EVALUATION OF PARALLEL IMPLEMENTATION OF DENSE AND SPARSE MATRIX FOR SCLATION LIBRARY

by

YUNG LONG LI

(Under the Direction of John A. Miller)

ABSTRACT

Many simulation and scientific programs frequently use basic linear algebra operations, such as vector dot product and matrix multiplication. For instance, the Quasi Newton method and Markov clustering algorithms make use of vector and matrices in their code. Many of these problems require substantial amounts of processing time. One possible way to save time is to execute the computations in parallel. In the early of 1970s, MIMD multiprocessors (e.g., C.mmp) were introduced to speed up the execution of programs, while later in that decade, cluster computing (e.g., ARCnet) also started to be used to speed up the execution of programs. Today, mainstream parallel computing is beginning to focus on utilizing multi-core processors. However, it is not easy for a programmer to achieve acceptable performance both at the core level and at the cluster level.

This report presents the design and implementation of two parallel structures, MatrixD and SparseMatrixD, for the library of ScalaTion, which can be efficiently executed in parallel at the core level. MatrixD and SparseMatrixD utilize Scala’s parallel collection framework to achieve good performance at the core level. They can be used as
a regular matrix structure without any modification in the code and can result in considerable speedup. An implementation that explores parallelism at the cluster level utilizing the remote actor capabilities of Akka was shown to further improve performance. The message passing model used by Akka provides programmers with an easy means to implement parallelism in distributed systems. In this report, we study and implement a Markov Clustering application. Testing the application on a large collaboration network resulted in substantial speedup both at the core and cluster levels.

INDEX WORDS: Parallel Computing, Scala, Akka, ScalaTion, Matrix Multiplication, Dense Matrix, Sparse Matrix, multiple cores, cluster.
EVALUATION OF PARALLEL IMPLEMENTATION OF DENSE AND SPARSE
MATRIX FOR SCLATION LIBRARY

by

YUNG LONG LI
MS, National Chung Hsing University, Taiwan, 2000

A Technical Report Submitted to the Computer Science for the Degree

MASTER OF SCIENCE

ATHENS, GEORGIA

2012
EVALUATION OF PARALLEL IMPLEMENTATION OF DENSE AND SPARSE MATRIX FOR SCLATION LIBRARY

by

YUNG LONG LI

Major Professor: John A. Miller
Committee: Thiab Taha
Krzysztof J. Kochut

Electronic Version Approved:
Maureen Grasso
Dean of the Graduate School
The University of Georgia
"[May, August, or December]" "[Year of Graduation]"
DEDICATION

To my family and friends.
ACKNOWLEDGEMENTS

I am greatly thankful to my major professor, Dr. Miller for his continuous support and guidance during my study at UGA. He is a wonderful professor and always encourages his students. I would also like to thank Dr. Thiab Taha and Dr. Kochut, for their valuable suggestions and support. Finally, I would like to thank my colleagues and friends who have helped me on this report.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>ACKNOWLEDGEMENTS</th>
<th>v</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIST OF TABLES</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>ix</td>
</tr>
</tbody>
</table>

CHAPTER

1. **INTRODUCTION** .. 1

2. **OVERVIEW OF PARALLEL COMPUTING** 5
 - 2.1 BACKGROUND .. 5
 - 2.2 PARALLEL COLLECTION IN SCALA 7
 - 2.3 AKKA TOOLKIT API FOR DISTRIBUTED SYSTEM 17

3. **RELATED WORK** .. 21
 - 3.1 GOOGLE MAPREDUCE ON MATRIX MULTIPLICATION 21
 - 3.2 PSBLAS ... 22

4. **EVALUATION IN PARALLEL COMPUTING** 23
 - 4.1 ENVIRONMENT .. 23
 - 4.2 VECTOR DOT FOR PARALLEL .. 23
 - 4.3 DENSE MATRIX OPERATION IN PARALLEL COMPUTING 25
 - 4.4 SPARSE MATRIX OPERATION IN PARALLEL COMPUTING... 32
 - 4.5 DISTRIBUTED MATRIX MULTIPLICATION IN PARALLEL COMPUTING ... 34
 - 4.6 PERFORMANCE OF THE APPLICATIONS 38
5 CONCLUSIONS AND THE FUTURE WORK ..42

REFERENCES ..44

APPENDIX ...46
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1</td>
<td>overview of common data structure in sparse matrix</td>
<td>15</td>
</tr>
<tr>
<td>Table 2</td>
<td>test environment of every machine</td>
<td>23</td>
</tr>
<tr>
<td>Table 3</td>
<td>dense matrix addition running time in different dimension and core number</td>
<td>39</td>
</tr>
<tr>
<td>Table 4</td>
<td>dense matrix multiplication running time in different dimension and core number</td>
<td>39</td>
</tr>
<tr>
<td>Table 5</td>
<td>dense matrix inversion in different dimension and core number</td>
<td>39</td>
</tr>
<tr>
<td>Table 6</td>
<td>dense matrix LU decomposition in different dimension and core number</td>
<td>40</td>
</tr>
<tr>
<td>Table 7</td>
<td>sparse matrix addition in different dimension and core number</td>
<td>40</td>
</tr>
<tr>
<td>Table 8</td>
<td>sparse matrix multiplication in different dimension and core number</td>
<td>40</td>
</tr>
<tr>
<td>Table 9</td>
<td>dense matrix multiplication in different dimension in cluster</td>
<td>41</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>exponential splitting process</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>computation time of matrix multiplication with different dimension</td>
<td>18</td>
</tr>
<tr>
<td>3</td>
<td>computation time of vector dot with different granularity</td>
<td>24</td>
</tr>
<tr>
<td>4</td>
<td>matrix parallel addition operation in different dimension</td>
<td>26</td>
</tr>
<tr>
<td>5</td>
<td>matrix parallel multiplication in different dimension</td>
<td>27</td>
</tr>
<tr>
<td>6</td>
<td>matrix parallel transpose & multiplication in different dimension</td>
<td>28</td>
</tr>
<tr>
<td>7</td>
<td>matrix parallel multiplication speedup in different dimension</td>
<td>29</td>
</tr>
<tr>
<td>8</td>
<td>matrix parallel Strassen multiplication speedup in different dimension</td>
<td>30</td>
</tr>
<tr>
<td>9</td>
<td>matrix parallel inversion in different dimension</td>
<td>31</td>
</tr>
<tr>
<td>10</td>
<td>matrix parallel LU decomposition in different dimension</td>
<td>32</td>
</tr>
<tr>
<td>11</td>
<td>sparse matrix parallel addition operation in different dimension</td>
<td>32</td>
</tr>
<tr>
<td>12</td>
<td>sparse matrix parallel multiplication in different dimension</td>
<td>33</td>
</tr>
<tr>
<td>13</td>
<td>process of the data passing in cluster level</td>
<td>36</td>
</tr>
<tr>
<td>14</td>
<td>dense matrix parallel multiplication of cluster in different dimension</td>
<td>37</td>
</tr>
<tr>
<td>15</td>
<td>sparse matrix parallel multiplication of cluster in different dimension</td>
<td>37</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

