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ABSTRACT

Lung cancer is the leading cause of cancer-related death
worldwide. Early diagnosis of pulmonary nodules in Com-
puted Tomography (CT) chest scans provides an opportunity
for designing effective treatment and making financial and
care plans. In this paper, we consider the problem of di-
agnostic classification between benign and malignant lung
nodules in CT images, which aims to learn a direct map-
ping from 3D images to class labels. To achieve this goal,
four two-pathway Convolutional Neural Networks (CNN) are
proposed, including a basic 3D CNN, a novel multi-output
network, a 3D DenseNet, and an augmented 3D DenseNet
with multi-outputs. These four networks are evaluated on
the public LIDC-IDRI dataset and outperform most existing
methods. In particular, the 3D multi-output DenseNet (MoD-
enseNet) achieves the state-of-the-art classification accuracy
on the task of end-to-end lung nodule diagnosis. In addi-
tion, the networks pretrained on the LIDC-IDRI dataset can
be further extended to handle smaller datasets using transfer
learning. This is demonstrated on our dataset with encourag-
ing prediction accuracy in lung nodule classification.

Index Terms— Lung nodule classification, deep neural
networks, multi-output networks, LIDC-IDRI

1. INTRODUCTION

Lung cancer, the most common cause of cancer deaths, ac-
counted for 1.69 million deaths worldwide in 2015. In 2018
there will be 234,030 estimated new cases diagnosed as lung
and bronchus cancer and 154,050 estimated deaths in the
United States [1]. Such situation can be improved by using
screening with low-dose computed tomography (CT), which
has been shown to reduce lung cancer mortality [2]. However,
due to the subtle differences between benign and malignant
pulmonary nodules, lung cancer diagnosis is a difficult task
even for human experts. In addition, the accuracy of radio-
logic diagnosis varies and greatly depends on the clinician’s
subjective experience. Computer-aided diagnosis (CAD) pro-
vides a non-invasive solution and an objective prediction for
assisting radiologists in the lung nodule diagnosis.

Existing CAD methods fall into two categories: classifica-
tion models based on hand-crafted features [3, 4, 5] and deep

neural networks with automatic feature extraction [6, 7, 8, 9,
10]. Approaches in the first category typically measure radi-
ological traits, e.g., nodule size, location, shape, texture, and
adopt a classifier to determinate malignancy status. However,
collecting and selecting a useful subset of features for lung
nodule diagnosis is non-trivial and runs the risk of introduc-
ing measurement errors. In the second category, models based
on deep neural networks can automatically learn features for
diagnosis from lung CT images. They have shown promis-
ing prediction accuracy for risk stratification of lung nodules.
However, most of existing deep learning models handle the
pulmonary nodule classification problem by utilizing 2D con-
volutional neural networks (CNN) [6] or multiview 2D CNNs
to mimic 3D image volumes [7, 8]. They discard partial but
important information of the original image data for classifi-
cation. The model proposed in [9] uses 3D CNNs to extract
features for six attributes of lung nodules and fuses those fea-
tures to regress the malignancy score. In practice, providing
those attributes of a nodule requires additional work from ra-
diologists. Another recent model classifies lung nodules using
gradient boosting machine with constructed features from 3D
networks, nodule size, and raw nodule pixels [10].

In this paper we propose four 3D neural networks for end-
to-end lung nodule diagnosis, i.e., classifying a nodule in a
3D CT scan as benign or malignant. The basic network is
a simple 3D CNN with two pathways accepting 3D image
patches at different scales as input. The basic 3D CNN can
be improved by providing intermediate outputs and/or adding
connections between layers, which shorten the distance from
input to output and could achieve better optimization results.
Therefore, based on the basic 3D CNN we propose another
three 3D networks, one with multiple intermediate outputs,
one with dense blocks (a series of convolutional layers all
connected to every other layer [11]), and their combination
including both intermediate outputs and dense connections.

