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Abstract—
Statistical-based Bayesian filters have become a popular and

important defense against spam. However, despite their effective-
ness, their greater processing overhead can prevent them from
scaling well for enterprise level mail servers. For example, the
dictionary lookups that are characteristic of this approach are
limited by the memory access rate, therefore relatively insensitive
to increases in CPU speed. We conduct a comprehensive study
to address this scaling issue by proposing a series of acceleration
techniques that speed up Bayesian filters based on approximate
classifications. The core approximation technique uses hash-based
lookup and lossy encoding. Lookup approximation is based on the
popular Bloom filter data structure with an extension to support
value retrieval. Lossy encoding is used to further compress the
data structure. While these approximation methods introduce
additional errors to a strict Bayesian approach, we show how
the errors can be both minimized and biased toward a false
negative classification. We demonstrate a 6x speedup over two
well-known spam filters (bogofilter and qsf) while achieving an
identical false positive rate and similar false negative rate to the
original filters.

Index Terms—C.4[Computer Systems Organization]:
Performance attributes; H.4[Information Systems
Applications]:Miscellaneous; SPAM, Bloom Filter,
Approximation

I. INTRODUCTION

IN recent years, statistical-based Bayesian filters [13], [21],
[23], which calculate the probability of a message being

spam based on its contents, have found wide acceptance in
tools used to block spam. These filters can be continually
trained on updated corpora of spam and ham (good email),
resulting in robust, adaptive, and highly accurate systems.

Bayesian filters usually perform a dictionary lookup on each
individual token and summarize the result in order to arrive at a
decision. It is not unusual to accumulate over 100,000 tokens
in a dictionary, depending on how training is handled [23].
Unfortunately, the performance of these dictionary lookups
is limited by the memory access rate, therefore relatively
insensitive to increases in CPU speed. As a result of this
lookup overhead, classification can be relatively slow. Bogofil-
ter [23], a well-known, aggressively optimized Bayesian filter,
processes email at a rate of 4Mb/sec on our reference machine.
According to a previous survey on spam filter performance
[15], most well-known spam filters, such as SpamAssassin
[27], can only process at about 100Kb/Sec. This speed might
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work well for personal use, but it is clearly a bottleneck for
enterprise-level message classification.

The goal of our work is to speed up spam filters while
keeping high classification accuracy. Our overall acceleration
comes from three improvements: 1) Approximate pruning,
which reduces the latency of duplicate token search by approx-
imating membership checking with Bloom filter. 2) Approx-
imate lookup, which allows us to replace memory intensive
dictionary lookup with extended Bloom filter based value
retrieval. 3) Approximate scoring, which replaces intensive
floating point, logarithm operations with lookups on small
cache-resident table.

In particular, the major gain of the speedup comes from
“Approximate lookup”, which is enabled by two novel tech-
niques. The first technique approximates the dictionary lookup
with hash-based Bloom filter [3] lookup, which trades off
memory accesses for increase in computation. Bloom filters
have recently been used in computer network technologies
ranging from web caching [11], IP traceback [28], to high
speed packet classifications [5]. While Bloom filters are good
for storing binary set membership information, statistical-
based spam filters need to support value retrieving. To address
this limitation, we extend Bloom filters to allow value retrieval
and explore its impact on filter accuracy and throughput.
Our second approximation method uses lossy encoding, which
applies lossy compression to the statistical data by limiting
the number of bits used to represent them. The goal is to
increase the storage capacity of the Bloom filter and control
its misclassification rate.

Both approximations by Bloom filter and lossy encoding
introduce a risk of increasing the filter’s classification error.
We investigate the tradeoff between accuracy and speed,
and present design choices that minimize message misclas-
sification. Furthermore, we propose methods to ensure that
misclassifications, if they do occur, are biased towards false
negatives rather than false positives, as users tend to have much
less tolerance to false positives.

Based on the overall approximation on three improvements
we mentioned before, this paper presents analytical and ex-
perimental evaluations of the filters using these approximation
techniques, collectively, known as Hash-based Approximate
Inference (HAI). The HAI filter implementations can be
applied to most Bayesian spam filters.

Standard metrics are used to measure filter accuracy. A ham
that is misclassified as spam is termed as a false positive. The
ratio of the number false positives to the total number of actual
ham emails is called false positive rate. The false negative rate
is analogously defined.

In this paper, the improved filters based on bogofilter [23] or
qsf [30] have shown a factor of 6x speedup with similar false
negative rates (7% more spam) and identical false positive
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Fig. 1. Bayesian Filter Stages: The stage with its output is on the left, the
speedup techniques corresponding to the stages are on the right.

rates compared to the original filters.
The scope of this paper is limited to optimizing the pro-

cessing speed of a particular anti-spam filter and preserving
its current classification accuracy. Difficulties and limitations
[20], [29] with the general statistic-based anti-spam approach
are beyond the scope of this paper.

The rest of the paper is organized as follows: Section II
reviews a normal Bayesian filter. Section III reviews the
concept of hash-based lookup using Bloom filters and de-
scribes the architecture of the HAI filters. Section IV presents
our experimental evaluation results of HAI filters. The paper
ends with related work and concluding remarks in Section V
and VI, respectively.

II. REVIEW OF BAYESIAN FILTERS

Here we give a simple review to provide necessary back-
ground for the discussion of the filter acceleration.

