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Abstract. We consider geodesic regression with parametric time-warps.
This allows, for example, to capture saturation effects as typically ob-
served during brain development or degeneration. While highly-flexible
models to analyze time-varying image and shape data based on gener-
alizations of splines and polynomials have been proposed recently, they
come at the cost of substantially more complex inference. Our focus in
this paper is therefore to keep the model and its inference as simple
as possible while allowing to capture expected biological variation. We
demonstrate that by augmenting geodesic regression with parametric
time-warp functions, we can achieve comparable flexibility to more com-
plex models while retaining model simplicity. In addition, the time-warp
parameters provide useful information of underlying anatomical changes
as demonstrated for the analysis of corpora callosa and rat calvariae.
We exemplify our strategy for shape regression on the Grassmann man-
ifold, but note that the method is generally applicable for time-warped
geodesic regression.

1 Introduction

In recent years, an increased amount of research has been devoted to the devel-
opment of geodesic regression approaches for shapes, images, and general Rie-
mannian manifolds [15,10,16]. These models are attractive because they allow for
a compact representation of, e.g., time-series data, while – just as for linear re-
gression – remaining relatively simple. However, these models are only sensible if
changes are well described by a geodesic. This is generally not the case when deal-
ing with periodic motions or processes which exhibit saturations, such as brain
maturation or degeneration. To model such behaviors, extensions to spline- and
polynomial-models for shapes have been developed [17,11]. These approaches are
conceptually appealing, due to greater modeling flexibility; however, inference
becomes significantly more difficult. Our motivation for time-warped geodesic
regression is therefore to obtain a simple model, which allows for easy inference,
while remaining flexible enough to capture plausible biological changes.

Contribution. We propose a time-warped geodesic regression approach which
increases flexibility of geodesic regression at a moderate increase in model com-
plexity. This is realized by using parametric models for time-warping. This strat-
egy is suitable to model saturations. We note that general time-warps have been
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used previously, e.g., in the context of spatio-temporal atlas building [7]. How-
ever, our focus here is on simple, parametric time-warping models in the context
of geodesic regression. While our approach is general, we demonstrate its ap-
plication for regression on the Grassmann manifold. This allows regression of
dynamical systems, shapes, or any entity with a subspace representation.

The paper is structured as follows: §2 reviews the general theory of geodesic
regression and introduces time-warping in the context of geodesic regression. §3
describes time-warped geodesic regression on the Grassmann manifold. Exper-
imental results for human corpora callosa and rat skulls are shown in §4 and
compared to results achieved on the same datasets using geodesic regression [10]
and its polynomial extension [11] for shapes represented in Kendall shape space.

2 Time-Warped Geodesic Regression (TW-GR)

Geodesic Regression. Geodesic regression generalizes Euclidean least-squares
regression to manifolds. Similar to least-squares regression, the parameter esti-
mates of geodesic regression include the initial conditions of the geodesic that
best fits the measurements in a least-squares sense (with respect to the under-
lying metric). Given N measurements Xi at timepoints t̄i, i = 1, . . . , N , repre-
sented as points on the manifold M, the geodesic X(t̄) that passes closest to the
data in the least-squares sense minimizes the energy functional

E(Xt̄0 , Ẋt̄0) =

N∑

i=1

d2(X(t̄i), Xi) . (1)

Here, d2(·, ·) denotes the squared geodesic distance and t̄0 denotes the reference
starting point for the geodesic. X(t̄i) denotes the point on the geodesic at time
t̄i which is obtained by shooting the geodesic to t̄ = t̄i, as per the Riemannian
exponential map on the manifold, starting from the initial conditions at t̄ =
t̄0. As in the Euclidean case, the parameter estimates, Xt̄0 and Ẋt̄0 can be
interpreted as the initial intercept and slope that parameterize the geodesic.

Time-Warped Geodesic Regression. The idea of time-warped geodesic re-
gression is to use a simple model to warp the time-points when comparison to
data is performed. These time-warps should be diffeomorphic so that the time-
ordering of data-points does not change. Note that this is conceptually similar
to an error-in-variables model where uncertainties in the independent variables
are modeled. However, here we are not directly concerned with modeling such
uncertainties, but instead in obtaining a somewhat richer model for geodesic
regression which is easy to compute given algorithms to solve the geodesic re-
gression problem.