The proposed networks are evaluated on the public LIDC-
IDRI dataset [12] and our private pulmonary nodule dataset.
For the LIDC-IDRI dataset, the best performance is achieved
by the 3D multi-output DenseNet (MoDenseNet), resulting in
90.40% accuracy in a cross-validation setting. This outper-
forms a recent model for pulmonary nodule classification [7],
by providing both higher classification accuracy and larger
area under the receiver operating characteristic (ROC) curve.



P
oo

lin
g

Fl
at

te
n

…
.

O
ut

pu
t

2x
2x

2

C
on

v 
+ 

B
N

32
@

3x
3x

3

x2

P
oo

lin
g

C
on

v 
+ 

B
N

64
@

3x
3x

3

2x
2x

1

x2

P
oo

lin
g

C
on

v 
+ 

B
N

12
8@

3x
3x

3

2x
2x

1

x2

P
oo

lin
g

C
on

v 
+ 

B
N

25
6@

3x
3x

3

2x
2x

1

x2

P
oo

lin
g

C
on

v 
+ 

B
N

51
2@

3x
3x

3

2x
2x

1

x2

C
on

v 
+ 

B
N

32
@

3x
3x

3
x2

P
oo

lin
g

C
on

v 
+ 

B
N

64
@

3x
3x

3

2x
2x

1

x2

P
oo

lin
g

C
on

v 
+ 

B
N

12
8@

3x
3x

3

2x
2x

1

x2

P
oo

lin
g

C
on

v 
+ 

B
N

25
6@

3x
3x

3

2x
2x

1

x2

P
oo

lin
g

C
on

v 
+ 

B
N

51
2@

3x
3x

3

2x
2x

1

x2

P
oo

lin
g

Fl
at

te
n

…
.

O
ut

pu
t

2x
2x

2

C
on

v 
+ 

B
N

12
@

3x
3x

3

x4

P
oo

lin
g

C
on

v 
+ 

B
N

12
@

3x
3x

3

2x
2x

1

x10

P
oo

lin
g

C
on

v 
+ 

B
N

12
@

3x
3x

3

2x
2x

1

x20

P
oo

lin
g

C
on

v 
+ 

B
N

24
@

3x
3x

3

2x
2x

1

x20

P
oo

lin
g

C
on

v 
+ 

B
N

48
@

3x
3x

3

2x
2x

1

x20

C
on

v 
+ 

B
N

12
@

3x
3x

3

x4

P
oo

lin
g

C
on

v 
+ 

B
N

12
@

3x
3x

3

2x
2x

1

x10

P
oo

lin
g

C
on

v 
+ 

B
N

12
@

3x
3x

3

2x
2x

1

x20

P
oo

lin
g

C
on

v 
+ 

B
N

24
@

3x
3x

3

2x
2x

1

x20

P
oo

lin
g

C
on

v 
+ 

B
N

48
@

3x
3x

3

2x
2x

1

x20

D
B

D
B

D
B

D
B

D
B

D
B

D
B

D
B

D
B

D
B

(a) Basic 3D CNN (c) 3D DenseNet

P
oo

lin
g

Fl
at

te
n

…
.

O
ut

pu
t

2x
2x

2

C
on

v 
+ 

B
N

32
@

3x
3x

3

x2

P
oo

lin
g

C
on

v 
+ 

B
N

64
@

3x
3x

3

2x
2x

1

x2

P
oo

lin
g

C
on

v 
+ 

B
N

12
8@

3x
3x

3

2x
2x

1

x2

P
oo

lin
g

C
on

v 
+ 

B
N

25
6@

3x
3x

3

2x
2x

1

x2

P
oo

lin
g

C
on

v 
+ 

B
N

51
2@

3x
3x

3

2x
2x

1

x2

C
on

v 
+ 

B
N

32
@

3x
3x

3

x2

P
oo

lin
g

C
on

v 
+ 

B
N

64
@

3x
3x

3

2x
2x

1

x2

P
oo

lin
g

C
on

v 
+ 

B
N

12
8@

3x
3x

3

2x
2x

1

x2

P
oo

lin
g

C
on

v 
+ 

B
N

25
6@

3x
3x

3

2x
2x

1

x2

P
oo

lin
g

C
on

v 
+ 

B
N

51
2@

3x
3x

3

2x
2x

1
x2

Fl
at

te
n

…
.

