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Abstract. We consider how to test for group differences of shapes given
longitudinal data. In particular, we are interested in differences of lon-
gitudinal models of each group’s subjects. We introduce a generalization
of principal geodesic analysis to the tangent bundle of a shape space.
This allows the estimation of the variance and principal directions of
the distribution of trajectories that summarize shape variations within
the longitudinal data. Each trajectory is parameterized as a point in
the tangent bundle. To study statistical differences in two distributions
of trajectories, we generalize the Bhattacharyya distance in Euclidean
space to the tangent bundle. This not only allows to take second-order
statistics into account, but also serves as our test-statistic during per-
mutation testing. Our method is validated on both synthetic and real
data, and the experimental results indicate improved statistical power in
identifying group differences. In fact, our study sheds new light on group
differences in longitudinal corpus callosum shapes of subjects with de-
mentia versus normal controls.

Keywords: Longitudinal data; distribution of trajectories; tangent bun-
dle; group testing; Bhattacharyya distance

1 Introduction

Longitudinal data designs frequently arise in medical research that involves re-
peated measurements during follow-up studies. Analysis of such longitudinal
data often involves constructing statistical models to summarize growth, aging
and disease progression over time. For example, longitudinal studies in new-borns
and young children use imaging at multiple follow-up visits to understand the
process of early brain development [6]. Similarly, recent collective efforts have
enabled longitudinal data collection to facilitate the study of neurodegenera-
tion due to aging and age-related neurological disorders, such as the Alzheimer’s
disease [11]. Conventional cross-sectional models of regression that do not take
into account the temporal dependencies of measurements are inappropriate for
modeling such longitudinal data designs.

Recent methods for analyzing longitudinal, manifold-valued data have en-
abled modeling and even detection of changes over time [4,7,13]. These methods
allow for the estimation of trajectories, i.e., smooth paths estimated from the
longitudinal data of subjects. Building upon these methods, Riemannian ap-
proaches for computing averages of trajectories have been proposed [12,16]. The
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registration and comparison of trajectories has also been studied in [3,17,18].
In general, statistical methods for longitudinal manifold-valued data focus on
first-order statistics, such as computing the mean, which only captures limited
information of the data distribution. Capturing higher-order statistics on the tra-
jectories themselves would be useful for a more comprehensive description of the
underlying distributions and for designing test-statistics that go beyond a simple
comparison of means; an example would be testing differences in variances.

Motivated by this, we develop an approach that leverages second-order statis-
tics of shape trajectories for group testing. In particular, we propose a general-
ization of principal component analysis (PCA) and principal geodesic analysis
(PGA) [5] to the tangent bundle [9] of a shape space. Similar to PCA/PGA,
the first principal direction characterizes the dominant variability in a popula-
tion of trajectories, and each point along this principal direction is a trajectory.
This differs from previous studies which have focused on computing averages on
the tangent bundle. Incorporating second-order statistics additionally allows to
identify differences between groups of trajectories in situations where the aver-
age longitudinal trend over time is similar (or equal) between two groups. We
refer to this approach as principal geodesic analysis on the tangent bundle.

Contribution. We extend principal geodesic analysis to the tangent bundle of a
shape to estimate both variance and principal directions of shape trajectories. We
then introduce a generalization of the Bhattacharyya distance to manifold-valued
data, which enables the assessment of statistical differences between groups of
trajectories. We validate our approach on both synthetic and real shapes. The
results indicate improved statistical power in distinguishing groups with different
distributions, especially for cases with similar means but different variances.

Organization. The paper is organized as follows: Section 2 discusses the basic
principles of our approach in Euclidean space. Section 3 then generalizes these
concepts to manifolds and discusses group testing on the tangent bundle. Sec-
tion 4 presents our experimental study and Section 5 concludes the paper with
a summary of the main points, open problems and an outlook on future work.

2 Distribution of trajectories in Euclidean space

We first illustrate the concept of analyzing populations of trajectories in Eu-
clidean space, which is a trivial case of a Riemannian manifold.