To account for saturations of scalar-valued outputs, logistic regression is fre-
quently used. In our case the dependent variables are complex: images, shapes,
or as in our example problem elements of the Grassmann manifold. Hence, it
is easier to warp the time-axis. For saturations, points on the geodesic which
are close should then be mapped to points far apart in time that they are com-
pared to, i.e., small changes are mapped to large intervals in time (cf. Fig. 1).
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Fig. 1. Illustration of regression lines before and after time-warp using least-squares.
Left : Ordinary least-squares (OLS) in the original time coordinates t. Middle: OLS in
the warped time coordinates t̄. The red lines indicate at what time points of the regres-
sion line the measurements are evaluated after the time-warp. Right : The unwarped
regression curve in the original time coordinates t obtained by using time-warped OLS.

In principle the mapping could be described by a general diffeomorphism. In fact,
such an approach is followed in [7] for general spatio-temporal atlas-building for
shapes. Our motivation for proposing an approach to geodesic regression with
parametric time-warps is to keep the model simple while, at the same time, gain-
ing more flexibility. Extensions to general non-parametric approaches can easily
be obtained. Given that t = f(t; θ) denotes the time-warp, parametrized by θ,
and X(t) denotes the regression geodesic in the warped time coordinates t̄, the
general time-warped geodesic regression problem seeks to minimize

E(Xt̄0 , Ẋt̄0 , θ) =
1

σ2

N∑

i=1

d2(X(f(ti; θ)), Xi) , (2)

such that X(t) describes a geodesic with X(t̄0) = Xt̄0 and Ẋ(t̄0) = Ẋt̄0 . Eq. (2)

may include regularization terms with respect to Ẋt̄0 as appropriate.
The easiest way to minimize this energy is by alternating optimization. This

requires the derivative of the energy with respect to θ for fixed X(t), given by

∇θE = − 2

σ2

N∑

i=1

〈LogX(f(ti;θ))Xi, Ẋ(f(ti; θ))〉∇θf(ti; θ) , (3)

where LogX(f(ti;θ))Xi denotes the log-map, i.e., the initial velocity of the geodesic

connecting X(f(ti; θ)) and Xi in unit time and Ẋ(f(ti; θ)) is the velocity of
the regression geodesic at the warped-time point. The inner-product depends
on the metric being used. This leaves to choose a good parametric model for
f(t; θ). As we require the transform to be diffeomorphic we choose a parametric
model which is diffeomorphic by construction. A possible choice is the generalized
logistic function [9], e.g., with asymptotes 0 for t → −∞ and 1 for t → ∞, i.e.,

t = f(t, θ) =
1

(1 + βe−k(t−M))1/m
, (4)

where θ = (k,M, β,m), k controls the growth rate, M is the time of maximum
growth if β = m, β and m define the value of f at t = M , and m > 0 affects the



108 Y. Hong et al.

asymptote of maximum growth. Using this function f(t; θ), we map the original
infinite time interval to a warped time-range from 0 to 1. Initial parameters
of this function need to be chosen such that all data evenly covers the warped
region from 0 to 1. The algorithm using alternating optimization is as follows:

0) Initialize θ such that the warped time is evenly distributed within (0, 1).
1) Compute new time-points {f(ti; θ)} to be used in t ∈ (0, 1) for fitting.
2) Compute standard geodesic regression solution with time-points from 1).
3) Update θ by numerical optimization using the gradient given in Eq. (3).
4) Check convergence. If not converged goto 1).

3 TW-GR on the Grassmann Manifold

While time-warped geodesic regression is general for Riemannian manifolds, we
describe the specialization to the Grassmann manifold G(p, n), i.e., the mani-
fold of p-dimensional linear subspaces of Rn, as an example. Details about the
Riemannian structure of the Grassmannian can be found in [5,8] for instance.

In our case, a point Y ∈ G(p, n) is represented by an orthonormal matrix Y ∈
R

n×p where the span of the column vectors spans Y. Hence, Y�Y = Ip, where
Ip is the p×p identity matrix. Under the canonical metric on the Grassmannian
[8], the arc-length of the geodesic connecting two subspaces Y,Z ∈ G(p, n) is
related to the canonical angles φ1, . . . φp ∈ [0, π/2] between Y and Z as

d2(Y,Z) = ||φ||22 . (5)

In what follows, we slightly abuse notation and use d2(Y,Z) as a surrogate for
Eq. (5) with Z = span(Z),Y = span(Y) .

