences occur. To better understand the local analysis, we
first introduce its key ingredient, the α-central region as shown
in Fig. 6, which allows us to define a local shape analysis ap-
proach using depth-ordering. Specifically, based on the order-
ing of shapes, we can not only compute the median shape, the
most central shape of a population, but also α-central regions
(0 < α ≤ 1), similar to for example the inter-quartile-range
(IQR) for scalar-valued cases. The band of the α-central region
is delimited by the α proportion of the deepest shapes in the
ranking list, which is defined as

CRα = {B(y[1], y[2], ..., y[q]), q = dαne} , (3)

where y[1], ..., y[q] (q ≥ 1) denote the ordered shapes, from the
deepest one to the qth-deepest one, B(·) is the band as defined
in Section 2. The grey band shown in Fig. 6 illustrates a central
region with α equal to 0.6, because the three deepest shapes,

2Since the permutation is performed between test groups and there is no
change in the training group, the depth value of each test subject will keep
unchanged during this process. Hence, we do not need to recompute their band-
depth values.
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Figure 7: Illustration of local shape analysis. Reference shape population (a) (blue contours) defines a centrality map (b) (light yellow to dark red corresponds to
the most to the least central region of the reference population), which provides a local measure (c) (α-values) of how deeply a test shape (the non-ellipse shape) is
buried with respect to the reference population. The dilated region is colored by the darkest red with α-values greater than 1.

out of a total of five shapes of a population, are used to build
this central region.

The local analysis is based on the α-central regions of a refer-
ence population to detect the location of shape differences. For
the shapes in the reference population, starting from the deep-
est shape (its median shape) we gradually add shapes in order of
decreasing band-depth. Each set of shapes defines a specific α-
central region and a particular location is assigned the α value
of the first α-central region that covers it. The resulting map
describes the “centrality” of a shape population at each point
in the domain. The test shape can be overlaid on this central-
ity map and the corresponding α-values will be recorded on its
surface, thus providing a local measure of shape abnormality.

Fig. 7 illustrates this concept for a population of two-
dimensional shapes. Given the reference shapes, the blue
shapes shown in Fig. 7(a), we build a centrality map based on
the band-depth of each shape. As shown in Fig. 7(b), the deep-
est shape has the lowest α-value (light yellow) and the most out-
lying shape has the highest α-value (dark red). A local measure
of “belonging” to the population can then be computed for a test
shape by tracing the α-central region it traverses, see Fig. 7(c).
Note that some regions of the shape may not be covered by the
reference shape population, for example the top right part of
the test shape. To assign an α value in such cases, we use a
dilation procedure starting from the boundary of the α = 1 cen-
tral region, evolving at a constant speed until all locations of
the volume are covered. This results in α values greater than 1,
shown as the regions colored with the darkest red in Fig. 7.

Overall, α > 0, and a larger α-value indicates a local region
with a higher potential to be different with respect to the refer-
ence group. Note that the centrality map has no notion of the
directionality of shape differences. Instead, it captures both the
inflated and deflated shape differences with respect to the ref-
erence group without distinguishing them, as the bump and the
indented region shown in Fig. 7.

3.2.1. Permutation test
To measure whether a local region of a test group is signifi-

cantly different from another test group, we design a permuta-
tion test using the α-values. Specifically, similar to the global
analysis, we have three groups of subjects: a group of control
subjects as the training set, another group of control subjects as
the control test set, and a group of disease subjects as the dis-
ease test set. We first compute the band-depth for each shape

2 
3 

0 
1 

-1 
-2 

-1 1 -2 2 0 3 

Figure 8: Illustration of directionality for a template shape (the ellipse with a
bump and an indented region) with respect to the median shape (the ellipse at
the zero level-set) of a reference population.

from the two test groups with respect to the training set. That
is, each test shape will be assigned a band-depth value, and its
band-depth will be used for ordering in the permutation test.
Then, the median of one test group is chosen as the template,
and the other test group is left as the reference population. Our
goal is to measure the shape differences of the template com-
pared to the reference population, which is ordered based on
the associated band-depths of its shapes when computing the
α-values for the template.

We perform a permutation test with the null hypothesis being
that the α-values recorded on the surface of the template shape
are the same for the two test populations. In each permutation,
we exchange the subjects in the two test groups to reconstruct
a new reference group and reorder its shapes according to the
band-depth associated with them. Note that we do not recom-
pute these band-depths, but always keep the band-depth values
that are associated to a particular shape. Then, new α-values
for the template with respect to the new reference population
are computed. At each position we count the number of the
α-values that are larger than the one computed without permu-
tation, resulting in p-values on the surface of the template. A
p-value smaller than 0.05 (with 10000 permutations for exam-
ple) indicates that the corresponding local region of the tem-
plate is significantly different from that region of the reference
population at a significance level of 0.05.

