1. Question 4.1 page 183. This is for exercise only. Solutions are given on page 185.

2. Question 4.2 page 183.

Answer: Express this problem (determining whether a DFA and a regular expression are equivalent) as the following language:

\[EQ_{DFA,REX} = \{ \langle D, E \rangle \mid D \text{ is a DFA, } E \text{ is a reg. exp. and } L(D) = L(E) \} \]

To prove this language is decidable, we have two different methods.

Method 1: we reduce it to \(EQ_{DFA} \) which is known to be decidable. We construct the mapping function \(f : \Sigma^* \rightarrow \Sigma^* \) such that for any input \(\langle D, E \rangle \),

1. \(f(\langle D, E \rangle) = \langle D, D_E \rangle \), where \(D_E \) is a DFA constructed from the regular expression \(E \) such that \(L(D_E) = L(E) \); the construction of \(D_E \) can be done in a finite number of steps based on the proofs of Lemma 1.55 (page 67) and Theorem 1.39 (page 55);
2. \(L(D) = L(E) \) if and only if \(L(D) = L(D_E) \).

So

\[EQ_{DFA,REX} \leq_m EQ_{DFA} \]

By Theorem 5.22 (page 208) and the fact that \(EQ_{DFA} \) is decidable, \(EQ_{DFA,REX} \) is also decidable.

Method 2: Since \(EQ_{DFA} \) is decidable, we assume that is an algorithm \(M \) (i.e., Turing machine that halts on all inputs) that decides if two given DFAs accepts the same language. We now construct another algorithm \(M_1 \) to decide language \(EQ_{DFA,REX} \).
The algorithm M_1 inputs $\langle D, E \rangle$, where D is a DFA and E is a regular expression. M_1 works as follows:

First, M_1 converts E to an equivalent NFA (by Lemma 1.55) and then to an equivalent DFA (by Theorem 1.39). Let it be D_E such that $L(D_E) = L(E)$.

Second, M_1 simulates M on input $\langle D, D_E \rangle$.

Finally, M_1 accepts $\langle D, E \rangle$ if M accepts $\langle D, D_E \rangle$; M_1 rejects $\langle D, E \rangle$ if M rejects $\langle D, D_E \rangle$.

Clearly, M_1 halts on all inputs and it decides language $EQ_{DFA,REX}$.

3. Question 4.3 page 183.

Answer: This question also has two different methods, much like Question 4.2. But we only show one here.

Since EQ_{DFA} is decidable, we assume that is an algorithm M (i.e., Turing machine that halts on all inputs) that decides if two given DFAs accepts the same language. We now construct another algorithm M_1 to decide language ALL_{DFA}.

The algorithm M_1 inputs $\langle A \rangle$, where A is a DFA. M_1 works as follows:

First, M_1 generates a DFA B that accepts language Σ^*. The construction of such a DFA is easy since it can just be the one consisting of a single state q (which is both the start and accepting state) with transition function $\delta(q, 0) = q; \delta(q, 1) = q$.

Second, M_1 simulates M on input $\langle A, B \rangle$.

Finally, M_1 accepts $\langle A \rangle$ if M accepts $\langle A, B \rangle$; M_1 rejects $\langle A \rangle$ if M rejects $\langle A, B \rangle$.

Clearly, M_1 halts on all inputs and it decides language ALL_{DFA}.

4. Question 4.4 page 183.

Answer: We construct an algorithm M to decide language A_{CFG}.

M works as follows.

Given input $\langle G \rangle$, M first convert the grammar G to Chomsky normal form G' using the steps provided by the proof of Theorem 2.9 (page 107) such that $L(G) = L(G')$. Since variables other than the newly introduced start variable S_0 cannot have ϵ-rules in G', M checks if any rule of S_0 is an ϵ-rule. If so, M accepts $\langle G \rangle$; if not, M rejects $\langle G \rangle$.

Clearly, M halts on all inputs and it determines a given grammar generates string ϵ, i.e., it decides language A_{CFG}. 2
5. Read and understand the proof of Theorem 4.11 (the proof is on pages 179-181). Use succinct logical reasoning statements to rewrite the proof. You can only use succinct logical statements, assumptions, and/or inferences, with a total up to 20 sentences. Each sentence can be at most one line long. Number these sentences and they are connected logically in a sequence.