In computer science [01], serious interest of parallel computing started at the 1960. Typically, the parallel machines of that era had multiple processors working on shared memory. In the next years, there were some objections and cautionary statements which slowed the progress in parallel computing. The most famous one is Amdahl’s law. It states that a small fraction f of sequential computation was limited by the following rule.

$$\text{Speed-up} \leq \frac{1}{f + \frac{1-f}{p}}$$

Where, p is the number of processor and f is fraction of a program that cannot be parallelized. It means that the speed-up will never exceed $1/f$. Starting in the late 80’s, cluster systems came to attract with more attention and were applied on many applications. A cluster is a kind of parallel computer built with a numbers of computers connected by a network. Today, cluster systems are popular in most scientific computing area and are the dominant architecture in the data centers. Now, the trend starts to move to multi-core processors. This is because increasing microprocessor will be more cost-efficient than increasing clock frequencies. Today most desktop and laptop systems are built with multi-core microprocessors. The manufacturers start to increase overall performance by adding additional CPU cores. Therefore, parallel computing has to consider utilizing the power of computing at the core level as well as at the cluster level. These requirements make writing an efficient parallel program challenging for regular programmer.
In order to overcome these challenging, many algorithm and techniques are invented to ease the burden of a programmer. In sequential programming, there are many collection frameworks have been implemented in order to provide optimal procedures for sorting, filtering, and finding elements. In general, software is written for serial computation, where only one instruction may execute at time. These frameworks usually traverse the entire collection and process the elements sequentially using iterators. There are many applications and data structure is used in the collection frameworks. The basic structure linear algebra data structure, including vectors or matrice may use a collection framework. Therefore, these linear algebra data structures can have a better performance by using the parallel collection framework. Parallel computing techniques are designed to utilize multiple compute resources to traverse different parts of data simultaneously, resulting in a speed up. There are several reasons to use parallel computing such as saving time and money, solving larger problems or using of the resources in a distributed system. However, parallel programming is generally difficult and complicated. Therefore, there is a need for a simple way to express the parallel computing problems that yields for the non-expert scientist. The speed up is now becoming more and more important as the larger data sets are used and stored in different sites. For example, BGI [02], which is the world's largest genomics research laboratory, finds more that 2000 human genomes per day. This data deluge is placing unprecedented demands on the data storage and data processing infrastructures of bio-informatics research facilities around the world. To ease the process of writing software that deals with big data, an efficient and simple way to express parallel programming tasks is essential.
Recent research shows that faster networks, distributed systems and multi-
processor computer architectures are showing that wide use of parallelism is the possible
solution in the future of computing. There are several methods to implement parallel
computing. In this paper, we will focus on using a parallel collection framework and
distributed memory / message passing model approach where a set of tasks with their
own local memory are executed in parallel. Multiple tasks can reside on the same
physical machine and/or across an arbitrary number of machines. To alleviate the
programmer burden, an efficient parallel collection library could be used. The modern
programming language, Scala [03], contains a parallel collection framework that can
facilitate parallel computing without the need to manage the complexity of multiple
threads and the load balance problem. However, parallel computation may result in
unacceptable or incorrect outcome if these are used inappropriately. Most of time,
inappropriate use is because the programmers are continuing to think of the parallel
computing program as a sequential program. This can lead to inefficient performance,
and even an incorrect answer. In this paper, parallel frameworks will be implemented to
create in several different data structures, and explore an easy way to get optimal
performance. The vector and matrix structures are data structures which are often used in
other applications. If computation using these data structure can be executed in parallel,
then the process time can be saved. The basic linear algebra data structures, MatrixD and
SparseMatrixD, in the ScalaTion library, are implemented to use the parallel collection
framework to obtain improved performance. These two data structures take advantage of
the parallel collection framework so that the user can easily use them without the need of
writing extra code. Moreover, they can be used as the building block for other application
or software in a distributed system. In order to show the capability of these two data structures, powerful toolkit, Akka [04], that is written in Scala and used for building highly concurrent and distributed system without considering the low level task, such as domain or specify the information in data structure, in message passing is an ideal solution for building distributed systems. Scala is a cross-platform language; therefore, Akka can be implemented in a networked cluster with different platforms. In this paper, a networked cluster node system is implemented with Akka and the ScalaTion [05] library to test dense matrix and sparse matrix multiplication speedup in cluster level.

The rest of the technical report is organized as follows. Chapter 2 gives an overview of parallel computation and introduces the Scala language. Chapter 3 discusses the related work. Chapter 4 compares the results of sequential and parallel computing in dense matrices and sparse matrices and chapter 5 discusses relevant high level program language features in Scala. Chapter 6 covers the conclusions and future work.
CHAPTER 2
OVERVIEW OF PARALLEL COMPUTING

2.1 BACKGROUND

For a long time, parallel programming was considered as a professional skill, relevant only to high-performance applications. Now that big data and intensive computation are more and more common in applications, parallel computation is becoming a promising solution. In the future, future multi-core/many-core hardware will not be slightly parallel, like today’s dual-core and quad-core processor architectures, but will be massively parallel [06]. However, there are still many challenges in parallel programming for a regular programmer who is only familiar with traditional sequential programming.

It is not enough simply to permit parallelism in programs and expect a speedup to be obtained. Programmers must think about parallelism as a fundamental part of their program structure, just as they do with loops, conditionals in a sequential language. In the report [06] which discusses about parallel computing issue, the key challenges or problems include:

a. **Decomposition and combination:** the parallel tasks within the program must be identified. If there is a return value, then a join operation is needed.

b. **Race conditions:** the order in which expressions are evaluated and/or the order of communications may affect the outcome of the parallel program.

c. **Locking:** Shared memory locations must be locked to avoid conflicts that could give inconsistent results; this locking is often expensive and very error-prone.
d. **Granularity:** Granularity is the extent to which a system is broken down into small parts. It is necessary to achieve the correct level of granularity. Too fine-grained or too coarse-grained system all lead to an inefficient performance. Unfortunately, there is no general fixed choice to fit all situations.

e. **Scalability:** programs should scale to take advantage of increased numbers of parallel processors.

f. **Load balancing:** work may be unevenly distributed among the available processing resources, especially where tasks have irregular granularity. It may be necessary to rebalance the work allocation.