Consider the case of two groups of subjects such that each subject is mea-
sured at multiple points in time. Such a data configuration is also referred to as a
staggered longitudinal design, see Fig. 1(b). If we ignore the within-subject corre-
lations and model the data with a cross-sectional design, illustrated in Fig. 1(a),
the two groups cannot be separated using statistical tests that rely on a compar-
ison of means only (cf . Table 1). Hence, to leverage longitudinal information, we
first estimate linear regression models on each subject to summarize its trend.
The regression line, a smooth trajectory approximating a subject’s data points,
is parameterized the tuple of slope and intercept, which can be represented as a
point in the space of trajectories. As shown in Fig. 1(c), representing the data
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Fig. 1: A toy example in Euclidean space. Top: (a) Cross-sectional data of two
groups, illustrated as red circles and blue squares; (b) the same data with lon-
gitudinal information (middle) where points on the same line are observations
from one subject; (c) the trajectory space, represented by a slope and an inter-
cept. Every point in this space corresponds to a straight line in (b). Bottom:
(d) Trajectories generated by points along the 1st principal component (PC) of
standard PCA in trajectory space with {0, ±1, ±2} standard deviations (SD);
(e) trajectories generated along the 2nd PC (best-viewed in color).

in this trajectory space separates the populations (at least visually) in this ex-
ample. In fact, Table 1 indicates that including longitudinal information allows
us to identify differences between the two groups statistically.

To further analyze the group differences, we explore the distribution of tra-
jectories within the (slope, intercept) space, i.e., the trajectory space. Under a
Gaussian assumption, principal component analysis (PCA) is a standard tool to
estimate the variance and principal directions of a sample. By applying PCA to
(slope, intercept) data, we obtain a representation of the population of trajec-
tories, namely their variances and their principal components. For example, the
solid lines with different colors in Fig. 1(c) show the principal components of
the two groups, respectively. By moving along these two principal components,
we generate new points in the trajectory space such that each point represents
a straight line in the original space of the data points. Figures 1(d) and (e)
visualize the trajectories along the principal components for different standard
deviations. The five trajectories in Figure 1(d), for instance, show the five points
along the first principal component in the trajectory space for each group. This
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Cross-sectional data Longitudinal data

D̄E D̄M DB D̄E D̄M DB

Distance 0.0003 0.0047 0.0077 0.2438 0.3332 0.6722

p-value 0.9232 0.7487 0.1249 0.0347 0.0186 1e-4

Table 1: Distances and estimated p-values (10000 random permutations) on toy
data using (1) the mean difference in Euclidean space (D̄E), (2) the Mahalanobis
distance (D̄M ), and (3) the Bhattacharyya distance (DB) as a test-statistic.

Euclidean case illustrates that the proposed approach is a potentially useful tool
in the analysis of longitudinal time-varying data.

Bhattacharyya distance. Visualization of trajectories along principal direc-
tions can qualitatively demonstrate differences between groups. However, to
quantitatively assess the differences, we need a suitable distance measure that
serves as a test-statistic. An appropriate candidate for this is the Bhattacharyya
distance [1], which measures the similarity of two probability distributions.
Given two multivariate Gaussians, with means (µ1, µ2) and covariance matri-
ces (Σ1, Σ2), the Bhattacharyya distance DB has the closed-form expression

DB((µ1, Σ1), (µ2, Σ2)) =
1

8
(µ1−µ2)Σ−1(µ1−µ2)>+

1

2
ln

(
|Σ|√
|Σ1| · |Σ2|

)
, (1)

where Σ = (Σ1 +Σ2)/2, and | · | denotes the matrix determinant. The first term
in Eq. (1) measures the separability of the distributions w.r.t. their means. It
is related to the squared Mahalanobis distance [10], which can be considered a
special case of Eq. (1) when the difference between the covariances (as measured
by the second term in the summation) is not considered. This additional term
makes DB more suitable, compared to the Mahalanobis distance, in cases where
the distributions differ in variances. In particular, the Mahalanobis distance is
zero when two distributions have equal means. However, as DB only satisfies
three conditions of a distance metric (non-negativity, identity of indiscernibles,
and symmetry), but lacks the triangle inequality, it is only a semi-metric.