Regression. Our objective is to fit a geodesic, represented by an initial point
Yr0 and an initial velocity Ẏr0 , to a collection of points {Yi}Ni=1 at N measure-
ment instances {ri}Ni=1. The geodesic regression problem minimizes

E(Yr0 , Ẏr0) =
1

σ2

N∑

i=1

d2(Y(ri),Yi), σ > 0 (6)

subject to the initial condition constraintsY(r0)
�Y(r0) = Ip,Y(r0)

�Ẏ(r0) = 0,

and the geodesic equation for a curve on G(p, n): Ÿ(r) +Y(r)[Ẏ(r)�Ẏ(r)] = 0.
This geodesic equation also defines the Riemannian exponential map (exp-map)
on the Grassmannian as an ODE for convenient numerical computations. In
other words, integrating the geodesic equation, starting with initial conditions,
evolves (or shoots) the geodesic forward in time. Computational steps for Eq. (5)
or the Riemannian log-map (used in Eq. (3)), can be found in [3] for instance.
Also note that for time-warped regression on the Grassmann manifold, the time
instances {ri}Ni=1 are the warped time-points using the logistic function.

In our implementation, we use a shooting strategy to solve this regression
problem (see the supplementary material [1]). A theoretical characterization of
geodesic curve fitting on the Grassmannian is discussed in [2], but no numer-
ical strategy is provided. Alternatively, a numerical solution based on Jacobi
fields [10] can also be used for geodesic fitting.
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Fig. 2. Comparing GGR and TW-GGR on synthetic data (best-viewed in color)

4 Experimental Results

To demonstrate our method, we use both synthetic and real data to compare
time-warped Grassmannian geodesic regression (TW-GGR) with the non-time-
warped variant (GGR). Three measurements are used to quantitatively compare
the regression results: 1) the regression energy, i.e., the data matching error for
all observations; 2) the R2 statistic on the Grassmannian, which is between 0
and 1, with 1 indicating a perfect fit and 0 indicating a fit no better than the
Fréchet mean (see [10,11] for more details); and 3) the mean squared error (MSE)
of testing data, reported in a (leave-one-out) crossvalidation experiment. In all
experiments, σ in the cost function is set to 1. For the parameters in θ, we fix
β,m = 1 so that M is the time of the maximal growth, and initialize k,M to
make sure the warped time points are evenly distributed over the range of (0, 1).

Synthetic Data. We generate synthetic data using 25 time points that are uni-
formly distributed within (0, 11). Each data point corresponds to a sine/cosine
signal where the frequency is 10 times the warped time point using a logis-
tic function with θ = (1, 1, 1, 5). These sine/cosine signals are sampled at 630
points in [0, 10π] and we embed them in R

24. For each signal yt ∈ R
630×24, we

then estimate a (two-state) linear dynamical system (LDS) xt+1 = Axt + vt,
yt = Cxt+wt, where A is the state-transition matrix, C controls the generation
of the output yt and xt is the state at time t. wt,vt are the normally distributed
state- and observation noise, respectively. Using the estimation approach of [6]
this system has, by design, a full-rank observability matrix O = [C CA]�. By
using SVD, O = UΣV�, U ∈ R

1260×2 acts as a representer for the observability
subspace of the system. Further, for this synthetic data, the largest eigenvalue
of the state-transition matrix A reflects the frequency of the sine/cosine signal
and serves as our ground truth, cf. Fig. 2(a).

Fig. 2(b) shows the regression results for both GGR and TW-GGR. Note
that for each point we have extracted A from the regression result (which is
a representer for the subspace and not the state-transition matrix itself; see
supplementary material). The regression energy is reduced from 2.9e-02 for GGR
to 5.2e-05 for TW-GGR, and R2 is improved from 0.94 for GGR to 1.0 for TW-
GGR, indicating a perfect fit for the synthetic data. The mean-squared error
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Fig. 3. Comparison between GGR and TW-GGR on corpus callosum data. Shapes are
colored by age. (a) and (b) show the shape generated along the geodesic; (c) shows the
corresponding optimized logistic function (best-viewed in color).

(MSE) for left-out samples in the crossvalidation experiment reduces from 1.4e-
03 for GGR to 1.5e-06 for TW-GGR (cf. Table 1).

Corpus Callosum Aging. To explore the benefits of time-warped regression
on real data, we demonstrate our method on a collection of 32 corpus callosum
shapes with varying ages from 19 to 90 years [10]. Each shape is represented by
64 2D boundary landmarks, and is projected to a point on the Grassmannian
using the left-singular vectors obtained from a SVD decomposition of the 64× 2
coordinate matrix. This results in an affine-invariant representation, cf. [3].