O
ut

pu
t*

Fl
at

te
n

…
.

O
ut

pu
t*

Fl
at

te
n

…
.

O
ut

pu
t*

Fl
at

te
n

…
.

O
ut

pu
t*

Fl
at

te
n

…
.

O
ut

pu
t*

Fl
at

te
n

…
.

O
ut

pu
t*

Fl
at

te
n

…
.

O
ut

pu
t*

Fl
at

te
n

…
.

O
ut

pu
t*

P
oo

lin
g

Fl
at

te
n

…
.

O
ut

pu
t

2x
2x

2

C
on

v 
+ 

B
N

12
@

3x
3x

3

x4

P
oo

lin
g

C
on

v 
+ 

B
N

12
@

3x
3x

3

2x
2x

1

x10

P
oo

lin
g

C
on

v 
+ 

B
N

12
@

3x
3x

3

2x
2x

1

x20

P
oo

lin
g

C
on

v 
+ 

B
N

24
@

3x
3x

3

2x
2x

1

x20

P
oo

lin
g

C
on

v 
+ 

B
N

48
@

3x
3x

3

2x
2x

1

x20

C
on

v 
+ 

B
N

12
@

3x
3x

3

x4

P
oo

lin
g

C
on

v 
+ 

B
N

12
@

3x
3x

3

2x
2x

1

x10

P
oo

lin
g

C
on

v 
+ 

B
N

12
@

3x
3x

3

2x
2x

1

x20

P
oo

lin
g

C
on

v 
+ 

B
N

24
@

3x
3x

3

2x
2x

1

x20

P
oo

lin
g

C
on

v 
+ 

B
N

48
@

3x
3x

3

2x
2x

1

x20

Fl
at

te
n

…
.

O
ut

pu
t*

Fl
at

te
n

…
.

O
ut

pu
t*

Fl
at

te
n

…
.

O
ut

pu
t*

Fl
at

te
n

…
.

O
ut

pu
t*

Fl
at

te
n

…
.

O
ut

pu
t*

Fl
at

te
n

…
.

O
ut

pu
t*

Fl
at

te
n

…
.

O
ut

pu
t*

Fl
at

te
n

…
.

O
ut

pu
t*

D
B

D
B

D
B

D
B

D
B

D
B

D
B

D
B

D
B

D
B

(b) 3D Multi-Output CNN (?intermediate output) (d) 3D Multi-Output DenseNet (?intermediate output)

Fig. 1. Architectures of our proposed networks. Conv: convolutional layer; BN: batch normalization; DB: dense block.

To the best of our knowledge, our proposed MoDenseNet
achieves the state-of-the-art lung nodule classification result
on the LIDC-IDRI dataset using an end-to-end model and 3D
CT images with uniform slice thickness. In addition, for our
private dataset the MoDenseNet also demonstrates the best
performance among the four proposed 3D networks.

2. METHODS

In this section we describe our classification models for lung
nodules in CT scans using deep neural networks. In practice,
radiologists make a diagnosis by checking multiple slices of
a pulmonary nodule and considering 3D information of the
nodule. Single- or multi-view 2D images as used in most of
previous methods do not contain a complete 3D information
for a lung nodule. Therefore, our proposed networks take as
input a 3D CT chest scan with the location of a nodule and dis-
criminate a malignant pulmonary nodule from benign ones.