All of these challenges need consideration when developing an efficient parallel program. In [07], the advent of multi-core technology leads to a trend that indicates that high-end parallel machine architectures which include a networked cluster of nodes, each having a number of processor cores. It is known as **distributed memory passing model.**

In a distributed memory system, the above problems should be considered at two levels, the core level and cluster level. At the core level, it is not necessary for the processes distributed among the cores to consider the time of message passing, as this time is usually very small. The most important challenge is to avoid conflicts which may lead to an incorrect result. However, as the data size grows, this too large data problem is nearly impossible to handle in a single machine. Parallel computing is necessary to solve this problem in a distributed system. At the cluster level, the tasks are divided into many small subtasks and each subtask is solved by a single machine. Today’s modern programming languages have developed some useful frameworks to help programmers to develop an efficient parallel application. In Brightwell and Heroux [6], they present
Parallel Phase Model (PPM), a unified high-level programming abstraction is presented, and that facilitates the design and implementation of parallel algorithms to exploit both parallelism of the many cores and the parallelism at the cluster level. In the past, developing applications for these machines was more difficult than it is today, because programmers needed to simultaneously exploit core-level parallelism (many cores and shared memory) and cluster-level parallelism (distributed memory) to achieve good application performance. However, even though program can be written to execute in parallel and avoid conflicts in computation, they do not always to achieve an acceptable performance, sometimes performing worse than their sequential implementation. This is because inappropriate parallel implementation can cause problems in decomposition, granularity and load balancing. Fortunately, today it is possible to utilize modern programming languages and their parallel collections frameworks to solve such issues more easily. In the next section, the modern programming language, Scala, and its parallel collection feature, ParRange, are introduced, which can be used to make efficient parallel implementations. The processes of how to develop efficient parallel computation will be introduced and parallel design issue will be explored.

2.2 PARALLEL COLLECTION IN SCALA

In Prokopec report [08], it states “Scala is a modern general purpose statically typed programming language which fuses object-oriented and functional programming”. Operations are performed using the collection framework so dividing work can be done by partitioning the collection into subsets. To perform parallel computing, it requires dividing work to many small pieces and assigning subsets of elements to different
processors. However, creating and initializing a thread system is not free and it may cause the extra cost by several orders of magnitude. Therefore, it is necessary to use pool of worker threads in sleeping state to avoid creation each time as a parallel operation is invoked. The parallel collection frameworks were introduced to ease the complication in program. In Scala, it has implemented in ParRange. The most important algorithm inside the ParRange is the Java Fork/Join Framework [9].

The general design in Fork/Join algorithm is a variant of the Work–Stealing [10] algorithm. Fork/join algorithms are parallel versions of divide and conquer algorithms. The Fork operation starts a new parallel subtask. The Join operation causes the current task not to proceed until all its subtasks are completed. Like other divide-and-conquer algorithms, it is recursive. It recursively divides the task until it is small enough to solve, and then solve it sequentially. This framework manages a pool of worker threads, each being assigned a queue of fork/join tasks. Normally, there are as many worker threads as there are cores on a system [11]. Every subtask is executed by a thread in this pool. The Work-Steal Algorithm plays an important role on Fork/Join Algorithm. Each worker thread maintains runnable tasks in its own scheduling queue. When a worker thread has no local tasks to run, it attempts to take ("steal") a task from another randomly chosen worker, using a First In, First Out (oldest first) rule. The Work–Stealing algorithm helps to deal with the load balance issue. In practice, fewer tasks usually lead to significant performance improvement if subtask size is equal and every processor’s capabilities are equal. However, if it is not, fewer tasks may lead to poorer load-balancing problem. In [7], these issues are solved via exponential task splitting, inspired by [12]. The idea is the following:
If a worker thread finished its work with more tasks in its queue, then it means that other thread are busy with their own work, so the worker thread will do more tasks. The heuristic is to double the amount of work. There are two advantages of this approach. First, it allows only the oldest tasks on the queue to be stolen. Second, stealing tasks is generally more expensive than just assigning them to the queue. The figure 1 shows the exponential splitting process.

![Exponential Task Splitting Process](image)

The Scala parallel collections framework uses this process to efficiently schedule tasks between cores/processors. `ParRange`, a parallel collection data structure in Scala, is implemented by using Fork/Join framework of Java. `ParRange` is developed with these algorithms and parallelizes well. The following code gives a simple example, demonstrating how to use the `ParRange`.

```scala
// Example of using ParRange
val parRange = ParRange(1 to 10)
parRange.foreach(println)
```
for (i <- 0 until 100) process(i) -- regular range

for (i <- (0 until 100).par) process(i) -- parallel range

With ParRange, a programmer can easily implement a parallel process without thinking about the low level tasks, such as creation of threads or the management of threads. It can be an ideal solution for parallelization at the core level, because programmers can be free from developing a complicated thread pool and handling the load balancing issues.

Although Fork/Join can help us to deal with most of problems, we still need to face some critical issues. An efficient and correct execution schedule may depend on some factors which may include the number of processors, data size or processor availability. In order to get a clear view on these problems, we use the vector dot product operator as an example in order to demonstrate a parallel programming problem and how to solve it.

The dot product is a binary operation that takes two equal-length sequences of vectors and produces a single number by multiplying corresponding entries in each input vector and summing those products. This function can be easily implemented by a for-loop which adapts a normal for-loop. A naïve way to produce a parallel implementation is to replace the normal Range by ParRange, see the following code.
def dot (b: VectorD): Double =
{
 var s = 0.0
 for (i <- (0 until dim).par) s += v(i) * b(i)
 s // return
} // dot

After the execution of the dot method, in a 4-cores machine, the measurement of parallel performance shows only 40 percent faster than previous measurement and it generates an incorrect result. The example demonstrates how the parallel collect framework can be misused. The incorrect response is due to shared memory not being locked as every thread writes the value in variable “s” value. This case demonstrates a critical issue about the kind of functional language used in parallel programming. In pure functional programming languages, a programmer is prevented from using mutable variable in their program. An important reason for using functional language is because there are no side effects, so it is always safe to execute computations in parallel due to this referential transparency. Without mutable variables, the program can be decomposed and run in order safely. Scala encourages users not to use mutable variables and supports many functional programming paradigms that can be used to avoid using mutable variable. To solve this problem, we assign a simple array to make our parallel “ParRange” to write the same value concurrently. The code is then modified as following
def dot (b: VectorD): Double =
{
 val arr = new Array[Double](dim)
 for (i <- (0 until dim).par) arr(i) = v(i) * b(i)
 arr.sum
}

Using the modification code above, we obtain correct result response. However, we still do not get acceptable performance. If we have a vector with 10 million numbers, then the vector dot product operation performance is 3 time slower than the sequential implementation. The main reason for this problem is the fine-granularity. It means that there are too many subtasks running concurrently. The Fork/Join algorithm is similar divide-and-conquer algorithm. Although the Fork/Join implementation used by scala is able to prevent the too fine-granularity problem by using exponential splitting algorithm, the result still shows the poor performance in this case. The main reason is that the whole process is too short for the exponential task splitting algorithm to get the optimal performance. Hence, the smallest subtasks may be processed too many times. To prove this assumption, suppose the total computation cost is linear and the splitting and communication cost is constant. If there are too many small subtasks executed before the system doubles the size these subtask to an optimal size, then the total additional cost in splitting will be significant. It means that the additional cost is too large to be ignored compared to the total cost. The system, therefore, may suffer from the fine-granularity problem. A naïve way to solve this problem is to make ParRange to split just the core number parts, and then measure its performance again. The resulting performance is much better than the previous example. It is now about 2.5 times faster than sequential implementation. However, the core number is not an optimal granularity value for a
multi-core machine. This value can potentially lead to a coarse-granularity problem. It means that if one thread is much slower than other threads, then Join operation has to waste some more time to wait until it finishes. Therefore, it is necessary to find an optimal coarse-granularity value which can lead to an acceptable performance without sacrificing the load balance problem. In the chapter 4, we will discuss how to find an appropriate coarse-granularity value when we use the ParRange parallel framework.