In fact, Eq. (1) allows us to compute a distance between the two distributions
(assuming Gaussianity) in Fig. 1(c), and thereby to define a test-statistic to test
for group differences in a permutation testing setup. The null-hypothesis H0

of the permutation test is that the two distributions (say P,Q) to be tested
are the same, i.e., H0 : P = Q. We estimate the empirical distribution of the
test-statistic under H0 by repeatedly permuting the group labels of the points
in Fig. 1(c), and re-computing DB between the two groups that result from
the permuted labels. The p-value under H0 then is the proportion of the area
under the empirical distribution of samples for which the distance is less than
the one estimated for the original (unpermuted) label assignments. In Table 1,
DB , tested on the longitudinal data, exhibits the best performance in separating
the groups with an estimated p-value of <1e-4 under 10000 permutations.
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3 Distribution of trajectories on manifolds

To explore the distribution of trajectories for manifold-valued data, e.g ., images
or shapes, we need to generalize the statistical test of the previous section from
Euclidean space to manifolds. Specifically, let {Pi,j,k} be a population of lon-
gitudinal data on the same manifold, where i is the group identifier, j is the
subject identifier, and k identifies the time point. Further assume we have N
groups: group i has Si subjects (i = 1, . . . , N), and each subject has multiple
time points, {ti,j,k}, k = 1, . . . , Ti,j . Our objective is to characterize the distri-
bution of trajectories for each group, {Di}, i.e., to estimate its variance and
principal directions, and to assess whether two groups are significantly different.

Individual trajectories for longitudinal data. To perform statistical tests
on subjects with associated longitudinal data, our first step is to summarize the
variations within a subject as a smooth trajectory. The parametric geodesic re-
gression approaches for data in Kendall’s shape space [4], or images [13,7], which
generalize linear regression in Euclidean space, provide a compact representa-
tion of the continuous trajectory for each subject. The trajectory of subject j
from group i is parametrized by the initial point p̂i,j and the initial velocity
ûi,j . This trajectory minimizes the sum-of-squared geodesic distances between
the observations and their corresponding points on the trajectory, i.e.,

(p̂i,j , ûi,j) = arg min
(pi,j ,ui,j)

Ti,j∑
k=1

d2
g(Exp(pi,j , ti,j,k · ui,j), Pi,j,k) , (2)

where dg(·, ·) is the geodesic distance and Exp(·, ·) denotes the exponential map
on some manifold M [4]. This compact representation, (p̂i,j , ûi,j), is a point in
the tangent bundle TM of M. TM is also a smooth manifold, which can be
equipped with a Riemannian metric, such as the Sasaki metric [15]. Since each
subject’s longitudinal data is represented as a point on TM, we work in this
space, instead of the space of the data points, to perform group testing.

Principal geodesic analysis (PGA) for trajectories. We generalize prin-
cipal geodesic analysis to estimate the variance and the principal directions of
trajectories on the tangent bundle for each group. We follow the definitions of the
exponential- and the log-map on TM in [12] and use the Sasaki metric. Specifi-
cally, given two points (p1, u1), (p2, u2) ∈ TM, the log-map outputs the tangent
vector such that (v, w) = Log(p1,u1)(p2, u2). The exponential map enables us
to shoot forward with a given base point and a tangent vector, i.e., (p2, u2) =
ExpTM((p1, u1), (v, w)). Furthermore, using the log-map, the geodesic distance
on TM can be computed as dTM((p1, u1), (p2, u2)) = ‖Log(p1,u1)(p2, u2)‖.