4. Directionality of shape differences

While the concept of band-depth allows us to measure how
central a shape is with respect to a reference population, this
measure is not signed and thus cannot represent whether a par-
ticular region of a shape is inflated or deflated (i.e., atrophied).
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Figure 9: Ground-truth of a sample shape (two views from the lateral and me-
dial sides). Colormap on the shape indicates the location and magnitude of the
artificial deformations compared to the undeformed shape. Red color corre-
sponds to a large deformation distance.

In other words, band-depth ordering lacks directionality. For
example, in Fig. 7 two different regions can be flagged as ab-
normal using the centrality map, but it is not possible to tell
that one is ”thinner” and the other ”thicker” purely based on
band-depth or the assigned α-values.

To measure the directionality of shape differences, we pro-
pose to use the signed distance transform. The signed distance
map of the median shape of the reference population is com-
puted. The test shape is then overlaid onto this signed distance
map, so that the corresponding values can be recorded on the
surface of the test shape, as illustrated in Fig. 8. As a result, a
positive value indicates an enlarged region with respect to the
reference median, and a negative value indicates an atrophied
region.

5. Experimental results

We applied our method on both synthetic and real data. All
shapes are pre-aligned using a rigid transformation, and repre-
sented as binary functions.

5.1. Synthetic data

Using synthetic data allows us to introduce a predefined
shape change which we wish to recover using our proposed
approach. We use the technique described in Gao and Bouix
(2012) to generate large data sets of realistic shapes with known
deformations. In short, a manifold learning technique is used
to generate arbitrarily many shapes from a small training sam-
ple. A joint clustering algorithm is then applied to parcellate
each shape’s surface into small regions which are consistently
located across all shapes. Finally, a Log-Euclidean framework
is used to introduce smooth, invertible and anatomically real-
istic deformations to one or multiple regions as defined by the
clustering.

For this application, we generated 160 shapes based on 27
manually traced striata. We then modified 80 of them by thick-
ening the putamen. A sample shape with deformation distance
is shown in Fig. 9. Here, the medial side of the putamen was
“pulled out”, and because of this large deformation the lateral
side of the putamen was slightly deflated due to the diffeomor-
phic nature of the deformation. We evenly divided 80 normal
controls into two groups. One group is used as the training set
(NC-Train), and the other for testing (NC-Test). From the 80
abnormal subjects, we randomly picked 40 of them for testing.

5.1.1. Global analysis
To test for global group separability, we followed the strategy

described in Section 3.1.1 to perform a permutation test (10000
permutations). When using the NC-Train as the training set to
compute band-depth for both control and disease test sets, the
resulting p-value is less than 1e-4, indicating the normal con-
trols and the disease subjects are significantly different. On the
other hand, as shown in Fig. 5, when pooling all shapes to-
gether to compute their band depths, no significant difference is
detected. Since we know the control and disease groups of the
synthetic data are significantly different according to the ground
truth, this experimental result indicates that the training popu-
lation is essential for the discrimination of subject populations.

5.1.2. Local analysis
For the local analysis, we first need to choose the template

and the reference population for the permutation test. Two pos-
sible choices are: (i) taking the median of the NC-Test as the
template and the disease test group as the reference population,
and (ii) using the median of the disease test group as the tem-
plate and the NC-Test group as the reference population. We
demonstrate our method using both strategies with experimen-
tal results shown in Fig. 10 and Fig. 11.

We first use the NC-Train group to compute the band-depth
for all test shapes, and then estimate α-values of the template
with respect to the reference population which is ordered us-
ing the computed band-depth. The α-values on the NC-Test
median are shown in Fig. 10(a) and those of the disease me-
dian are shown in Fig. 11(a). Both results demonstrate that the
introduced deformed (or different) regions on both medial and
lateral sides of the template are detected as expected.

Fig. 10(b) and Fig. 11(b) show the raw p-values and the false-
discovery-rate (FDR) corrected p-values, with 10000 permuta-
tions. Based on the ground truth shown in Fig. 9, the “pulled-
out” region on the medial side of the putamen is significantly
deformed, while the deflated region on the lateral side is slightly
deformed, and some significantly deformed region may exist.
We detect, regardless of which median shape is chosen as the
template, the significantly deformed region. The main differ-
ence is that Fig. 10(b) shows more significantly different re-
gions on the lateral side of the putamen than Fig. 11(b). Both
strategies provide reasonable results compared to the ground
truth (Fig. 9).