Answer: We prove by contradiction using the following sequence of logical statements

(a) Assume \(A_{TM} \) is decided by algorithm \(U \) that halts on all inputs.
(b) \(U \) accepts \(\langle M, \omega \rangle \) if \(M \) accepts \(\omega \); \(U \) rejects \(\langle M, \omega \rangle \) otherwise.
(c) Let \(D \) be a TM that, given \(\langle M \rangle \), reverses the answer of \(U \) on input \(\langle M, \langle M \rangle \rangle \).
(d) \(D \) halts on all inputs because \(U \) halts on all its inputs.
(e) When \(D \) is given the input \(\langle D \rangle \) (i.e., itself), assume \(D \) accepts \(\langle D \rangle \).
(f) Above implies \(U \) rejects \(\langle D, \langle D \rangle \rangle \).
(g) Above means \(D \) does not accept \(\langle D \rangle \).
(h) Contradict.
(i) When \(D \) is given the input \(\langle D \rangle \) (i.e., itself), assume \(D \) rejects \(\langle D \rangle \).
(j) Above implies \(U \) accepts \(\langle D, \langle D \rangle \rangle \).
(k) Above means \(D \) accepts \(\langle D \rangle \).
(l) Contradict.
(m) Paradox.
(n) \(U \) does not exist.
(o) \(A_{TM} \) is not decidable.

6. Question 5.1 page 211. (Hint: reduce language \(ALL_{CFG} \) to language \(EQ_{CFG} \). \(ALL_{CFG} \) is proved to be undecidable in Theorem 5.13).

Answer: Based on the hint, we reduce language \(ALL_{CFG} \) to language \(EQ_{CFG} \) using function \(f \) defined as follows.

\[
ALL_{CFG} = \{ \langle G \rangle | G \text{ is a CFG, } L(G) = \Sigma^* \}
\]
f maps instance \(\langle G \rangle \) to instance \(\langle G, G_1 \rangle \), where \(G_1 \) is a context-free grammar that generates \(\Sigma^* \) with rules:

\[
S \rightarrow 0S \mid 1S \mid \epsilon
\]

Clearly, \(f \) can be computed by an algorithm (i.e., a Turing machine that halts on all inputs). Furthermore,

\(\langle G \rangle \in ALL_{CFG} \) if and only if \(\langle G, G_1 \rangle \in EQ_{CFG} \)

So \(ALL_{CFG} \leq_m EQ_{CFG} \). Because \(ALL_{CFG} \) is undecidable (Theorem 5.13), by Theorem 5.23 \(EQ_{CFG} \) is also undecidable.

7. Question 5.4 page 211.

Answer: If \(A \leq_m B \) and \(B \) is regular, it does NOT necessarily imply that \(A \) is also regular. This is because the reduction function can be more than the “power” of a DFA. In fact, reduction functions are required only to halt on all inputs but can be perform very sophisticated computations.

For example, Let \(A = \{0^n1^n \mid n \geq 0\} \), which is not a regular language. We reduce \(A \) to \(B = \{11\} \) using function \(f \) that is computed by the following algorithm \(M \). Note that \(B \) consists of only one string 11 so \(B \) is regular.

\(M \) uses a stack to recognize every input string \(\omega \) and accepts it if and only if it is in the form of \(0^n1^n \) for some \(n \geq 0 \). So \(M \) recognizes \(A \). Moreover, \(M \) outputs 11 if it accepts the input string \(\omega \) and outputs 00 if it rejects the input string \(\omega \). So the function \(f \) computed by \(M \) is actually the following function:

for any \(\omega \in \Sigma^* \),

\[
f(\omega) = 11 \text{ if } \omega = 0^n1^n \text{ for some } n \geq 0
\]

\[
f(\omega) = 00 \text{ if } \omega \neq 0^n1^n \text{ for any } n \geq 0
\]

So function \(f \) maps instances of \(A \) to the only instance of \(B \), i.e., 11; and \(f \) maps instances of \(\overline{A} \) to 00 which is in \(\overline{B} \). That is for any \(\omega \in \Sigma^* \),

\[
\omega \in A \text{ if and only if } f(\omega) \in B
\]
Clearly, M that computes f halts on all inputs. So $A \leq_m B$.

But B is regular, while A is not.

8. Questions 5.6 and 5.7 (exercise only, you do not need to turn in your answers; solutions are given on page 214)