A. Anatomy of Bayesian Filters
Bayesian probability combination has been widely used

in various message classifications. To classify a message, a
traditional Bayesian filter typically processes the message in
4 stages as shown in Figure 1: 1) Parsing stage, where the
message is parsed into a set of tokens (words or phrases). 2)
Pruning stage, where the distinct tokens are extracted from
the parsed result. Pruning is an optional stage of Bayesian
filters depending on whether the score calculation considers
duplicated tokens or not.1 3) Query stage, which looks up for
each token’s occurrences in previously known types (spam or
ham). The frequency statistics information is obtained from a
set of training messages which are labeled explicitly as spam
or ham and stored in a database for future lookup. 4) Scoring
stage, where Bayesian filters combine all the token statistics
of an incoming message to an overall score by a Bayesian
probability calculation [14]. Finally, filtering decision is made
based on the score and a pre-defined threshold.

1We investigate several Bayesian filters implementations and find that some
implementations have pruning stage for example, bogofilter, spamAssassin
while others such as qsf, spamBayes don’t.

Stage 1. Training
Parse each email into its constituent tokens
Generate a probability for each token W

S[W ] = Cspam(W )/(Cham(W ) + Cspam(W ))
store spamminess values to a database

Stage 2. Filtering
For each message M
while (M not end) do

scan message for the next token Ti
optional token pruning
query the database for spamminess S(Ti)
calculate accumulated message probabilities

S[M ] and H[M ]
Calculate the overall message filtering indication by:

I[M ] = f(S[M ], H[M ])
f is a filter dependent function,
such as I[M ] = 1+S[M ]−H[M ]

2
if I[M ] > threshold

msg is marked as spam
else

msg is marked as non-spam

Fig. 2. Outline for A Bayesian Filter Algorithm

B. Score Calculation in Naive Bayesian filter

Most previous studies on statistical filters focus on various
types of Bayesian probability calculation [14]. Usually, these
filters first go through a training stage that gathers statistics
of each token. The statistic in which we are mostly interested
for a token T is its spamminess, calculated as follows:

S[T ] =
Cspam(T )

Cspam(T ) + Cham(T )
(1)

where Cspam(T ) and Cham(T ) are the number of spam or
ham messages containing token T , respectively.

To calculate the possibility for a message M with tokens
{T1, ..., TN}, one needs to combine the individual token’s
spamminess to evaluate the overall message spamminess. A
simple way to make classifications is to calculate the product
of individual token’s spamminess (S[M ] =

∏N
i=1 S[Ti]) and

compare it with the product of individual token’s hamminess
(H[M ] =

∏N
i=1 (1− S[Ti])). The message is considered spam

if the overall spamminess product S[M ] is larger than the
hamminess product H[M ].

S[M ] = C−1(−2 ln(
n∏

i=1

S[Ti]), 2n) (2)

H[M ] = C−1(−2 ln(
n∏

i=1

(1− S[Ti])), 2n) (3)

The above description is used to illustrate the idea of
statistic based filters using Bayesian classifications. In practice,
various techniques are developed for combining token proba-
bilities to enhance the filtering accuracy. For example, many



IEEE TRANSACTIONS ON COMPUTERS, VOL. 60, NO. 1, JANUARY 2011 3

0

1

0

1

1

H1

H2

TOKEN

H3

Hash Functions

(m bits)

Bit Vector

Fig. 3. Training for a Bloom Filter

Bayesian filters, including bogofilter and qsf, use a method
suggested by Robinson [25]: Chi-squared probability testing.
The Chi-squared test calculates S[M ] and H[M ] based on the
distribution of all the tokens’ spamminess ({S[T0], S[T1], ...})
against a hypothesis, and scales S[M ] and H[M ] to a range of
0 to 1 by using an inversed chi-square function. Here we give
the equations 2 and 3 to calculate S[M ] and H[M ], where
C−1() is the inversed chi-square function, 2n is the degree of
freedom and n is the number of distinct tokens in the email.
Details of this algorithm are described in [23], [25].

To avoid making filtering decisions when H[M ] and S[M ]
are very close, several spam filters [21], [23], [30] calculate
the following indicator instead of comparing H[M] and S[M]
directly

I[M ] =
1 + S[M ]−H[M ]

2
(4)

When I > 0.5, it indicates the corresponding message has
a higher spam probability than ham probability, and should be
classified accordingly. In practice, the final filter result is based
on I > thresh, where thresh is a user selected threshold. For
conservative filtering, thresh is a value closer to 1, which will
filter fewer spam messages, but less likely to result in false
positives. As thresh gets smaller, the filter becomes more
aggressive, blocking more spam messages but also at a higher
risk of false positives. A general Bayesian filter algorithm is
presented in Figure 2. It is first trained with known spam and
ham to gather token statistics and then classifies messages by
looking at its token’s previously collected statistics. A more
detailed description of the Bayesian spam filter algorithm can
be found in several recent publications [13], [21], [23].

III. OUR APPROACH

A. HAI Filter Architecture Overview

This section presents Hash-based Approximate Inference
(HAI) filter. The HAI algorithm is presented in Figure 4, which
applies a combination of 3 speedup techniques including
approximate pruning, approximate lookup and approximate

Stage 1. Training
Parse each email into its constituent tokens
Generate a probability for each token W

S[W ] = Cspam(W )/(Cham(W ) + Cspam(W ))
quantizing the probability values
store values to an extended bloom filter

Stage 2. Filtering
For each message M
while (M not end) do

scan message for the next token Ti
optional token pruning
query the extended bloom filter for S(Ti)
calculate accumulated message probabilities

S(M) and H(M)
Calculate the overall message filtering indication by:

I(M) = f(S(M), H(M))
if I(M) > threshold

msg is marked as spam
else

msg is marked as non-spam

Fig. 4. HAI Filter Algorithm (Highlights are changes made to Bayesian
filters)

scoring corresponding to the typical Bayesian filters as shown
in Figure 1.