5.1.3. Directionality of shape differences
To test our strategy of measuring the directionality of shape

differences, we first applied it on the median shapes of NC-Test
and disease groups with respect to the median of NC-Train,
as shown in Fig. 12. As expected, the median shapes from
NC-Train and NC-Test have relatively small differences, c.f.
Fig. 12(a). But, in Fig. 12(b) (the disease median with respect
to the NC-Train median), we can see positive values on the me-
dial side of the putamen, indicating that the disease median has
an inflated region compared to the NC-Train median, and neg-
ative values on the lateral side of putamen, indicating that the
disease median has a deflated region there. This is consistent
with the introduced deformation in the synthetic data.
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(a) α-values (b) Raw (left) and FDR-corrected (right) p-values (c) Directionality

Figure 10: Local shape analysis on synthetic striatum shown from two views, the medial (top) and the lateral (bottom) views, with the median of NC-Test as the
template and the disease test group as the reference population. (a) The α-values on the template. (b) The corresponding raw p-values with 10000 permutations,
and FDR corrected p-values. (c) The directionality of shape differences on the template with respect to the median of the reference group.

(a) α-values (b) Raw (left) and FDR-corrected (right) p-values (c) Directionality

Figure 11: Local shape analysis on synthetic striatum shown from two views, the medial (top) and the lateral (bottom) views, with the median of the disease test
group as the template and the NC-Test group as the reference population. (a) The α-values on the template. (b) The corresponding raw p-values with 10000
permutations, and FDR corrected p-values. (c) The directionality of shape differences on the template with respect to the median of the reference group.

Since the directionality test among the control and the dis-
ease median shapes correctly reveals the directions of their
shape differences, according to the introduced deformations, we
further applied the directionality computation on the template
with respect to the median shape of the reference population
to augment the local analysis results based on depth-ordering.
Fig. 10(c) shows the NC-Test median with respect to the disease
median. The negative values on the medial side of the putamen
indicate that this region of the NC-Test median (template) is
deflated compared to the corresponding part of the disease me-
dian (from the reference population). And the positive values
on the lateral side of the putamen indicate that this region of the
NC-Test median is inflated compared to that part of the disease
median. This is also consistent with the ground truth. By also
considering the p-values in Fig. 10(b), we can determine the
directionality for those significantly different regions. Consis-
tent results are shown in Fig. 11(c) for the disease median with

respect to the NC-Test median.

5.2. Real data
Magnetic Resonance Images (MRI) of the brains of 123

subjects (including 102 males) diagnosed with first-episode
schizophrenia and of 56 normal control subjects (including 37
males) were acquired on a 1.5-T scanner. Multi-site SPGR
T1-weighted images (voxel dimensions 0.9375 × 0.9375 × 1.5
mm) were obtained. These MRI images were rigidly aligned
to a standard coordinate space, from which hippocampus struc-
tures were segmented. Each binary segmentation was fit with a
mesh model. This dataset was used in a previous shape analysis
study (McClure et al., 2013). All the hippocampus shapes were
pre-aligned using a rigid transformation. To get the binary rep-
resentation of the hippocampus shapes, we used voxelizations
with equal spacing in each direction. To measure the sensitivity
with respect to spacing we tested using spacings of 0.3 and 0.4
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(a) The median of the NC-Test group

(b) The median of the disease group

Figure 12: The directionality of shape differences on the median test shapes
with respect to the median shape of the NC-Train group shown from two views,
lateral (left) and medial (right) sides.

mm. Results were similar. Hence, only results for a spacing of
0.4 mm are presented in what follows.

5.2.1. Global analysis
Similar to the synthetic data experiment, we divided the

56 normal control subjects into two groups, NC-Train and
NC-Test, and considered all 123 subjects with first-episode
schizophrenia as the disease group. Fig. 13 shows the global
differences between NC-Test and the disease groups, for both
left and right hippocampi. We also used a permutation test with
10000 permutations to determine whether these groups’ mean
depth values differed significantly. This resulted in p-values of
0.03 for the left hippocampus and 0.15 for the right hippocam-
pus. This indicates based on the global depth-based analysis,
that the left hippocampus is significantly different in disease
and normal control populations at a significance level of 0.05.