The program of vector dot product example has only one loop. However, many programs have more than one loop. So, our next test case is matrix multiplication which includes three nested loops. Matrix product is a time-consuming process that takes much more time than vector product. Suppose the two matrices are square and their dimensions are n. The code for the matrix product operation is shown as follows:

```scala
def * (b: MatrixD): MatrixD =
{
  val c = new MatrixD (dim1, b.dim2)
  for (i <- range1; j <- c.range2) {
    var sum = 0.
    for (k <- range2) sum += v(i)(k) * b.v(k)(j)
    c.v(i)(j) = sum
  }
  c
} // *
```

The code has three loops. Each loop has n operations. So, the complexity of matrix product is cubic. Based on previous experience, it may yield the poor performance when replacing all Range objects with ParRange objects. So, a naïve way is to replace the first Range with ParRange. The modified code is shown as following.
def * (b: MatrixD): MatrixD =
{
 val c = new MatrixD (dim1, b.dim2)
 for (i <- range1.par; j <- c.range2) {
 var sum = 0.
 for (k <- range2) sum += v(i)(k) * b.v(k)(j) c.v(i)(j) = sum
 c
 }
} // *

The performance in this experiment is surprising. It is almost 3.6 times faster than when using the normal range object in a 4-core machine. In this case, the splitting and combining cost is linear and the complexity of computation is cubic. The splitting and combining cost is linear, however, it is relatively small compared to the running time. During the matrix multiplication process, we do not pass any value inside the subtask, therefore the answer is still correct. This case demonstrated an excellent example for the parallel computation in a multiple iterative program.

The next issue is load balancing. So far, the last two experiments all yielded positive results, in parallel implementation. However, the matrix data in the real world may not always be distributed evenly nor dense enough such that we can ignore the load balance problem. Another issue is the performance with different data structures, like List, Set or Map. Hence, the SparseMatrixD data structure in the ScalaTion library is introduced to test the performance. The SparseMatrixD is used to represent a sparse matrix which contains a very high-ratio of zero elements in a matrix. There are many different types of data structures to store the values in a sparse matrix. However, they have their own weaknesses and strengths. The sparse matrix will be used for many
purposes so that we will require a general solution to store the value and retrieve the value efficiently. In order to have general functions in SparseMatrixD class, we develop a new data structure called “SortedLinkedHashMap”. SortedLinkedHashMap is the data structure which contains HashMap and Sorted Linked Entry data structure. The HashMap is used to get a value for a particular key. Although HashMap offer a constant time to retrieve a value, it is not efficient to iterate through the values in a sparse matrix. So, we create the Sorted Linked Entry to give a more efficient way to iterate through the values in sparse matrix. The following table shows the features of common data structures used for sparse matrices.

Table 1 Overview of common sparse matrix data structures

<table>
<thead>
<tr>
<th>name</th>
<th>description</th>
<th>strength and weakness</th>
</tr>
</thead>
</table>
| Dictionary of keys (DOK) | Dictionary mapping (row, column)-tuples to values | 1. good for incrementally constructing
2. poor for iterating |
| List of lists (LIL) | Stores one list per row | 1. good for incrementally constructing
2. less efficient for insert or update value |
| Coordinate list (COO) | Stores a list of (row, column, value) tuples. | 1. good for incrementally constructing
2. poor for insert or update value |
| Compressed sparse row (CSR) | Puts the subsequent nonzeros of the matrix rows in contiguous memory locations | 1. good for incrementally constructing and arithmetic operations, row slicing, and matrix products
2. less efficient for other function |
| SortedLinkedHashMap | Store in HashMap and Sorted Linked Entry for each row | 1. good for incrementally constructing and insert value and update value and most of operations
2. need more memory resource |

The SparseMatrixD class is implemented by an array of SortedLinkedHashMap. Every row in the sparse matrix is represented by a
SortedLinkedHashMap. The SortedLinkedHashMap stores the key and value which represent column index and matrix element value, respectively in the sparse matrix. The sparse matrix is an ideal example for us to test the unevenly distributed data case and how SortedLinkedHashMap performs using ParRange construct. The source code for SparseMatrixD Multiplication is shown in Appendix A:

The first Range object in sparse matrix is replaced with the ParRange object. The performance is not as good as with dense matrix, but it is still acceptable. In a 4-core machine, parallel computation is almost 2.6 times faster than sequential computation in a 4-core machine. It shows that ParRange performs with different data structure, such as HashMap and LinkedHashMap. The next test case is the irregularly distributed data in a sparse matrix. In order to simulate the irregularly distributed data, we assign a different number of elements in each SortedLinkedHashMap so that every processor will have a different size of SortedLinkedHashMap. In this case, the load balancing may be a problem because some processor may take more time to execute its subtask, therefore the Work-Steal algorithm will start to work and some processor may “steal” subtasks from other processor. The result shows the performance is still as good as the evenly-distributed sparse matrix. The parallel implementation in this case is still 2.5 times faster than the sequential implementation in a 4-core machine. The above experiments show that Fork/Join algorithm can prevent coarse-granularity and load balance problem in uneven distributed data and still yields acceptable performance using different data structures.
2.3 AKKA TOOLKIT API FOR DISTRIBUTED SYSTEM

In the previous section, all implementations with the `ParRange` object are done on a single machine, so all of the subtasks are done at core level. Parallel computing can be applied both at the core level and at the cluster level. It means that a large task can be divided into many subtasks then sent to different machines to be executed. The more machines you have the more power you get. The goal for this report is to develop an efficient parallel program which can run in parallel both at the core and the cluster level. There is also another important reason to implement the parallel program in cluster level. Sometimes the data sets of a problem are too large to execute in a single machine. To solve this problem requires a huge amount of memory resource. Even it could be solved in a single machine; the performance will drop down as the machine runs a program with a huge memory. This usually happens when we face a big-data problem. The following experiment will give us a view of this problem. If we measure a matrix multiplication with different dimensions from 500 to 2000, the running time is much larger as the growth of dimension. According to the matrix multiplication complexity, if we double the dimension, then we will need 8 times the processing time to run. However, in real experiment the power is $n^{3.38}$. Figure 2 shows that the performance dramatically decreases as the dimension of the matrix increases.
The problem is likely to involve the CPU memory cache [13]. A CPU memory cache holds the recently accessed data to save time reading data from the main memory. However, if the matrix dimension is big enough then the CPU start to suffer from cache misses. So, the running time is also increased because of cache effect.