Before computing the variance and the principal directions, we first need to
estimate the mean of the trajectories for each group. This is done by minimizing
the sum-of-squared geodesic distances, for each group, on TM as

∀i : (p̄i, ūi) = arg min
(pi,ui)

Si∑
j=1

d2
TM((pi, ui), (p̂i,j , ûi,j)) . (3)
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Then, following the PGA algorithm of [5], we compute the variance and principal
directions w.r.t. the estimated mean of the trajectories. Specifically, we first
compute the tangent vector from the mean of group i to the trajectory of its
subject j, (vi,j , wi,j) = Log(p̄i,ūi)(p̂i,j , ûi,j) and then calculate the covariance

matrix Σi = 1
Si−1

∑Si

j=1(vi,j , wi,j)(vi,j , wi,j)
>. The principal decomposition of

Σi results in the eigenvalues λi,q ∈ R+
0 and eigenvectors (vi,q, wi,q) ∈ T(p̄i,ūi)M

with q = 1, . . . , Qi for group i. As a result, we can identify the distribution of
trajectories for each group by Di = {(p̄i, ūi), Σi} with i = 1, . . . , N . By moving
along a principal direction, we can generate points on TM, which correspond
to trajectories on the manifold of the data points.

Generalized Bhattacharyya distance. Since we can characterize the distri-
bution of trajectories on TM for each group, to measure the distance between
them, we generalize the Bhattacharyya distance from Euclidean space to TM.
Again, the distribution Di on TM, is identified by a mean µi = (p̄i, ūi) ∈ TM,
and a covariance matrix Σi with respect to the mean µi.

Generalizing the first term of the Bhattacharyya distance in Eq. (1), i.e.,
the pooling of covariance matrices Σ = (Σ1 + Σ2)/2, is not as straightfor-
ward on TM as it is in Euclidean space because the covariance matrices Σ1

and Σ2 of the two groups reside in tangent spaces at different points on TM.
Hence, we follow the strategy in [12], and replace the first term with the av-
erage of two squared-Mahalanobis distances, i.e., (Logµ1

µ2Σ
−1
1 Logµ1

µ2
> +

Logµ2
µ1Σ

−1
2 Logµ2

µ1
>)/2. Furthermore, because most manifold-valued data in

medical applications is high dimensional and low sample size, the resulting co-
variance matrix is usually semi-positive-definite (SPD) with zero eigenvalues.
This means that in many applications Σ1 and Σ2 are not invertible3. To address
this issue, we approximate the covariance matrix via eigen-decomposition by
dropping the eigenvalues that are smaller than a cutoff value, ε4. In this way, the
covariance matrix can be decomposed approximately as Σi ≈ Ui,Qi

Λi,Qi
U>i,Qi

,

where λi,q < ε if q > Qi, resulting in Σ−1
i ≈ Ui,Qi

Λ−1
i,Qi

U>i,Qi
[14].

To generalize the second term of the Bhattacharyya distance, which involves
the computation of the determinant of a covariance matrix, we use the pseudo-
determinant, i.e., the product of all non-zero eigenvalues of a square matrix.
For consistency, the same number of eigenvalues as for the first term is used,

i.e., |Σi| =
∏Qi

q=1 λi,q. Since it is non-trivial to compute the pooled covariance

matrix Σ, we replace its determinant in Eq. (1) with the averaged determinants
of Σ1 and Σ2. While this changes the original definition of the Bhattacharyya
distance, its properties are kept (see Appendix A). Also, it can be shown that
the value of the second term increases as the difference in the determinants gets
larger. Hence, the generalized second term can serve as a distance measure of
generalized variances of covariance matrices on TM. In summary, we define the

3 A better estimate of the covariance matrix may be obtained, e.g ., by using [8] or [2].
4 The threshold ε varies with the application. In our experiments, we set it to 1e-6.