In the Pruning stage, the conventional Bayesian filters such
as bogofilter, conduct duplicate token search by traversing a to-
ken list. HAI filter replaces it with a fast membership checking
on a compact traditional Bloom filter (see section III-B). The
Bloom filter is initialized to be empty and each newly parsed
token from the message is first checked against the Bloom
filter. The token is discarded if it is already a member of the
set; otherwise it becomes a member of the set and is passed
onto the query stage. The effectiveness of this approximation
is presented in section IV-H.

In the Query stage, Bayesian filters often rely on databases
such as BerkeleyDB to store the token statistics. However, the
multiple memory access latencies limit the database lookup
speed. Analytically, this limitation shows the advantage of
using HAI over traditional database index structure.
• HAI lookup: The number of memory accesses per

lookup depends only on the number of hash functions.
Thus the complexity is O(h) on memory accesses where
h is a small constant number. The use of the hash func-
tions is discussed in detail in the following subsections.

• Database lookup: Traditional lookup using Database
such as BerkeleyDB, which employs the BTree in-
dex structure, usually requires O(logdT/2e(N)) compar-
isons(potential memory accesses), where N is the total
number of the records and T is the order of the tree.

• Small memory footprint: Besides the reduction of the
total number of memory accesses, the small memory
footprint of a Bloomfilter allows us to take the advantage
of memory cache for further speedup.
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Accordingly, we approximate the token statistics lookup into
an extended Bloom filter with value retrieval support (see
section III-C). Specifically, the approximation in this stage
includes approximate quantization and approximate lookup
(see section III-D). The accuracy of HAI filter relies on the
setup of the extended Bloom filter. The details of controlling
the accuracy of query stage are discussed in section III-E.

In the Scoring stage, the overall email score is usually calcu-
lated by combining all the token probabilities via an inversed
chi-square function (Fisher method [25]). It takes intensive
floating point, logarithm operations if precise calculation is
used. HAI reduces this overhead by replacing it with a two
dimensional cache-resident percentage points of chi-square
distribution table. This table can be pre-calculated based on
the inputs stated in equations 2 and 3. The effectiveness of
this approximation is presented in section IV-H.

B. Bloom Filters

A Bloom filter is a compact data structure designed to store
query-able set membership information [3]. Bloom filters were
originally invented by Burton H. Bloom to store large amounts
of static data such as English hyphenation rules.

A Bloom filter consists of a bit vector of length m that
represents the set membership information about a dictionary
of tokens. The filter is first populated with each member
(token) of the set (Figure 3 shows a Bloom filter in this training
phase). At the training phase, for each token in the membership
set, h hash functions are computed on the token producing h
hash values each ranging from 1 to m. Each of these hash
values addresses a single bit in the m-bit vector, and sets that
bit to 1. Hence for perfect hashes, each token causes h bits
of the m-bit vector to be set to 1. In the case that a bit has
already been set to 1 because of hash conflicts, that bit is not
changed.

Querying a token’s membership is similar to the training
process. Figure 5 shows a Bloom filter in the query stage with

a non-member token. For a given token, h hash results are
produced and each addresses one bit. The token is guaranteed
not in the set if any of these bits is not set to 1. If all the h bits
are set to 1, the token is said to belong to the set. This claim is
not always true because the fact of these h bits being 1 could
be a result of the hashes of multiple other member tokens.
This case is considered to be a false positive for membership
testing. The likelihood of false positive occurrence can be
made very small by carefully choosing the size of bit vector
and number of hash functions. We illustrate this with a brief
overview of the false positive probability derivation: Assuming
perfect hash functions and a m-bit vector, the probability of
setting a random bit to 1 by one hash is 1/m, and thus the
probability that a bit is not set by a single hash function is
(1− 1/m). For h hash functions, the probability that a bit is
not set by any of the hashes is (1− 1/m)h. For a member set
with n tokens, the probability of a bit not set is

P0 = (1− 1

m
)n∗h (5)

and the probability of a bit set to 1 is

P1 = 1− (1− 1

m
)n∗h (6)

For a non-member token to be misclassified as a possible
set member, all the h bits addressed by h hash functions must
be 1. Thus the probability of a false positive is

Pm,n,h(fpos) = (1− (1− 1

m
)n∗h)h (7)

Note that the above probability is the false positive for
token membership testing, which is very different from the
false positive of email message classification.The latter usually
combines multiple tokens’ spamminess values in order to
arrive at a probability result. The next section discusses how
to control the effect of the Bloom filter misclassification to
minimize the email message misclassifications.

C. Extending Bloom Filter

Traditional Bloom filters only make membership queries
that verify whether a given token is in a set, but applications
such as spam filters must retrieve each token’s associated
probability value. We extend the Bloom filter to serve for
value queries while preserving Bloom filter’s desired original
operating characteristics. For a given token in the member set,
the extension returns a value that corresponds to a given token.

The idea of this extension is to simply maintain a two-
dimensional vector, which has a total bit-vector size of m
bits, and every hash output points to one of the r entries,
each of which has q bits (i.e m is the product of r and q).
The traditional Bloom filter becomes a special case of this
extension that uses one bit per entry (q=1).

Figure 6 shows the structure of this Bloom filter extension.
It works in the following way to support value retrieval.
During the Bloom filter training phase, each training token
runs through the hash functions and addresses h entries (each
entry contains q bits). Assume the token has an associated
value (in integer) v in a range of 0 to q − 1. The value v is
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then stored to the Bloom filter extension by setting the vth-
bit to 1 on all these h entries. During the query phase, each
incoming token also goes through the hashing and addresses
h entries. The query outcome for this token is based on the
logical AND of all h entries. If none of the bits is set in the
logical AND output, it indicates that the token in the query is
not in the training set. If a bit is set, then based on the position
of the bit, we retrieve the value associated with the token.

D. Extended Bloom Filter based Approximate Lookup

The query stage is improved by two means including
approximation by quantization and approximate lookup.