A typical CT scan consists of hundreds of 2D slices, e.g.,
a sequence of gray images with a dimension of 512×512. Di-
rectly dealing with the whole 3D image scan is not practical
for a deep network due to limited memory resources. In ad-
dition, most lung nodules in our image data occupy less than
10 slices and some nodules are too small to be distinguished
from surrounding normal tissues if viewing the full 3D im-
age. Therefore, our networks focus on small regions centered
at the annotated locations of lung nodules. The networks have
two pathways that input 3D image patches at different scales
to cover both local and global image context of a pulmonary
nodule. With the aforementioned input and output, we next

describe how to design the networks.

2.1. Network Architectures

Basic 3D CNN We first apply the basic principles of deep
neural networks with 3D convolutional filters to the lung nod-
ule classification problem. An accurate diagnosis requires
both local detailed information of a lung nodule and global
surrounding tissues for comparison. Therefore, our basic net-
work has two pathways with 3D image inputs at two different
scales, as shown in Fig. 1(a). In particular, one pathway ac-
cepts a 3D image volume of dimension 50 pixel × 50 pixel
× 5 slice, where a pulmonary nodule dominates. The other
pathway accepts an image volume of dimension 100 × 100
× 10, which covers both a nodule and its surrounding tissues.
The 3D patch size is selected according to our experimental
datasets and might differ for a new dataset.

In the basic 3D network, the two pathways share the same
structure, except that the one accepting a larger input has a
max pooling layer with a filter of size 2 × 2 × 2 before the
first convolutional layer. Each pathway has ten convolutional
layers, including a sequence of 32, 32, 64, 64, 128, 128, 256,
256, 512, and 512 feature maps generated by 3D convolu-
tional filters of size 3×3×3, and four max pooling layers with
filters of size 2×2×1, each after every two convolutional lay-
ers. Padding is used to maintain the size of feature maps after
convolution operators and we apply batch normalization [13]
after every convolution layer. The feature maps from two
pathways are concatenated and connected to the classifica-
tion output layer. The depth of this network is adapted to the
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(a) LIDC-IDRI (b) Our dataset

Fig. 2. Pulmonary nodule samples from two datasets.

datasets used in the experiments and a deeper network may
suffer from over fitting because of limited datasets.
3D Multi-Ouput CNN The basic 3D CNN would get stuck
in a local optimum. To find a better optimum, we modify
the basic 3D CNN by introducing early outputs, which pro-
vides immediate feedback from an early evaluation of error
functions. Fig. 1(b) demonstrates the network architecture
modified from the basic 3D CNN by adding multiple outputs.
Specifically, the network has intermediate outputs after every
pooling layer that follows a convolutional layer. By collecting
all feature maps before those intermediate outputs and those
from the last convolutional layers in two pathways, we con-
nect them to the classifier for the final output.
3D DenseNet Similar to multi-output networks, DenseNet
proposed in [11] provides another way to shorten the distance
from input to output. They can achieve a better optimization
result, because the vanishing gradient is strengthened by the
connections to layers closer to output. Therefore, our third
network is adapted from DenseNet, which advances standard
2D neural networks by introducing dense blocks with direct
connections among all the layers in a block. Hence, we mod-
ify the basic 3D CNN by introducing 3D dense blocks. The
overall architecture shown in Fig. 1(c) consists of five dense
blocks for each pathway. The first three dense blocks con-
sists of 4, 10, 20 convolutional layers, respectively. Each con-
volutional layer has 12 feature maps with 3D filters of size
3× 3× 3. The last two dense blocks consist of 20 layers each
and have 24 and 48 feature maps, respectively, which are also
generated by 3D convolutional filters of size 3× 3× 3.
3D Multi-Output DenseNet (MoDenseNet) Our final net-
work adopts the design of the multi-output network to aug-
ment the 3D DenseNet. As shown in Fig. 1(d), we follow the
same strategy as used in the 3D multi-output CNN and pro-
vide early outputs after every pooling layer that follows the
dense blocks in both pathways. The feature maps before each
intermediate outputs are merged along with the features from
the last convolutional layers of the two pathways and then sent
to the classifier for the final output.