Usually, the eigenvalues larger than ε cover almost 99% of the variances.
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generalized Bhattacharyya distance between two Gaussians D1, D2 on TM as

DT M
B (D1, D2) =

1

16
(DT M

M (µ1, D2) +DT M
M (µ2, D1)) +

1

2
ln

(
(|Σ1|+ |Σ2|)
2
√
|Σ1| · |Σ2|

)
(4)

where DTMM is a generalized version of the squared Mahalanobis distance, given
by DTMM (µi, Dj) = 〈Logµj

µi, Uj,Qj
〉Λ−1

j,Qj
〈Logµj

µi, Uj,Qj
〉>, and 〈·, ·〉 is the in-

ner product on the tangent bundle. DTMB is a pseudo-semimetric, i.e., it satisfies
(1) non-negativity, (2) symmetry, and (3) DTMB (Di, Di) = 0 for all Di (required
for the identity of indiscernibles); see Appendix A for a detailed proof of these
properties. As shown in the proof, although Eq. (4) does not satisfy the positivity
property, i.e., for all D1 6= D2, DTMB (D1, D2) > 0, only the distance between two
distributions with equal mean and generalized variance is zero. Consequently, we
can distinguish two distributions of trajectories that have different means and/or
different determinants of the covariance matrices.

We use Eq. (4) as our test-statistic in the same permutation testing setup as
described in Section 2. The null-hypothesis H0 is that the samples of trajectories
from the two groups were drawn from the same underlying distribution. The
distribution of test-statistics under H0 is estimated by randomly permuting the
group label assignments. We then count the number of times that the distance is
larger than the one computed without permutation to obtain a p-value estimate.
Compared to the Hotelling T 2 statistic used in [12], which tests for difference
in sample means (based on the squared Mahalanobis distance), our permutation
test is based on Eq. (4), which is more appropriate in situations where two
distributions have similar means but different variances.

4 Experiments

We demonstrate our method on (1) a toy example in Euclidean space, (2) a 2D
example with synthetic shapes, and (3) real corpus callosum shapes. All shapes
are represented in (2D) Kendall’s shape space.

Toy example in Euclidean space. Fig. 1 shows the generated toy data and
the qualitative comparison between two groups using PCA in the trajectory
space. Both groups have 50 subjects each, measured at 3 to 7 time points. Ta-
ble 1 reports the quantitative comparison, i.e., permutation testing with 10000
permutations and three different distances: the Euclidean distance D̄E (i.e., the
squared mean differences), the Mahalanobis distance D̄M (i.e., the squared mean
difference based on the pooled covariance matrix), and the Bhattacharyya dis-
tance DB . The results of the cross-sectional vs. longitudinal tests indicate that
leveraging the longitudinal information greatly improves our ability to identify
differences, as indicated by low p-values. Besides, among the three evaluated
distance measures, the Bhattacharyya distance most clearly highlights this dif-
ference with a p-value of <1e-4 (given the number of permutations).

Synthetic shapes in Kendall’s shape space. To verify the advantage of the
generalized Bhattacharyya distance over the generalized Mahalanobis distance,
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(a) Basic shapes (b) Group A (c) Group B

Fig. 2: Synthetic shapes: (a) Basic shapes used to generate the population on
the right; (b) and (c) show the two groups of trajectories (best-viewed in color).
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Fig. 3: Visualization of the variances (left) and principal directions (right) of
trajectory distributions for the synthetic data (best-viewed in color).

we generate two groups of 2D shapes with similar mean trajectories but different
variances, see Figs. 2(b) and 2(c). Hence, the distributions are different by design.
In particular, we use the three shapes in the first row of Fig. 2(a) to uniformly
sample 60 shapes within the triangle region in Kendall’s shape space, spanned
by the three shapes5. We call them the base shapes. In the same way, the shapes
in the second and third row are used to sample 30 shapes each; we refer to these
shapes as the target shapes. In summary, we have 60 base shapes from the same
distribution and two groups of target shapes from two different distributions. By
splitting the 60 base shapes into two subsets of equal size and connecting each
base shape with one target shape (via a geodesic), we obtain 30 trajectories per
group. Assuming every base shape is at time 0 and every target shape is at time
1, we sample 5 shapes along each trajectory to represent one subject. To make