1) Approximation by Quantization: To effectively use the
Bloom filter extension for approximate value retrieval queries,
we introduce lossy encoding (quantization) to represent the
individual token’s spamminess value. Consider the way that
the Bloom filter extension represents a statistical value by
marking one bit of a q-bit entry. It has to adopt some
quantization technique if the amount of potential numbers to
be represented is infinite.

During the training phase, each token T obtains a proba-
bility value p based on it shows up in ham and spam. HAI
differs from traditional Bayesian filter by mapping a token’s
probability value p to an integer value v between 0 and
q − 1, where q is a parameter of the Bloom filter extension
called quantization level. The token is then considered to be
associated with value v for storing and retrieving with the
Bloom filter extension. When used at the end to calculate
a message’s spamminess, a token’s probability value v is
approximately mapped back to p based on the quantization
mapping.

This paper studies the effect of different quantization levels
on Bloom filter’s lookup performance. Two aspects of quan-

tization effects need to be addressed. First, we would like to
choose an optimal quantization level (q), which affects both
the size (m) of the Bloom filter’s bit-vector and the Bloom
filter misclassification rate. The latter is discussed in the next
subsection.

Second, for each given quantization level, we would like to
pick the optimal mapping between the values to be quantized
and the values after quantization for minimal errors. This paper
uses Lloyd-Max algorithm to obtain the optimal quantizer
for the token spamminess values for each given quantization
level. The Lloyd-Max [1] algorithm is borrowed from previous
studies of optimal quantization (such as those used in MPEG
[12]) in the area of lossy encoding [2]. The Lloyd-Max
algorithm is one of the popular algorithms that make a non-
uniform optimal quantization that provides minimal “quality
distortion” to videos.

2) Approximate Lookup: This extension allows the Bloom
filter to support value retrieval queries at a cost of higher
error rate compared to the original Bloom filter. Two types of
misclassification could happen in this extended Bloom filter.
This approximation happens in the query stage of bayesian
filter in Figure 1.

First, similar to the original Bloom filter, the extended
one could misclassify a non-member token as a member and
mistakenly provide a value. The chance of such false positive
misclassification increases because if any bit of the multi-bit
output entry is set to one by hash conflicts, a false positive
will occur. Assuming perfect hashes and uniform distributions
of the values to be stored, we derive the theoretical error rate.
The details are presented at [31]. Some key results are: The
possibility for a single bit being zero in the output is

Pm,n,h(0) = 1−Pm,n,h(fpos) = 1−(1−(1− 1

m
)n∗h)h (8)

With the final logical AND output having q bits, the
possibility of false positive becomes

Pm,n,h,q(fpos) = 1− (Pm,n,h(0))
q (9)

Second, a new type of error occurs when more than one
bit of the final Bloom filter outcome are set to 1. The
probability of a multi-bit marking is equivalent to one minus
the probability of all bits being set to zero and the probability
of only one bit getting 1.

Pm,n,h,q(multi) = 1− (Pm,n,h(0))
q

−q ∗ (1−Pm,n,h(0)) ∗ (Pm,n,h(0))
(q−1) (10)

The probability rates for both types of errors depend on
the number of tokens (n), the Bloom filter bit-vector size (m),
the number of hash functions (h), and the quantization level
(q). Figure 7 shows a theoretical error rate for a dictionary
with 220,000 tokens versus various bit-vector sizes from 0 to
1 MB, 4 or 8 hash functions, and 4 or 8 bits quantization
respectively. The dictionary size is selected based on the rec-
ommended token sizes by bogofilter [23]. The results indicate
that the selection of Bloom filter parameters (m,h,q) affects the
misclassification rate significantly. For a small number of hash
functions, the Bloom filter can reach less than a 0.1% token
misclassification rate with less than 1MB memory under small
quantization levels (4 or 8 bits).



IEEE TRANSACTIONS ON COMPUTERS, VOL. 60, NO. 1, JANUARY 2011 6

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 0  200  400  600  800  1000

T
o

k
e
n

 M
is

c
la

s
s
if
ic

a
ti
o

n
 P

ro
b

Bloom Filter Size (KBytes)

Dictionary=220,000 Tokens; H: Hash; Q: Quantization

Bloom, H4
Ext-Bloom, H4,Q4

Extended Filter, H4,Q8
Bloom, H8

Ext-Bloom, H8,Q4
Ext-Bloom, H8,Q8

Fig. 7. Lookup Error Rate vs. Bitmap Sizes

E. Control the Lookup Accuracy

This section discusses how to reduce the total errors caused
by the two approximations (quantization and approximate
lookup) in order to limit their impact to the final message
classification errors. We control the impact of these errors by
choosing appropriate Bloom filter size and quantization level
that minimize the total lookup errors. In the case of multi-bit
marking, we control the query outcome in a way that is biased
toward false negative classifications.

1) Selection of Bloom Filter Parameters: The selection of
the bloom filter parameters is a complex process. In practice,
it is actually based on at least three types of conditions:
theoretical limit on false classification rate, physical hardware
constraints, and information to be stored. For example, the
hardware contraints such as level-2 cache capacity affect the
throughput of the Bloom filter. Moreover, the data to be stored
in the Bloom filter also affects the performance especially the
accuracy of the lookups. In order to provide comprehensive
guide for the use of the Bloom filter, we first provide the
theoretical estimation of the lookup accuracy in this section,
followed by experimental evaluations in Section IV.

For a given dictionary size (n), to minimize the lookup
errors and achieve high-speed lookups requires a careful se-
lection of Bloom filter parameters: the size of the Bloom filter
(m), the number of hash functions (h), and the quantization
level (q). The parameter selection has to balance the error
rate and the lookup speed. For example, large Bloom filter
size is generally preferred for low misclassification rate, but
Bloom filters with a size larger than the cache would degrade
the query performance. The parameter selection also has to
balance the approximation errors caused by quantization and
hash-based lookups. For example, higher quantization levels
(more bits used for quantizations) are preferred to store high
precision values; but for a fixed Bloom filter size, higher
quantization levels cause fewer rows in Bloom filter and thus
increase misclassification rate (as indicated by Equation 9 and
10).