2.2. Transfer Learning

To train the proposed networks, typically we need a large
dataset. The LIDC-IDRI dataset has 686 lung nodule sam-
ples available for experiments (see Sec. 3.1 for more details).
However, our dataset is relatively small and consists of only

3D Network TPR% TNR% PPV% AUC ACC%
Basic CNN 87.50 81.20 83.86 0.9064 84.35

Multi-Output 88.99 82.69 86.49 0.9205 85.84
DenseNet 88.50 88.33 89.60 0.9451 88.42

MoDenseNet 90.47 90.33 90.55 0.9548 90.40

Table 1. Results of the proposed networks on the LIDC-IDRI
dataset. TPR: true positive rate or sensitivity; TNR: true neg-
ative rate or specificity; PPV: positive predictive value or pre-
cision; AUC: area under the ROC curve; ACC: accuracy, the
percentage of correct predictions.

147 nodule samples. Therefore, for our dataset we augment
our networks using transfer learning [14]. This is a com-
mon way to improve the performance of network on a smaller
dataset by using a pretrained network on a similar but often
larger dataset. In particular, we freeze all the convolutional
layers of the proposed networks that are pretrained on the
LIDC-IDRI dataset and then retrain the last layer of each net-
work on our private dataset.

3. EXPERIMENTS

3.1. Dataset and Preprocessing

LIDC-IDRI dataset This public dataset consists of 1010
CT scans with annotations provided by four radiologists.
Each image includes one or more lung nodules. We use the
nodule list reported in [15] to obtain the x, y coordinate and
slice number of a nodule’s location, which is used to generate
3D image patches as input for the networks. To collect the
diagnosis information of nodules, we follow the preprocess-
ing steps in [7]. Each nodule is annotated by one to four
radiologists and given a grade from 1 to 5, with 1 and 5 be-
ing the extremes of benign and malignancy, respectively. A
zero grade indicates unavailable diagnosis [10], which will
be ignored. We consider lung nodules diagnosed by at least
3 radiologists, compute the median value of annotated grades
for a nodule, and take a median value of less than 3 as benign
and greater than 3 as malignant. We exclude all nodules with
a median value equal to 3. This results in a collection of 808
lung nodules with unique annotations. Furthermore, some
lung nodules are discarded because of missing slices and/or
non-uniform slice thickness. At the end, we have 686 lung
nodules (46% benign and 54% malignant) for experiments.
Our dataset We have collected 147 CT scans (37% benign
and 63% malignant) for this lung cancer diagnosis problem.
The location for each pulmonary nodule is specified by the ra-
diologist and each nodule was determined whether it is benign
or malignant by taking a biopsy of the nodule. Compared to
the LIDC-IDRI dataset, our dataset is even more challenging
with more subtle differences between benign and malignant
lung nodules as shown in Fig. 2.



3D Network
W/O Transfer Learning W/ Transfer Learning
AUC ACC% AUC ACC%

Basic CNN 0.6547 60.21 0.7087 64.54
Multi-Output 0.7537 70.90 0.7702 74.54

DenseNet 0.8018 81.21 0.8468 83.63
MoDenseNet 0.8634 85.45 0.9010 86.84

Table 2. Results of the proposed networks on our dataset
with and without transfer learning. AUC: area under the ROC
curve; ACC: accuracy, the percentage of correct predictions.

3.2. Experiment Settings

The implementation of our networks is based on Keras with
tensorflow as backend [16]. Since our classification mod-
els are of a binary nature and deal with unbalanced datasets,
we use the weighted binary cross entropy as the loss func-
tion. The LIDC-IDRI dataset is evaluated using 5-fold cross-
validation, four subsets for training/validation and one for
testing. Since we have limited data samples for training, we
only use 2.5% of the four subsets for validation. All proposed
networks are trained using Adadelta optimizer and L2 regu-
larizer. For the LIDC-IDRI dataset, networks are trained from
scratch; while for our dataset, the networks are pretrained on
the whole available LIDC-IDRI dataset, with 10% random
samples used in the validation set. Because the sample size
of our dataset is smaller than that of the LIDC-IDRI dataset,
we use 3-fold cross-validation in the experiments, one subset
for testing, 5% of the two subsets for validation, and the re-
maining data samples for training. The maximum iteration for
training from scratch is set to 150 epochs, while in the transfer
learning phase, we retrain the last fully-connected layer of the
networks for 20 more epochs on our private training dataset.