5 We use two geodesics to connect three given shapes and uniformly sample points on
these two geodesics. Then, by connecting opposing points, we obtain new geodesics
which are located within the triangle region to sample a population of shapes.
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(p̂, û) (p̂, 0) (0, û)

D̄T M
M DT M

B D̄T M
M DT M

B D̄T M
M DT M

B

Distance on TM 0.7212 2.2833 0.0232 0.0152 0.7439 2.3057

p-value 0.1817 0.0234 0.8486 0.6801 0.1650 0.0297

Table 2: Distances and estimated p-values (10000 random permutations) on
synthetic shapes using the averaged Mahalanobis distance (D̄TMM ) and the gen-
eralized Bhattacharyya distance (DTMB ). The last two columns report the test
results when dropping one of the initial conditions.

sure these two groups of trajectories have similar means, the shapes in the third
row of Fig. 2(a) are not picked randomly, but generated using the shapes in the
second row. This is done by computing the mean of the shapes in the second
row, then shooting a geodesic from the mean to each of the three shapes and
continuing to move beyond time 1 (for two times) to generate the shapes in the
third row. Essentially, this has the effect that the means of the trajectories of
both groups are similar, but the variances differ.

Fig. 3 shows the results of PGA in trajectory space for the synthetic shapes.
The largest eigenvalue of the trajectories in Group A is 0.005 at 72% cumulative
variance, compared to the largest eigenvalue of 0.02 at 85% cumulative variance
in Group B. Also, as expected, the trajectories visualized by 10 shapes in Fig. 3
show that the shapes of Group B change faster than in Group A. Table 2 reports
the quantitative measures of the difference between the two groups. Since, by
design, the mean trajectories are similar, it is difficult to identify significant devi-
ations from the null-hypothesis H0 using the generalized Mahalanobis distance;
this is indicated by the relatively high p-values of D̄TMM in Table 26. As desired,
DTMB is sensitive w.r.t. differences in variance, indicated by the relatively low
p-value. This would allow to reject H0 at the customary significance level of 0.05.

Furthermore, since all base shapes are uniformly sampled from within the
shape triangle spanned by the first row of Fig. 2(a), i.e., the initial points of the
two groups have similar means, it is not possible to only use the initial points to
separate the two groups; this is confirmed by the high p-values for both distance
measures in the (p̂, 0) column of Table 2. In fact, even when specifically testing
for differences in the initial velocity, the generalized Bhattacharyya distance
exhibits better behavior than the generalized Mahalanobis distance in terms of
lower p-values (cf . column (0, û) of Table 2).

Corpora callosa in Kendall’s shape space. The longitudinal corpus callosum
dataset used in [12], contains 23 subjects, 11 of which are males with dementia,
and the rest are normal controls. Every subject has been measured at three time
points within the age range of 60 to 92 years old, and each corpus callosum shape
is represented by 64 2D boundary landmarks.

6 The average of two generalized squared-Mahalanobis distances is related to the first
term of the generalized Bhattacharyya distance in Eq. (4).



10 Group Testing for Longitudinal Data

Group A: Normal controls
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Fig. 4: Visualization of the variances (left) and principal directions (right) of
trajectory distributions for the normal control (top) and disease group (bottom)
of corpus callosum shapes (best-viewed in color, blue to red: young to old).

(p̂, û) (p̂, 0) (0, û)

D̄T M
M DT M

B D̄T M
M DT M

B D̄T M
M DT M

B

Distance on TM 3.1817 4.0029 3.7377 3.6863 4.1537 4.3765

p-value 0.0241 0.0054 0.2014 0.0654 0.0319 0.0046

Table 3: Distances and estimated p-values (10000 random permutations) on
corpora callosa using the averaged Mahalanobis distance (D̄TMM ) and the gen-
eralized Bhattacharyya distance (DTMB ). The last two columns report the test
results of dropping one of the initial conditions during the distance computation.