Previous Bloom filter applications [4], [5] have extensively
studied the selection of Bloom filter size (m) and number of

hash functions (h) involved in the tradeoff between size and
error rate. The Bloom filter extension shares similar guidelines
regarding the selection of these two parameters (m and h).
This section focuses on the selection of quantization level (q)
which is unique to this Bloom filter extension.

We define the problem of picking the appropriate quanti-
zation level as the following: For a given Bloom filter size
m = r ∗ q, we would like to pick an appropriate quantization
level q that minimizes the error between a token’s lookup
outcome value and the token’s original statistical value.

The expected error between a lookup outcome and its orig-
inal value is a probability combination of the misclassification
error (Elookup) and the quantization error (Equantiz). The
following equation represents the error as the sum of these
errors:

Eoverall = P ∗Elookup + (1−P) ∗Equantiz (11)

in which P is the probability of token misclassifications.
To make a good choice of the Bloom filter parameters,

we would need to know the distribution of the values to be
quantized and stored in the Bloom filter. This is available
for every training set, and its parameters may be determined
experimentally. If the theoretical distribution of token statistics
is known, the optimal parameter selection, in particular the
appropriate quantization level for a given bit-vector size, can
be done through a theoretical analysis.

For example, we assume the values to be stored follow a
Gaussian distribution G(α = 0.5, σ), where G(α, σ) repre-
sents a Gaussian distribution with a mean of α and variance
σ.

If no Bloom filter misclassification occurs, the value coming
out from a Bloom filter lookup is assumed to be the same as
original value plus a quantization error. The distribution of
this error, Equantiz , follows a Gaussian distribution G(α =
0, σ/(2q)), where q is the number of quantization levels.

If a Bloom filter misclassification occurs, e.g a token T
that is not seen in the training set was mistakenly given a
lookup outcome v, the lookup error is determined by v and
the appropriate value for token T . We assume that the values of
random tokens that are not in the training set should follow a
Gaussian distribution G(α = 0.5, σ). This assumption reflects
the idea that an unknown token should be considered to be
neutral. We further assume that the classification outcome v
is independent to the token when misclassifications occur, and
thus v follows G(α = 0.5, σ/(2q)). With these assumptions,
the lookup error Elookup follows a Gaussian distribution
G(α = 0, σ + σ/(2q)).

In addition, assuming the lookup misclassification occurs
independently from the quantization errors, the linear com-
bination of two Gaussian distributions is still a Gaussian
distribution. The overall query outcome error thus has a mean
α of 0, and variance is

(1−Pm,n,h,q) ∗ (0.5/q) +Pm,n,h,q ∗ (σ + σ/(2 ∗ q)) (12)

in which, Pm,n,h,q is the misclassification probability of a
Bloom filter that has q levels of quantizations, h hash func-
tions, total size m bits, and store values for n tokens. The
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best quantization level is q such that it minimizes the value of
Equation 12.

Figure 8 shows the predicted error variances of the overall
lookup error distribution assuming σ = 1. The result indicates
that for a dictionary of 220,000 tokens, the quantization levels
should be around 4 to achieve a smaller error variances
for small bit-vector size (e.g 256Kbytes). Quantization levels
smaller than 4 or larger than 6 would have larger error on
average. When larger bit-vector is used, quantization levels
larger than 4 lead to smaller errors.

Figure 9 shows the predicted error variance for a Bloom
filter with the same dictionary size, a fixed quantization level
of 4, but with different hash functions. The result matches
the intuition that, for a fixed quantization level, the selection
of other Bloom filter parameters (h and m) agrees with early
studies [4], [5]: for small bit-vector size, the number of hash
functions needs to be small (around 6 for the 256Kbytes
Bloom filter) in order to achieve a lower misclassification rate.
As size of Bloom filter increases, more hash functions can be
used to achieve a lower misclassification rate, but the increase
in effectiveness is modest.

The above estimation is based on an unrealistic assumption

of value distributions. In real messages, the occurrence of
tokens is not independent and identically distributed (iid). This
result is only for analytical purpose and is only shown as
a guideline for selecting the Bloom filter parameters. The
real error rate is determined by the specific distributions
and messages. Furthermore, our overall concern is the final
message classification performance (false positives, false neg-
atives, and throughput). Therefore we used real messages to
make a realistic study through experiments in order to evaluate
the selection of the Bloom filter parameters. The results are
presented in Section IV.

2) Policy for Multi-Bits Errors: The previous subsection
discusses the selection of Bloom filter parameters to minimize
the possibility of lookup errors. Although very rarely, errors
could still occur. When a conflict caused by multiple bits
marking occurs, interpreting the outcome based on any bit
could cause lookup error which later could potentially cause
a message misclassification.

Although this can not be completely avoided, the impact
of this error can be further minimized by making error
biased toward a false negative classification rather than a
false positive. When multiple possible values come out from
one lookup query, we chose the smallest value as the Bloom
filter outcome so that even if it is wrongly chosen, the error
only makes the classification result less likely as spam. We
evaluated the effectiveness of this policy and the result is
presented in Section IV-G.

3) Selection of Hash Functions: Another fact that can affect
Bloom filter lookup speed is the complexity of the hash
functions. Popular hash functions, such as MD5 [24], have
been designed for cryptographic purposes. However, the effort
to prevent information leaking is not the focus of hash-based
lookup, whose main concern is the throughput. Therefore,
simple but fast hash functions are preferred. This preference
of choosing simple hash functions has also been used in [9],
[19]. In this paper, we adopt two strategies to design the
hash functions. One strategy is to simplify the well-known
hash function, such as MD5. The other strategy is to build a
fast hash function from scratch. Details of the hash function
selection are presented in the evaluation section.