If the task is divided into several subtasks and every subtask is assigned to a machine, then every machine will only handle the appropriate size subtask rather than a huge size task improving the performance. To achieve this purpose, an interface is needed to handle the message passing. There are several models for parallel computation at the cluster level. Distributed memory cluster architectures consisting of networked cluster have successfully been shown to handle parallel computing well. In distributed memory / message passing model, the problem is different with the core level. The message passing at the cluster level plays a significant role in performance. If message passing is not fast enough, then the system may suffer due to conflicts or idle time among machines in the
cluster. In general, message passing time is also an important factor of parallel computation of cluster level. It is similar to the granularity issue. Too many small messages passing could lead the time being wasted on latency. Every message has latency; even if the data size is almost zero. As the number of subtask increases, the message passing time also increases, therefore, latency becomes an important factor in performance.

There are many successful programming models which are used for distribute computing on clusters of computers. One example is, the MapReduce which is inspired by the map and reduce functions commonly used in functional programming. The Apache Hadoop is a popular MapReduce library written in Java. MapReduce is a framework for processing parallel problems across huge datasets using a large number of computers. Although it is successful in clustering machine, it pays little attention on the power of parallel computing at the core level. Users of the framework have to use their own parallel collections frameworks to implement the parallel computation in single machine. Since Scala provides a convenient parallel collections framework for users, it will be convenient to use an application which is written in Scala and is able to provide scalable performance.

Akka is a library written in Scala and is used for building highly concurrent and distributed systems. Akka uses the Actor Model to raise the abstraction level and provide a better platform to build correct concurrent and scalable applications. Another feature is fault-tolerance [14] which has been used with great success in the telecom industry to build applications. Actors also provide the abstraction for transparent distribution and the basis for truly scalable and fault-tolerant applications. Unlike other remote concurrent
/distributed system which have to deal with the network communication between local and remote machine, Akka has made message passing transparent to the programmer. It allows the user to create a reliable application by creating simple object which includes the message recognized by other remote machine. Therefore, user can concentrate on the development of algorithm or code, rather than focus on the network communication problem. In chapter 4, Akka is used to implement matrix multiplication parallel computation at both the core level and cluster levels. The speedup of the matrix multiplication in parallel computing with both core level and cluster level will be presented in that section.
3.1 GOOGLE MAPREDUCE ON DISTRIBUTED MATRIX MULTIPLICATION

MapReduce[15] is a famous and successful programming model and an associated implementation for processing and generating large data sets. Users create a map function to generate a set of intermediate key/value pairs and a reduce function that merges all values associated with the same key. Apache Hadoop[16] is an open source software framework that supports data-intensive distributed applications. It enables applications to work with thousands of computational independent computers and petabytes of data. The Hadoop Distributed File System (HDFS) is used to store the data in a distributed system. It is comprised of interconnected clusters of machines where files and directories store. A typical Hadoop cluster includes a single master and multiple worker nodes. The master node consists of a JobTracker, TaskTracker, NameNode, and DataNode. A slave or worker node acts as both a DataNode and TaskTracker. Previous Work [17] presents a HAMA framework which is dedicated for massive matrix and graph computations. HAMA has a layered architecture consisting of three components: HAMA Core for providing many primitives to matrix and graph computations, HAMA Shell for interactive user console, and HAMA API. The HAMA Core component also determines the appropriate computation engine. This paper proposes two approaches to matrix multiplication: iterative approach and block approach. The former is suitable for sparse matrices, while the latter is appropriate for dense matrices with low
communication overhead. Both experiments show HAMA provides compatibility with Hadoop, and is scalable for the matrix multiplication in large matrices. Although Hadoop has shown its efficiency in HAMA, this paper does not mention about the performance at the core level.

3.2 PSBLAS

Parallel Sparse BLAS (PSBLAS) [18] is a library of Basic Linear Algebra Subroutines for parallel sparse applications that facilitates the porting of complex computations on multiple computers. The project has been prompted by the appearance of a proposal for serial sparse BLAS that are flexible and powerful enough to be used as the building blocks of more complex applications, especially on parallel machines. In [19], a software framework is presented for enabling easy, efficient, and portable parallel implementations of sparse matrix computations. The test experiment shows that the improvement grows as the number of machine increases. However, they did not mention the parallelism at the core level. The parallel performance test is only at the cluster level. Our experiments show that we obtain a significant improvement at both core and cluster levels.
CHAPTER 4
EVALUATION IN PARALLEL COMPUTING

4-1 ENVIRONMENT

Before discussing the evaluation, here is the overview of the machines used for the evaluation. We will test the matrix operation by using `ParRange` on 2-core, 4-core and 12-core machines. Every machine specification is in Table 2. Our experiments will test the operation on dense matrix (`MatrixD` in ScalaTion library) and sparse matrix (`SparseMatrixD` in scalation library). For dense matrix, the addition, multiplication, inverse and LD decomposition operations will be tested to see the performance. In sparse matrix, only addition and multiplication operations will be tested, because sparse matrices cannot usually be inverted.

<table>
<thead>
<tr>
<th>Machine quantity</th>
<th>CPU type</th>
<th>Core number</th>
<th>Main memory</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Intel(R) Core(TM)2 Duo CPU E7400 @ 2.80GHz</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>Intel(R) Core(TM) i5-2500 CPU @ 3.30GHz (2-hyper-threading)</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>Intel(R) Core(TM) i7-2600 CPU @ 3.40GHz (2-hyper-threading)</td>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td>1</td>
<td>Intel(R) Xeon(R) CPU E7-4870 @ 2.40GHz (2-hyper-threading)</td>
<td>12</td>
<td>128</td>
</tr>
</tbody>
</table>

4-2 VECTOR DOT PRODUCT FOR PARALLEL COMPUTING

The first experiment was a vector `dot` product with different number of subtasks. The test vector dimension size is 10,000,000. The vector dot product does not have an acceptable performance if we just replace the Range with `ParRange`. This problem involved the granularity factor. In order to understand how the value of granularity factor
affects the performance, we adjust the coarse-granularity value to see the change in performance and run in a 4-core and 2-hyper-threading machine. In figure 3, the coarse-granularity is displayed on the horizontal axis; the time in nanosecond needed is on the vertical axis. The source code is follows:

```scala
def dot (b: VectorD): Double =
{
  val arr = new Array[Double] (dim / granularity + 1)
  for (i <- (0 until dim by granularity).par) {
    var subtotal = 0.0
    var end = if (i + granularity >= dim) i + granularity else dim
    for (j <- i until end) subtotal += (v(j) * b.v(j))
    arr(i / granularity) = subtotal
  } // for
  arr.sum
} // dot
```

Figure 3 computation time of vector dot product with different granularity
This first value in the figure 3 is the sequential running time. It can be easily identified that the performance is significantly better than performance of sequential when the subtask number is equal to core number. However, this number does not lead to optimal performance. As the subtask number increases, the performance is getting better until division of tasks is too fine. From the graph it shows that the number of subtasks which locates in the range of 512 to 523288 is almost optimal performance in vector dot operation. So, the optimal value is the range of $n^{0.37}$ to $n^{0.80}$, where n is the dimension of vector. If the subtask number locates in this range, the parallel computing in core level can get approximate optimal performance. So, we suggest the $n^{0.5}$ as a heuristic value. This value can be used to improve parallel collection framework performance. It can be used to design a new parallel framework which is capable to automatically determine the optimal number of coarse-granularity and obtain better performance. If the there is more than one ParRange in a program, one can replace the Ranges with ParRanges until it reach this value.