Fig. 4 demonstrates the variances and the principal directions of the trajec-
tories from the normal controls and the disease group. As shown in Fig. 4, the
largest eigenvalue of the normal control group only accounts for 24% variability
with a numeric value of 0.006, while the largest eigenvalue of the disease group
accounts for 52% variability with a numeric value of 0.06. Fig. 4 (right) fur-
ther shows the trajectories of each group along the first principal direction with
standard deviations changing from −1 to 1. The plots indicate that the corpora
callosa with dementia degenerate faster than the normal controls.

Table 3 reports the quantitative measures of the group tests on the cor-
pus callosum shapes with 10000 permutations. Compared to the generalized
squared-Mahalanobis distance, the generalized Bhattacharyya distance consis-
tently exhibits better behavior in identifying the group differences. Similar to
the experiments on the synthetic shapes, during the distance computation we
drop one term of the initial conditions to measure which one plays a more im-
portant role in the group tests. As shown in Table 3, regardless of the distance
measure, the initial velocity is most relevant in identifying group differences;
this is consistent with [12]. If we declare the statistical significance at the level
of 0.01, the p-value of the generalized Bhattacharyya distance, either using both
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initial conditions or only the initial velocity, indicates that the disease group of
corpus callosum shapes is significantly different from the normal control group.

5 Discussion

We have proposed an approach for studying group differences in the distributions
of shape trajectories, estimated from longitudinal data. By means of a general-
ized version of the Bhattacharyya distance, we demonstrated, on both real and
toy data, that taking second-order statistics into account can be beneficial in as-
sessing group differences. However, the proposed approach also has limitations.
For instance, although the compact representation of a trajectory is an efficient
way to summarize longitudinal data, its accuracy inevitably influences the test-
statistics. Currently, the adopted regression approach for estimating a trajectory
is a generalization of linear regression in Euclidean space. Hence, we expect poor
fitting performance on data that cannot be represented by a geodesic. For that
reason, our test-statistic may not be appropriate under such a model. Further-
more, our real dataset only contains a limited number of subjects, which does
not allow strong conclusions and requires to interpret results in the context of
the low sample size. A potential direction for future work is to apply our method
to other types of longitudinal data, e.g ., images, which is straightforward but
slightly more involved due to the complexity of the tangent bundle.
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Appendix

A Properties of the generalized Bhattacharyya distance

Non-negativity. In the first term of Eq. (4), DTMM is the generalized squared-
Mahalanobis distance which is non-negative; consequently, the first term in
Eq. (4) is non-negative. Furthermore, the determinant of a covariance matrix in
the second term is also non-negative, since it is the product of all non-negative
eigenvalues. Besides, it is easy to demonstrate that (|Σ1|+|Σ2|)/(2

√
|Σ1||Σ2|) ≥

1, indicating the second term is non-negative. Hence, DTMB (D1, D2) ≥ 0.

Identity of indiscernibles. If D1 = D2, i.e., µ1 = µ2 and Σ1 = Σ2, we see
that (1) Logµ1

µ2 and Logµ2
µ1 are zero tangent vectors, and (2) |Σ1| = |Σ2|.

Hence, DTMM (µ1, D2) = DTMM (µ2, D1) = 0, i.e., the first term of Eq. (4) is
0; also, the second term is 0. Now, if D1 = D2 then DTMB (D1, D2) = 0. On
the other hand, assuming DTMB (D1, D2) = 0, we can only obtain µ1 = µ2

and |Σ1| = |Σ2|, because of the non-negativity properties of the two terms in
Eq. (4). But, we cannot draw the conclusion that the two covariance matrices
are equal. Therefore, if D1 = D2 then DTMB (D1, D2) = 0, but it is possible that
DTMB (D1, D2) = 0 for some D1 6= D2, if µ1 = µ2 and |Σ1| = |Σ2|.
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Symmetry. Because both terms of Eq. (4) are symmetric, the sum of them is
also symmetric, i.e., DTMB (D1, D2) = DTMB (D2, D1).

Triangle inequality. Since, Eq. (1) in Rn does not satisfy the triangle inequal-
ity, our generalized variant will not satisfy it either.
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