Fig. 3 shows the corpus callosum shapes1 along the geodesic computed with
standard GGR and TW-GGR. For GGR, the corpus callosum starts to shrink
from 19 years old, which is consistent with the regression results in [10,11].
However, according to biological studies [12,14], the corpus callosum size remains
stable during the most active years of the lifespan, which is consistent with the
TW-GGR result. As we can see from the shapes and optimized logistic function
shown in Figs. 3(b)–(c), TW-GGR estimates that thinning starts at the age of
> 50 years, and at the age of 65, the shrinking rate reaches its peak.

Table 1 lists the reduction in energy from 0.3494 for GGR to 0.3379 for TW-
GGR. The R2 statistic improves from 0.12 for GGR to 0.15 for TW-GGR and the
crossvalidation MSE reduces from 1.25e-02 for GGR to 1.22e-02 for TW-GGR.

Rat Calvarium Growth. We further demonstrate the applicability of our
method on shape analysis of the Vilmann rat data [4]2. We use 18 individu-
als with 8 time points, each in the age range of 7 to 150 days. Each shape is
represented by a set of 8 landmarks. Fig. 4(a) shows the landmarks projected
onto the Grassmanian by using their SVD-based affine-invariant representation,
similar to the previous experiment. From the GGR results in Fig. 4(b), we see
that the rat calvarium grows at an approximately constant speed during the
first 150 days. However, the TW-GGR results in Figs. 4(c)–(d) indicate that the
rat calvarium only grows fast in the first few weeks, reaching its peak at 30

1 The shown shapes are recovered from the points along the geodesic on the Grassmann
manifold through scaling by the mean singular values of the SVD results.

2 Available at http://life.bio.sunysb.edu/morph/data/datasets.html

http://life.bio.sunysb.edu/morph/data/datasets.html
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Fig. 4. Comparison of rat calvarium [4] growth, modeled by GGR and TW-GGR.
Landmarks are colored by age in days; (d) shows the corresponding optimized logistic
function (best-viewed in color).

Table 1. Comparison of GGR and TW-GGR on synthetic and real data

Synthetic data Corpus callosum [10] Rat calvarium [4]
GGR TW-GGR GGR TW-GGR GGR TW-GGR

Energy 2.9e-02 5.2e-05 0.3494 0.3379 0.3238 0.1754
R2 0.94 1.0 0.12 0.15 0.61 0.79
MSE 1.4e-03 1.5e-06 1.25e-02 1.22e-02 2.3e-03 1.3e-03

days; then, the rate of growth gradually levels off and becomes steady after 14
weeks. In fact, similar growth curves for the rat skull were reported in [13]. Based
on their study, the growth velocities of viscerocranium length and nurocranium
width rose to the peak in the 26-32 days period.

Table 1 lists the reduction in regression energy from 0.3238 for GGR to 0.1754
for TW-GGR. R2 increases from 0.61 for GGR to 0.79 for TW-GGR, and MSE
reduces from 2.3e-03 for GGR to 1.3e-03 for TW-GGR.

5 Discussion and Conclusions

Table 1 indicates that TW-GGR consistently performs better than GGR on
both synthetic and real data. This can be attributed to the increased flexibility
due to time-warping. More importantly our approach can model growth and
saturation processes which are common phenomena in biological data. On the
examples of corpora callosa and rat calvariae shapes, we demonstrated that TW-
GGR allows us to obtain models that are compatible with results reported in
biological studies. Contrary to that, regression methods such as [10] or [11] have
no parameters that could naturally capture these effects. As for the R2 statistics
for corpora callosa and rat calvariae, our results are lower than those reported
in [11]. This can be explained by the difference in shape representation (Kendall
vs. Grassmannian) which renders the R2 values not directly comparable. The
Grassmann approach is useful when affine-invariance for shape representations
is desired. If not, our approach could directly be applied for time-warped geodesic
regression on Kendall shape space. We remark that geodesic regression on the
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Grassmannian has applications beyond regression on shapes, as demonstrated
on the dynamical systems example. Our regression approach focuses on warping
the time-axis, not the data-axis, i.e., it is independent of the underlying type
of manifold. This enables easy adoption of the concept to other Riemannian
manifolds and applications which will be explored in future work.
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