4-3 DENSE MATRIX OPERATION IN PARALLEL COMPUTING

In this section, addition, multiplication, inverse and LU decomposition operations will be tested to evaluate the performance in dense matrices. All operations will be tested for 2-core, 4-core and 12-core machine. The first experiment is to test the matrix addition operation for different dimension. Figure 4 shows test result. The vertical axis is the speedup. The horizontal axis is the number of cores in the machine.
Figure 4 shows that parallel matrix addition is not efficient. It is because the parallel framework has an overhead cost. If the parallel computing doesn’t save enough cost, the extra overhead cost will cause it to be less efficient.

The following experiment is with matrix multiplication. Figure 5 shows the test result. The vertical axis is the speedup. The horizontal axis is the number of cores.
The result shows that a significant improvement when a parallel framework is applied. The performance is growing as the number of cores increase. Although ParRange performs well, there are some other approaches that can be applied that cause an improvement in matrix multiplication. The first method is to transpose the second matrix when we do the matrix multiplication. Matrix multiplication causes a caching problem when performing the matrix multiply as a row is not contiguous in memory. The result of taking the transpose before applying the matrix multiplication can be seen in figure 6. The vertical axis is the speedup. The horizontal axis is the number of cores in a machine.
Figure 6 dense matrix parallel transpose & multiplication in different dimension

The running time in a 4-core machine is 10 folds improvement. The figure 7 shows the running time required in different dimension. The vertical axis is the time needed for computation. The horizontal axis is the dimension of matrix.
In 1969, Volker Strassen developed an algorithm for performing matrix multiplication faster than the cubic time. The general idea is to decompose a big square matrix to 4 smaller sub-matrices. It needs 7 matrix multiplication in these sub matrices and several addition and minus matrix operations. This will be an ideal test to see the parallel MatrixD performance when they are applied into other program. The source code is shown on the Appendix. In this experiment, Strassen fast matrix multiplication will have only up 6% improvement as the matrix dimension is large. Figure 8 shows parallel computing speedup result. The vertical axis is the speedup. The horizontal axis is the dimension of matrix.
The next two dense matrix operation tests are inverse and LU decomposition. These two operations require the pivot swap process; therefore fewer parts of these operations can be parallelized when compared to matrix multiplication. Although the performance is not as good as matrix multiplication, the trend is still similar to matrix multiplication. Figures 9 and Figure 10 shows parallel computing results for inversion and LU decomposition, respectively. The vertical axis is the time needed for computation. The horizontal axis is the number of cores in the machine.
Figure 9 dense matrix parallel inversions in different dimension

Figure 10 dense matrix parallel LU decomposition in different dimension
4-4 SPARSE MATRIX OPERATION IN PARALLEL COMPUTING

A dense matrix is represented as two dimension array which data is distributed uniformly. In this section, SparseMatrixD in ScalaTion library will be used to see the performance of unevenly distributed data structure in parallel computing. There are two sparse matrix operation tests. The first test is sparse matrix addition. Figure 11 show the results. The vertical axis is the speedup. The horizontal axis is the number of core number in the machine.

![Speedup vs Core Number](image)

Figure 11 sparse parallel matrix addition in different dimension

The result is similar to the dense matrix addition operation because addition takes a relatively small amount of time to process.
The next experiment is sparse matrix multiplication using parallel computing. The figure 12 shows the result. The vertical axis is the speedup. The horizontal axis is the number of cores in a machine. The test result is also similar to dense matrix.

The memory cache of CPU can explain why large dimension matrices need more time. To improve cache hits, a possible solution is to divide the matrix to a number of blocks. The ideal size of this sub block matrix depends on how much memory each core can cache. However, the method may have extra cost to split and merge those blocks. Therefore, it may not be efficient when the dimension is small. So, we believe that dividing blocks should be implemented in a large dimension matrix at the cluster level not at the core level. There is another reason to support this idea. Dividing the matrix into a number of blocks will ease the communication process in different machines at the cluster level and the performance at the core level can be also enhanced by these blocks.
since every block is still an independent matrix. In next section we will present an
efficient distributed solution for processing the dense and sparse matrix multiplication
operations.

4-5 DISTRIBUTED MATRIX MULTIPLICATION IN PARALLEL COMPUTING

In the previous section, the result of dense parallel matrix and sparse parallel
matrix multiplication shows that the performance is enhanced efficiently by the parallel
framework, ParRange. In this section, an efficient matrix multiplication cluster
program is introduced. There are 4 machines in this cluster and each machine has at least
a 4-cores and 4-gigabyte memory. Although some machine may have more memory, we
will still limit the usage of memory to 4 Gigabytes. There are two goals in this
experiment. The first one is to expand the limitation of the dimension of dense matrix.
The second one is to enhance the performance and be scalable as the dimension of the
matrix increases. To expand the limitation of dense matrix dimension, a good plan to
manage the memory in each machine is required. In order to overcome this limitation, the
big dense matrix should be divided into 4 parts and each machine should hold one part
data of this big dense matrix. In order to reduce the message passing time, each machine
should pass a minimum amount of data during matrix multiplication. In the real world,
there are some applications which require in-place matrix multiplication, such as Markov
Clustering algorithm. So, we will simplify matrix multiplication as in-place matrix
multiplication in this cluster program. In order to enhance the performance at the core
level and ease the communication among machines, the large dense matrix should be
divided into blocks. The size of each block is very important. If too small block size is
chosen, it may lead to increased message passing throughout the whole process and waste too much time on latency. If a too large block size is chosen, the cache memory issue becomes a factor to slow down the performance. Because of these two reasons, it is hard to have a general solution that can be applied to every case. The user has to decide the block size basing on their environment. There are one master machine and 4 worker machine in this system. The master machine is responsible for synchronizing process and sending data to each worker machine. The worker machine is responsible for storing and doing computation during the whole process. Once the block size is determined, the master machine will start to partition the big dense matrix to several parts. In this experiment, we will use the column-oriented block partition which means that the large dense matrix will divide into 4 major column blocks and send to each worker machine to store in their memory. When a worker machine received all data, it will send a signal to master machine to notify it has finished. The master machine will wait until all worker machines receive their data. Then, the master machine will notify every worker machine to start the matrix multiplication process. Every machine will start to request and receive the data from other worker machines to compute the first row of block and repeat the same process on the following rows until all the computation is completed. The figure 14 demonstrates the whole process of the data passing.
The maximum matrix dimension is expanded to 6000 and figure 14 shows the result of this cluster program. The vertical axis is the time needed for computation. The horizontal axis is the dimension of dense matrix. The result shows that this cluster enhances performance at the core and cluster level if we compare to the performance of a single machine. Figure 15 shows the result of sparse matrix multiplication of this cluster program. The vertical axis is the time needed for computation. The horizontal axis is the dimension of sparse matrix. The sparse matrix parallel multiplication shows a similar result compared to dense matrix. These cluster level tests shows that MatrixD and SparseMatrixD are capable be applied to a distributed system and achieve a significant performance improvement.
Figure 14 dense matrix parallel multiplication of cluster in different dimension