5.2.2. Local analysis
For the local shape analysis, we used the NC-Train group as

the training set to compute the depth for test subjects, and took
the median of the disease group as the template and the NC-Test
group as the reference population. Fig. 14 shows the local anal-
ysis results on both left and right hippocampi. We can see that
our method captures some abnormal regions. However, based
on the local p-values only relatively small regions of the me-
dian disease shape are significantly different from the normal
controls. The p-values also show that the response is stronger
on the left hippocampus, which is consistent with a previous
study by McClure et al. (2013). The shown p-values for this
experiment were not corrected using FDR. No significant re-
gions remained after FDR-correction. Note that in our case we
work directly on the voxel level of shapes thereby generating
many local comparisons. Considering the analysis at a coarser
spatial scale, e.g., averaged responses over regions as adopted
in McClure et al. (2013), could potentially reveal shape differ-
ences which persist under FDR correction.
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(a) Left hippocampus (b) Right hippocampus

Figure 13: Global analysis on both left and right hippocampi. The disease
group indicates subjects with first-episode schizophrenia.

5.2.3. Directionality of shape differences
The right column in Fig. 14 shows the directionality of shape

differences on the template (the disease median) with respect
to the median of the reference group, NC-Test. We observe
for both the left and right hippocampi of the disease median
that few detected regions are locally deflated with respect to the
normal median, but instead most of the other detected regions
are found to be locally inflated compared to the normal median.

5.3. Comparison with other methods

In Gao et al. (2014), three standard methods, SPHARM-
PDM, Shapeworks, and Tensor Based Morphometry (TBM),
were tested on the same synthetic dataset that we are using in
the experiments. To quantitatively measure the significantly
deformed region, they extracted the “region of deformation”
(ROD) from ground truth data, and computed the ratio between
the area of deformation and the area of the entire shape. The
average of these ratios is referred to as the ground truth. For
the striatum dataset used in our work the average ratio is 0.33.
When measuring the detected significant region in the local
analysis results, the ROD is defined as the region whose FDR-
corrected p-value is less than or equal to 0.05. The area ratio
reported in Gao et al. (2014) is 0.61 for SPHARM-PDM, 0 for
ShapeWorks, and 0.17 for TBM.

The ROD cannot measure how well a shape analysis method
localizes the differences, but it reveals whether the detected sig-
nificant region has a reasonable size compared to the ground
truth. Using the combination of ROD with the visual results
allows one to assess both the location and extent of the de-
tected deformation with respect to the ground truth. We fol-
low this measurement and compute the area ratio of our FDR-
corrected results on the synthetic data, resulting in 0.2 when
using the median of NC-Test as the template (see Fig. 10), and
0.15 when using the median of the disease test group as the tem-
plate (see Fig. 11). According to the ground truth of the area
ratio for the synthetic data, our method has better performance
than SPHARM-PDM and Shapeworks, and provides compara-
ble, even slightly better, quantitative measures than TBM.

Compared to the qualitative results of the three methods pre-
sented in Gao et al. (2014), our method provides more accurate
locations of the detected deformations, according to the intro-
duced deformations. Furthermore, in contrast to these methods,
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α-values p-values directionality

(a) Left hippocampus viewed from lateral and medial sides

(b) Right hippocampus viewed from medial and lateral sides

Figure 14: Local analysis on the disease median of both left and right hippocampi with respect to the normal control test group.

our results reveal that most of the significantly different regions
are located on the medial side of the putamen, instead of the
lateral side, which is also consistent with the synthetic data.

In addition, our real data experiment is consistent with pre-
vious results on shape differences in the hippocampus for first-
episode schizophrenia (McClure et al., 2013), specifically with
strong differences for the left hippocampus.

6. Discussion and conclusion

In this paper we presented a shape analysis framework that
can provide both global and local information, yet does not re-
quire complex processes to establish point-to-point correspon-
dences. Instead we use the notion of band-depth of functions
to order shapes according to how well they “fit in” a shape en-
semble. This method allows for the definition of a median and
α-central regions of a population, which can then be used to
compare different population of shapes without strong distribu-
tional assumption.

Different from Hong et al. (2013), which focuses on aug-
menting a population atlas with statistical information using
weighted band-depth, we proposed a fast algorithm to compute
the band-depth of shapes represented by binary maps, and most
importantly showed how band-depth can be used to provide
both global and local statistical tests to differentiate between
populations. In contrast to other deformation based tools for
shape analysis, our approach is non-parametric and naturally
captures how likely a shape belongs to a population. Although
it does not provide physical measurements of displacement,

these can be computed by deformation or a distance transform
to the population median.

One limitation of our method is the reliance on a representa-
tive training set. Also, the size of the training set will affect the
computed band-depth. Determining an appropriate size of the
training set to obtain sufficient statistical power is left for future
work.

In addition, as discussed our current method works on the
pixel/voxel level. In future work we will explore a multi-scale
approach to better adapt the analysis results to the spatial scale
of the expected differences. To further increase the statistical
power of our method, we could include more factors, e.g., age,
gender, into the shape analysis, and explore their relationship
with the estimated band-depths of shapes. This extension is not
straightforward and therefore left to future work.
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