3.3. Experimental Results

Table 1 shows the experimental results of our proposed net-
works on the LIDC-IDRI dataset and their ROC curves are
shown in Fig. 3 (left). The multi-output DenseNet obtains
the highest accuracy of 90.40% and area under the curves
(AUC) of 0.9548. In addition, we estimate the model size
and the number of parameters for these four networks (basic
3D CNN, 3D multi-output net, 3D DenseNet, and 3D MoD-
enseNet) are 28, 29, 34.6, and 34.8 million, respectively. The
results indicate that although DenseNet and multi-output net-
works have complicated architectures with more parameters
compared to the basic 3D CNN, the approach of shortening
distance between input and output, with early outputs and/or
dense connections among convolutional layers, does benefit
the optimization and helps achieve better optimal solutions.

For comparison, the most related work [7] handled a sim-
ilar subset of the LIDC-IDRI with 831 lung nodules and re-
ported 0.9459 AUC and 89.90% accuracy. Their result was
computed based on 20% selected nodule data for testing and
ours are evaluated in a cross-validation setting which is more

Fig. 3. ROC curves for our proposed networks tested on
the LIDC-IDRI dataset (left) and our dataset (right) with and
without transfer learning (TL).

rigorous. Under this condition, our multi-output DenseNet
still outperforms their method in terms of prediction accu-
racy, AUC, and all other metrics used in Table 1, except for
the sensitivity (ours: 90.47% and theirs: 91.07%).

On our dataset we apply the four proposed networks and
they all demonstrate improved area under the ROC curves
(Fig. 3, right) and classification accuracy by using trans-
fer learning (see Table 2). The performance ranking of the
four networks on our dataset keeps the same with that on
the LIDC-IDRI dataset, i.e., the 3D MoDenseNet performs
best, followed by 3D DenseNet, 3D multi-output network,
and then the basic 3D CNN, either with or without transfer
learning. Compared to the LIDC-IDRI dataset, this dataset
is more challenging and the radiologist claims around 70%
accuracy of diagnosis by simply checking CT scans. Our re-
sults are encouraging and the classification accuracy reaches
to 86.84%. Overall, the 3D multi-output DenseNet demon-
strates consistent promising performance on both datasets.

4. DISCUSSION

In this paper, we investigated 3D networks to classify pul-
monary nodules in a CT image into benign or malignant cate-
gories. Compared to using 2D slices or approximating 3D im-
age with multi-views, directly working on 3D volumes yields
better results for the lung nodule classification problem when
the slice thickness is consistent. In addition, the optimiza-
tion of a network is more efficient by having a prompt error
back-propagation. This can be achieved by adding connec-
tions between layers or by introducing early outputs.

Our experimental results demonstrate decent classifica-
tion performance in the lung cancer diagnosis. Next, we aim
at understanding the features extracted by the networks for
classification using various visualization techniques and at de-
termining whether those features are consistent with features
used by radiologists for diagnosis. Another future work is
automatic pulmonary nodule detection, which will relax the
requirement of manual annotations for nodule locations.



5. REFERENCES

[1] Rebecca L Siegel, Kimberly D. Miller, and Ahmedin Je-
mal, “Cancer statistics, 2018,” CA Cancer J Clin, DOI:
10.3322/caac.21442, 2018.

[2] National Lung Screening Trial Research Team et al.,
“Reduced lung-cancer mortality with low-dose com-
puted tomographic screening,” N Engl J Med, vol. 2011,
no. 365, pp. 395–409, 2011.