Figure 15 sparse matrix parallel multiplication of cluster in different dimension
4.6 PERFORMANCE OF THE APPLICATIONS

In this section, we implement a Markov clustering application using the previous implementation with ScalaTion Library and Akka. The Markov clustering algorithm uses matrix multiplication in the clustering process. So, it will be an ideal application to test the performance of our model. The test sample is from the Stanford Large Network Dataset Collection. We extract a subset data to test the performance. There are two experiments. The first undirected graph has only 40000 vertexes and 67294 edges. In order to compare the performance, this test will be executed by a single machine and the cluster system. The single machine takes 573146 milliseconds to finish the whole process. The cluster system takes only 195701 milliseconds to finish. The result shows that the model has a significant improvement on performance. In final, we expand the size of the graph to 100,000 nodes and 101,060 edges. The cluster system takes only 921010 milliseconds to finish the whole process.
Table 3 dense matrix addition running time in different dimension and core number

<table>
<thead>
<tr>
<th>dimension</th>
<th>2-core</th>
<th>4-core</th>
<th>12-core</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sequential</td>
<td>parallel</td>
<td>Sequential</td>
</tr>
<tr>
<td>250</td>
<td>1</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>500</td>
<td>5</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>750</td>
<td>11</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>1000</td>
<td>26</td>
<td>15</td>
<td>10</td>
</tr>
<tr>
<td>1500</td>
<td>38</td>
<td>30</td>
<td>20</td>
</tr>
<tr>
<td>2000</td>
<td>71</td>
<td>64</td>
<td>30</td>
</tr>
</tbody>
</table>

Time: milliseconds

Table 4 dense matrix multiplication running time in different dimension and core number

<table>
<thead>
<tr>
<th>dimension</th>
<th>2-core</th>
<th>4-core</th>
<th>12-core</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sequential</td>
<td>parallel</td>
<td>Sequential</td>
</tr>
<tr>
<td>250</td>
<td>217</td>
<td>120</td>
<td>116</td>
</tr>
<tr>
<td>500</td>
<td>1748</td>
<td>831</td>
<td>157</td>
</tr>
<tr>
<td>750</td>
<td>825</td>
<td>545</td>
<td>492</td>
</tr>
<tr>
<td>1000</td>
<td>1857</td>
<td>1377</td>
<td>1339</td>
</tr>
<tr>
<td>1500</td>
<td>7299</td>
<td>5174</td>
<td>4421</td>
</tr>
<tr>
<td>2000</td>
<td>17501</td>
<td>12902</td>
<td>10038</td>
</tr>
</tbody>
</table>

Time: milliseconds

Table 5 dense matrix inversion in different dimension and core number

<table>
<thead>
<tr>
<th>dimension</th>
<th>2-core</th>
<th>4-core</th>
<th>12-core</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sequential</td>
<td>parallel</td>
<td>Sequential</td>
</tr>
<tr>
<td>250</td>
<td>249</td>
<td>250</td>
<td>56</td>
</tr>
<tr>
<td>500</td>
<td>2153</td>
<td>1444</td>
<td>1280</td>
</tr>
<tr>
<td>750</td>
<td>6797</td>
<td>4368</td>
<td>1233</td>
</tr>
<tr>
<td>1000</td>
<td>8166</td>
<td>7737</td>
<td>2840</td>
</tr>
<tr>
<td>1500</td>
<td>26245</td>
<td>25463</td>
<td>12132</td>
</tr>
<tr>
<td>2000</td>
<td>59891</td>
<td>59954</td>
<td>21350</td>
</tr>
</tbody>
</table>

Time: milliseconds
Table 6 dense matrix LU decomposition in different dimension and core number

<table>
<thead>
<tr>
<th>dimension</th>
<th>2-core Sequential</th>
<th>2-core parallel</th>
<th>4-core sequential</th>
<th>4-core parallel</th>
<th>12-core sequential</th>
<th>12-core parallel</th>
</tr>
</thead>
<tbody>
<tr>
<td>250</td>
<td>97</td>
<td>99</td>
<td>18</td>
<td>38</td>
<td>103</td>
<td>67</td>
</tr>
<tr>
<td>500</td>
<td>773</td>
<td>487</td>
<td>476</td>
<td>369</td>
<td>806</td>
<td>299</td>
</tr>
<tr>
<td>750</td>
<td>2481</td>
<td>1672</td>
<td>354</td>
<td>351</td>
<td>2719</td>
<td>726</td>
</tr>
<tr>
<td>1000</td>
<td>1836</td>
<td>1713</td>
<td>901</td>
<td>690</td>
<td>6403</td>
<td>1528</td>
</tr>
<tr>
<td>1500</td>
<td>6436</td>
<td>6216</td>
<td>3189</td>
<td>1906</td>
<td>21841</td>
<td>4468</td>
</tr>
<tr>
<td>2000</td>
<td>15290</td>
<td>14821</td>
<td>7641</td>
<td>4481</td>
<td>69476</td>
<td>10907</td>
</tr>
</tbody>
</table>

Time: milliseconds

Table 7 sparse matrix addition in different dimension and core number

<table>
<thead>
<tr>
<th>dimension</th>
<th>2-core Sequential</th>
<th>2-core parallel</th>
<th>4-core Sequential</th>
<th>4-core parallel</th>
<th>12-core Sequential</th>
<th>12-core parallel</th>
</tr>
</thead>
<tbody>
<tr>
<td>250</td>
<td>13</td>
<td>4</td>
<td>5</td>
<td>2</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>500</td>
<td>12</td>
<td>8</td>
<td>9</td>
<td>2</td>
<td>27</td>
<td>18</td>
</tr>
<tr>
<td>750</td>
<td>24</td>
<td>16</td>
<td>12</td>
<td>5</td>
<td>58</td>
<td>37</td>
</tr>
<tr>
<td>1000</td>
<td>57</td>
<td>25</td>
<td>26</td>
<td>11</td>
<td>110</td>
<td>76</td>
</tr>
<tr>
<td>1500</td>
<td>102</td>
<td>146</td>
<td>45</td>
<td>48</td>
<td>202</td>
<td>185</td>
</tr>
</tbody>
</table>