IV. EVALUATION

This section presents our experimental evaluation of HAI
filters. First we describe our methodology. Second we show
the effect of changing Bloom filter parameters.

A. Methodology

We studied the effectiveness of HAI filters by measuring
its throughput and filter accuracy with real messages (24,000
ham messages and 24,000 spam messages) obtained from the
Internet. The ham messages are from the ham training set
released by SpamAssassin [27] and from several well-known
mailing-lists, including end-to-end [8] and perl monger [22].
The spam messages are obtained from SpamArchive [18]. We
split the data set into a training set and a test set. Throughout
this section, except explicitly specified, we use 10,000 spam
messages and 10,000 ham messages as the training set, which
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produces a dictionary with 320,976 tokens. The rest of the
messages are used for filter testing. The testing sets are further
divided into two sets based on their sources. Dataset1 is
composed of 10,000 ham from mailing-lists and 10,000 spam
from SpamArchive [18]; dataset2 is composed by 4000 ham
messages from SpamAssassin [27] and another 4000 spam
from SpamArchive.

The experiments are conducted on a PC server with a AMD
Athlon64-3000 CPU, 1GB RAM and 512kB Level 2 cache.
The CPU speed is scalable by software and by default runs
at 1.8GHz. To avoid disk I/O latency, we create ramdisk to
store the test set, so that only non-disk I/O are involved for
message processing in the experiments.

We built two HAI filters based on well-known Bayesian
filters: bogofilter [23] and qsf [30]. Since bogofilter is faster
than qsf according to both our measurements and other stud-
ies [15], except explicitly specified, all experimental results
presented in this section are in the form of a comparison
between the bogofilter based HAI (labeled HAI filter) versus
the original bogofilter (labeled bogofilter) under the same
experiment condition.

B. Overall Performance

This section summarizes the overall HAI performance with
well-selected Bloom filter parameters. The results presented
in this section are based on a Bloom filter with a total size
of 512 Kbytes, 4 hash functions, and an 8-bit quantization.
The performance comparison results are in terms of both filter
throughput (messages per second) and filter accuracy (both
false positives and false negatives). The filter accuracy results
presented in this subsection are based on a filter threshold of
0.5. Detailed studies for the selection of this threshold as well
as other Bloom filter parameters are presented in the later part
of the evaluation section.

Table 1 shows the overall performance of bogofilter, qsf, and
their HAI modifications. This result indicates that, for a Bloom
filter size at 512KB, HAI filters can handle 2583 messages
per second (i.e. 41Mbps for 2KByte size messages). HAI gets
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a 6 to 8 times throughput speedup compared to bogofilter
and qsf respectively, without introducing any additional false
positives. The speedup comes with the penalty of higher false
negative rates for HAI filters. Such penalty (e.g. about 7%
of overall spam in dataset1) might look significant, but that
still corresponds to more than 90% spam messages being
blocked by the filter 2. Whether this tradeoff is worthy or not
completely depends on each particular site’s needs. The goal
of this paper is not to advocate high throughput over accuracy
but to provide a study of the trade-off between throughput
increment and accuracy penalty. Furthermore, multiple levels
of spam filtering can be used. For example, HAI filter quickly
scanning all incoming messages, and later applying heavy
filters only to ”unsure” messages.

C. Detailed Breakdown for Throughput

This section presents an in-depth study on the source of this
speedup by looking at the detailed behaviors of bogofilter and
HAI filter. We decompose both bogofilter and HAI to four
steps (parsing, pruning, query and scoring) and measure the
time spent on each step per message. These 4 steps have been
described in the overview of Bayesian filter in section II-A.
To reiterate, the parsing step divides the message to tokens
based on common delimiters; the query step takes each token
and uses it as a key for a database lookup to retrieve the
corresponding token statistics; and the scoring step combines
all the query outcomes and calculates an overall message
spamminess value.

Bogofilter adds a pruning step between parsing and query.
Performance-wise, this pruning step is used to reduce the
unnecessary lookup. It removes duplicated tokens so that
each unique token only triggers one query. It also eliminates
tokens that are believed to be useless for anti-spam. Such
tokens include email message id, MIME labels etc. They are
discarded during the training phase and thus are not in the
token database (DB). The pruning step of our HAI filter only

2We investigated the nature of those messages that causes additional false
negatives to HAI. Most of them are non-English messages. It just happens to
be the case that more of these spam are selected to Dataset1 than Dataset2.
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TABLE I
PERFORMANCE COMPARISON BETWEEN BOGOFILTER, QSF AND HAI FILTERS ON A PC SERVER WITH AMD ATHLON64 (M=512K, H=4, Q=8,

THRESH=0.5, AND CPU=1.8GHZ)

BogoFilter HAI (bogo) filter QSF HAI (QSF) filter
Throughput (msg/sec) 418 2583 101 871

Dataset1 False Positive 0% 0% 0% 0%
Dataset1 False Negative 2.24% 9.36% 3.41% 9.21%
Dataset2 False Positive 0.20% 0.20% 0.23% 0.23%
Dataset2 False Negative 4.00% 4.80% 6.80% 9.83%

preserves the function of removing duplicated tokens to keep
the same scoring method (each token counts only once). It uses
a standard (not extended) Bloom filter to check token duplica-
tions. This Bloom filter works independently to the extended
Bloom filter for the query step. The duplicate token checking
initializes a small Bloom filter (2KB in our implementation) to
all zeros for each incoming message, and queries and trains the
filter at the same time. When a token arrives, it is first tested
against the Bloom filter. If the membership testing returns true,
the token is considered a duplicate and discarded. Otherwise,
the token is put in the Bloom filter as a new member token
and will be used in the query step. The detailed algorithm for
this duplication checking can be found in our early work on
fast packet classification [5].