[3] Senthilkumar Krishnamurthy, Ganesh Narasimhan, and
Umamaheswari Rengasamy, “Three-dimensional lung
nodule segmentation and shape variance analysis to de-
tect lung cancer with reduced false positives,” Proceed-
ings of the Institution of Mechanical Engineers, Part H:
Journal of Engineering in Medicine, vol. 230, no. 1, pp.
58–70, 2016.

[4] Ying Liu, Yoganand Balagurunathan, Thomas Atwater,
Sanja Antic, Qian Li, Ronald C Walker, Gary Smith,
Pierre P Massion, Matthew B Schabath, and Robert J
Gillies, “Radiological image traits predictive of can-
cer status in pulmonary nodules,” Clinical Cancer Re-
search, pp. clincanres–3102, 2016.

[5] Tizita Nesibu Shewaye and Alhayat Ali Mekonnen,
“Benign-malignant lung nodule classification with ge-
ometric and appearance histogram features,” arXiv
preprint arXiv:1605.08350, 2016.

[6] Wei Shen, Mu Zhou, Feng Yang, Caiyun Yang, and
Jie Tian, “Multi-scale convolutional neural networks
for lung nodule classification,” in International Con-
ference on Information Processing in Medical Imaging.
Springer, 2015, pp. 588–599.

[7] Aiden Nibali, Zhen He, and Dennis Wollersheim, “Pul-
monary nodule classification with deep residual net-
works,” International Journal of Computer Assisted Ra-
diology and Surgery, pp. 1–10, 2017.

[8] Kui Liu and Guixia Kang, “Multiview convolutional
neural networks for lung nodule classification,” Inter-
national Journal of Imaging Systems and Technology,
vol. 27, no. 1, pp. 12–22, 2017.

[9] Sarfaraz Hussein, Kunlin Cao, Qi Song, and Ulas Bagci,
“Risk stratification of lung nodules using 3d cnn-based
multi-task learning,” in International Conference on
Information Processing in Medical Imaging. Springer,
2017, pp. 249–260.

[10] Wentao Zhu, Chaochun Liu, Wei Fan, and Xiaohui Xie,
“Deeplung: 3d deep convolutional nets for automated
pulmonary nodule detection and classification,” arXiv
preprint arXiv:1709.05538, 2017.

[11] G. Huang, Z. Liu, L. v. d. Maaten, and K. Q. Wein-
berger, “Densely connected convolutional networks,” in
2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), July 2017, pp. 2261–2269.

[12] Samuel G Armato, Geoffrey McLennan, Luc Bidaut,
Michael F McNitt-Gray, Charles R Meyer, Anthony P
Reeves, Binsheng Zhao, Denise R Aberle, Claudia I
Henschke, Eric A Hoffman, et al., “The lung image
database consortium (LIDC) and image database re-
source initiative (IDRI): a completed reference database
of lung nodules on ct scans,” Medical physics, vol. 38,
no. 2, pp. 915–931, 2011.

[13] Sergey Ioffe and Christian Szegedy, “Batch normaliza-
tion: Accelerating deep network training by reducing
internal covariate shift,” in International Conference on
Machine Learning, 2015, pp. 448–456.

[14] Yoshua Bengio, “Deep learning of representations for
unsupervised and transfer learning,” in Proceedings of
ICML Workshop on Unsupervised and Transfer Learn-
ing, 2012, pp. 17–36.

[15] Anthony P. Reeves and Alberto M. Biancardi, “The lung
image database consortium (lidc) nodule size report,”
http://www.via.cornell.edu/lidc/, Octo-
ber 27, 2011.

[16] François Chollet et al., “Keras,” https://github.
com/keras-team/keras, 2015.

10.3322/caac.21442
http://www.via.cornell.edu/lidc/
https://github.com/keras-team/keras
https://github.com/keras-team/keras

	 Introduction
	 Methods
	 Network Architectures
	 Transfer Learning

	 Experiments
	 Dataset and Preprocessing
	 Experiment Settings
	 Experimental Results

	 Discussion
	 References