Time: milliseconds

Table 8 sparse matrix multiplication in different dimension and core number

<table>
<thead>
<tr>
<th>dimension</th>
<th>2-core Sequential</th>
<th>2-core parallel</th>
<th>4-core Sequential</th>
<th>4-core parallel</th>
<th>12-core Sequential</th>
<th>12-core parallel</th>
</tr>
</thead>
<tbody>
<tr>
<td>250</td>
<td>81</td>
<td>48</td>
<td>52</td>
<td>21</td>
<td>111</td>
<td>20</td>
</tr>
<tr>
<td>500</td>
<td>700</td>
<td>536</td>
<td>434</td>
<td>193</td>
<td>2332</td>
<td>238</td>
</tr>
<tr>
<td>750</td>
<td>2718</td>
<td>1873</td>
<td>1582</td>
<td>608</td>
<td>1777</td>
<td>200</td>
</tr>
<tr>
<td>1000</td>
<td>6580</td>
<td>5180</td>
<td>3944</td>
<td>1819</td>
<td>4890</td>
<td>481</td>
</tr>
<tr>
<td>1500</td>
<td>106019</td>
<td>96471</td>
<td>49379</td>
<td>40850</td>
<td>36469</td>
<td>1957</td>
</tr>
</tbody>
</table>

Time: milliseconds
Table 9 dense matrix multiplication in different dimension in cluster

<table>
<thead>
<tr>
<th>dimension</th>
<th>Single sequential</th>
<th>Single parallel</th>
<th>Cluster parallel</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>1001</td>
<td>512</td>
<td>1339</td>
</tr>
<tr>
<td>1500</td>
<td>1074</td>
<td>1625</td>
<td>4421</td>
</tr>
<tr>
<td>2000</td>
<td>2114</td>
<td>3796</td>
<td>10038</td>
</tr>
<tr>
<td>2500</td>
<td>3271</td>
<td>6805</td>
<td>19313</td>
</tr>
<tr>
<td>3000</td>
<td>5618</td>
<td>56731</td>
<td>202246</td>
</tr>
<tr>
<td>4000</td>
<td>10712</td>
<td>139381</td>
<td>473528</td>
</tr>
<tr>
<td>5000</td>
<td>19260</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6000</td>
<td>35682</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Time: milliseconds
CHAPTER 5
COCULDSIONS AND FUTURE WORK

In this report we implemented and tested two parallel matrix structures in the ScalaTion library. These two structures have shown significantly improved performance at the core level. At the cluster level, we also present a message passing model built with Akka which also achieves an improved speedup. These two test results show that by using a high-level language and a simple message passing model, one can develop efficient parallel implementations. We also study and test the parallel collection framework of Scala. We suggest a granularity value which can be used to improve the performance of the parallel collection framework of Scala. This suggested granularity value given in chapter 4 shows improvement on programs which suffers from the granularity issue. We also present a new SortedLinkedHashMap data structure which can be used for sparse matrices to enhance performance for several operations, not just matrix multiplication. Moreover, utilizing Scala’s parallel collection framework, our implementation of sparse matrices can achieve good performance without writing any complex code.

In the future, we wish to introduce convenient customized parallel control structures to relieve the burden on programmers who wish to build efficient parallel programs. With the aid of these control structures, a programmer should be able to easily convert their sequential programs into parallel programs, thereby improving their performance.
Although many of classes in the parallel linear algebra (linalg_par) package have been made parallel, there are still some classes that are only sequential and need to be made parallel. Functional programming in general, and Scala particular, may result in greater memory requirements. Therefore, efforts are needed to streamline the use of memory as much as possible. The preliminary evaluation given in this report needed to be replaced with a more comprehensive evaluation on the 12 machines 144-core computing cluster. This evaluation should also compare the performance with other related package as well as solution utilizing Map/Reduce or Hadoop solutions. Finally, we plan to develop further applications for the parallel linear algebra (linalg_par) package in the domain of big data analytics.
REFERENCES

 School of Computer Science, University of St. Andrews, UK

[12] Robert A. van de Geijn The University of Texas at Austin : “A Systematic Approach to Matrix Computations”

[17] "PSBLAS" http://www.ce.uniroma2.it/psblas

Source code of SparseMatrixD:

def * (b: SparseMatrixD): SparseMatrixD =
{
 val c = new SparseMatrixD (dim1, b.dim2)
 val bt = b.t
 for (i <- c.range1) {
 var ea: (Int, Double) = null // element in row of this matrix
 var eb: (Int, Double) = null // element in row of bt matrix
 for (j <- c.range2) {
 val ita = v(i).iterator
 val itb = bt.v(j).iterator
 var cont = false
 var itaNext = true // more elements in row?
 var itbNext = true // more elements in row?
 var sum = 0.
 if (ita.hasNext && itb.hasNext) cont = true
 while (cont) {
 if (itaNext) ea = ita.next () // (j, v) for this
 if (itbNext) eb = itb.next () // (j, v) for bt
 if (ea._1 == eb._1) { // matching indexes
 sum += ea._2 * eb._2
 itaNext = true; itbNext = true
 } else if (ea._1 > eb._1) {
 itaNext = false; itbNext = true
 } else if (ea._1 < eb._1) {
 itaNext = true; itbNext = false
 }
 }
 }
 }
}
if (itaNext && !ita.hasNext) cont = false
if (itbNext && !itb.hasNext) cont = false

} // while

if (sum != 0.) c(i, j) = sum // assign if non-zero

} // for

} // for

c

} // *
def strassenMult (b: MatrixD): MatrixD =
{
val c = new MatrixD (dim1, dim1) // allocate result matrix
var d = dim1 / 2 // half dim1
if (d + d < dim1) d += 1 // if not even, increment by 1
val evenDim = d + d
// decompose to blocks (use vslice method if available)
val a11 = slice (0, d, 0, d)
val a12 = slice (0, d, d, evenDim)
val a21 = slice (d, evenDim, 0, d)
val a22 = slice (d, evenDim, d, evenDim)
val b11 = b.slice (0, d, 0, d)
val b12 = b.slice (0, d, d, evenDim)
val b21 = b.slice (d, evenDim, 0, d)
val b22 = b.slice (d, evenDim, d, evenDim)
// compute intermediate sub-matrices
val p1 = (a11 + a22) * (b11 + b22)
val p2 = (a21 + a22) * b11
val p3 = a11 * (b12 - b22)
val p4 = a22 * (b21 - b11)
val p5 = (a11 + a12) * b22
val p6 = (a21 - a11) * (b11 + b12)
val p7 = (a12 - a22) * (b21 + b22)
for (i <- c.range1; j <- c.range2) {
 c.v(i)(j) =
 if (i < d && j < d) {
 p1.v(i)(j) + p4.v(i)(j) - p5.v(i)(j) + p7.v(i)(j)
```c
} else if (i < d) {
    p3.v(i)(j-d) + p5.v(i)(j-d)
} else if (i >= d && j < d) {
    p2.v(i-d)(j) + p4.v(i-d)(j)
} else {
    p1.v(i-d)(j-d) - p2.v(i-d)(j-d) +
    p3.v(i-d)(j-d) + p6.v(i-d)(j-d)
}
} // for

} // strassenMult
```