We measured the processing time for each step by testing
bogofilter and HAI with Dataset1. The average message size
for Dataset1 is around 2KByte, and each message contains
about 180 unique tokens. Figure 10 shows the bogofilter
versus HAI processing time comparison per message. It is
obvious that query and pruning are the two bottleneck steps
of bogofilter, and the speedup of HAI comes from these two
steps. HAI gains speedup for the query step by reducing the
number of memory accesses for each token lookup. An HAI
filter’s lookup requires a small amount of memory accesses
that only depends on the number of hash functions and the size
of Bloom filter, not the total number of stored tokens as in the
database lookup case. In addition, by making the bloom filter
size small, most or all of it can fit in cache for lower memory
access latency. This effect of cache size is presented in the
next subsection. Bogofilter’s query step, on the other hand,
operates on Berkeley DB, which is implemented by a Btree.
The query requires multiple comparisons between the input
token and tokens in the DB and the number of comparisons
on average is proportional to the logarithmic of the total tokens
in the DB. Although a faster indexing mechanism is possible,
a DB lookup essentially has to have a few token comparisons,
whereas these comparisons are completely avoided in HAI by
the use of the extended Bloom filter.

The HAI also gains significant speedup in its pruning step.
We did not include this as part of the general HAI solution for
two reasons. First, not all the Bayesian filters avoid searching
duplicated tokens as bogofilter does. Second, there is no
fundamental reason that a DB-based Bayesian filter can not
replace its pruning step with the one used by HAI. Even
if bogofilter adopts the same pruning step as HAI, without
changing to approximate query as HAI does, bogofilter would
still be multiple times slower than HAI to process a message.

In addition to the throughput gain against bogofilter, HAI’s

TABLE II
AMD L2 CACHE PERFORMANCE COUNTERS FOR THE QUERY STEP PER

MESSAGE (CPU=1.8GHZ, AND FOR HAI FILTER: H=4, Q=8)

Configuration L2 Miss L2 Hit Query Time
HAI (128KB) 8 835 202µs
HAI (256KB) 30 1120 208µs
HAI (512KB) 51 1264 216µs
HAI (1MB) 387 1066 257µs
BogoFilter 2157 605 1716µs

throughput scales better as CPU speed increases. The AMD
Athlon64 based desktop supports CPU scaling, we adjusted the
speed from 1.0 GHz to 1.8GHz and measure the throughput
of both filters. Figure 10 shows a comparison of bogofilter
and HAI for various CPU speeds. Although both filters take
less time to process a message as the CPU speed increases,
the speedup ratio for HAI versus bogofilter increases as CPU
speed becomes higher.

We also inspect the effect of message size on the speedup
ratio. Figure 11 compares the throughput between bogofilter
and HAI with different message sizes. The bogofilter stores
44k tokens in its database, while the same number of tokens
are stored in our 512kB HAI filter. The result shows that as
messages get large, the speed up ratios starts to decrease.The
parsing step increases strictly proportional to the message
sizes, but the number of unique tokens does not increase in a
strict linear fashion. The bottleneck starts to shift from query
and pruning toward parsing.

Although message size has impacts on the throughput, even
with a jumbo message size, token query continues consuming
a significant amount of processing time for bogofilter, and
approximate classifications would still improve bogofilter’s
performance. Consider that regular emails are often with
a small message body except those with attachments, HAI
lookup gains benefits on speedup in most of the cases.

D. Effect of Bloom Filter Size

In this subsection we study the effect of Bloom filter size
on the filter accuracy and processing throughput. Both the
throughput and accuracy measurements were obtained from
experiments using the Dataset1.

For the effect of Bloom filter size on throughput, Figure 12
shows that the per message processing times are about the
same for the HAI filters with a Bloom filter size less than
512KB. After the bloom filter becomes close to or exceeds L2
cache size (512KB), the processing time in general increases
as the Bloom filter size increases towards 16 Megabytes. The
AMD Athlon64 processor provides performance counters for
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Fig. 12. Processing Time VS. Bloom Sizes (AMD CPU=1.8GHz,h=4,q=8)

specific processor events, such as data cache hits and misses, to
support memory system performance monitoring. To confirm
the cache size effect, we capture the L2 cache performance
counters before and after each query step.

Table 2 contains the average L2 memory access and miss
counters of the query step for HAI or bogofilter to process
a message. As shown by Table 2, smaller Bloom filters can
be put in higher level CPU caches and have fewer cache
misses compared to larger Bloom filters. HAI filters clearly
have a higher L2 hit rate than bogofilter. L2 cache behavior
is not the single factor that determines the processing time;
the total computation of a program, memory access pattern,
as well as L1 cache behaviors all affect the query time,
and a slight adjustment to the program (e.g different Bloom
filter sizes) could change these memory accesses behaviors.
This is also why the total L2 accesses (hits+misses) changes
across different filter setups. Although we can not directly
calculate the query time from L2 misses, it is clear that the
cache accesses differences is a major source for the query
time increment over filter size increment, which is shown in
Figure 12.

The gain in throughput comes with a penalty on filter
accuracy. To have an overall picture about how much change
was brought to the filter accuracy by HAI, we present the false
positive and false negative probabilities for the complete range
of possible filtering thresholds from 0 to 1. Figure 13 shows
a summary of the filter accuracy for HAI filters with various
Bloom filter sizes ranging from 64KB to 16MB.

For the false positive result shown on the left half of Figure
13, HAI filters with smaller than 512KB show significant
differences compared to those of bogofilter. The smaller the
Bloom filter size, the higher differences they can make.

However, for Bloom filter sizes larger or equal to 512KB,
the email scores for ham messages are in fact very close to 0
and thus the false positive rates stay low. All filters have a close
to zero false positive after the threshold gets larger than 0.5,
even for those with a small Bloom filter size. This effect is due
to the way that email score is calculated by Equation 4, which
tends to produce a value around 0.5 to a randomly generated
message. When token misclassification occurs, the lookup
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Fig. 14. Filter Throughput vs. Bloom Filter Size (Intel P4 CPU=2.6GHz)

outcome is close to the outcome of a randomly generated
message. Therefore, higher token misclassification rates tend
to push an email (ham or spam) score toward 0.5, and both the
false positives and false negatives results exhibit a significant
change at threshold 0.5, no matter what Bloom filter sizes are
used.

The false negative rate, which is measured over spam
messages, is shown at the right half of Figure 13. The false
negative result is similar to the false positive result in the
sense that larger Bloom filter size gives closer results to the
original bogofilter, and filters smaller than 512KB differ from
bogofilter more significantly than those with a larger than
512KB bit-vector. Furthermore, compared to false positive, the
results of false negatives show a relatively larger gap between
the bogofilter outcome and HAI filter, even with a large bit-
vector at 16MB. We believe this is due to the quantization
errors. A closer look at various quantization levels is presented
later in this section. The accuracy results for HAI certainly
also depend on the test data set as well as the training data
set. We discuss the effect of the training data set on the HAI
filter accuracy in a later section.

E. Effect of Hash Functions

We consider two aspects of hash functions, the hash com-
plexity and the number of hash functions, for the HAI filter
performance. We compare three hash functions: MD5, MD-
and the one we built from scratch(thin-hash).

• MD5 is picked to represent the well-known cryptographic
hash functions that provide a well distributed hash output.
We use the standard implementation of MD5 [24].

• MD- is a simplification of standard MD5 implmentation.
The core of MD5 is a combination of 4 “bitwise parallel”
functions named F, G, H, and I. MD- only uses the F
function.

• Thin-hash is a hash function that mixes the input token
bytes with shift and xor bitwise operations. To generate
a hash value, each byte of the token conducts 4 shift op-
erations and is combined with previous bytes succesively
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by using xor operations and add operations. Thin-hash
takes less than half the number of instructions as MD5.

The detailed descriptions of these hash functions are presented
in the extended version [31] of this paper. The throughput
result is presented in Figure 14, which shows that MD- based
HAI filter achieves about 10% higher throughput than the MD5
based filters. By using our own hash function, we achieve 95%
throughput improvement comparing to MD5 based filters. For
accuracy measurement, the false positive rates are close to
identical for all the three hash functions. The false negative
results for MD5 and MD- are also very close to each other.
Thin-hash function displays worse false negative results than
the other two. We believe the reason that thin-hash and MD-
have worse false negative rate than MD5 is due to the hash
conflicts. MD5 has fewer hash conflicts than the other two.
This result is demonstrated in Figure 15. The result also
indicates the trade-off between throughput and accuracy. A
much simpler hash function can reduce the cost of hash
computation with sacrifices on the accuracy.

We also investigate the effect of using a different number
of hash functions. Using a small number of hash functions

reduces the number of marked bits, but has a higher probability
of hash conflicts. Meanwhile using a large number of hash
functions causes too many bits set in a Bloom filter with
a limited bit-vector size and affects the accuracy. Figure 16
shows the filter accuracy results when using different numbers
of hash functions. The bogofilter false negative result is also
shown in the figure as a reference. Only the false negative
result is shown here because the false positive results are
all zero. For the size of 512K byte Bloom filter, Figure 16
demonstrates that the best choice is to use 8 hashes, with both
4 and 16 hashes having very close results.

F. Effect of Quantization Levels

This section presents the experimental results on the effect
of quantization level selection. The results were obtained in
two steps. First, we isolated the effect of quantization from
Bloom filter misclassifications. To study the quantization effect
alone, we applied it directly to bogofilter by quantizing all its
statistical data in the database, and then measured its accuracy.
Second, we did experiments with HAI filters with different
quantization levels.
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Figure 17 compares the filter accuracy among three cases:
the original bogofilter, bogofilter with quantizations, and HAI
filters, with the number of quantization bits set from 2 to 16.
Quantization introduces errors to data representation, which
in general reduces filter accuracy. The original bogofilter’s
accuracy result is used as the best-case reference to compare
the performance of filters with various quantization levels. As
expected, for bogofilters with quantization, 16 bits quantiza-
tion performs best, but a quantization level around 4 to 8 is also
close to the original non-quantized case. However, for HAI
filters, higher quantization levels no longer produce the closest
accuracy results to bogofilter. Instead, a quantization level at
8 shows the best accuracy results. By inspecting the token
misclassification rate (by comparing each token outcome to
bogofilter outcome), we found that the token misclassification
rate increases as more quantizing bits are used. The best
quantization level has to be one that balances the quantization
error and the misclassification rate. For the given experiment
setup, the best quantization level is 8. Similar to the effect
of Bloom filter size, the optimal selection depends on the
number of tokens to be stored. Nevertheless, an important
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outcome from these experiments is that we have shown a small
quantization level can effectively produce a filter accuracy that
is very close to the accuracy of the original bogofilter.

G. Strategy for Handling Multi-bit Markings

In this section, we consider the strategies for handling the
multi-bit marking error that is unique to the value retrieving
extension of Bloom filter. When multi-bit marking occurs,
the Bloom filter has to make a decision on the final lookup
outcome. We consider three strategies for choosing the value.
1) Aggressive Strategy: every time multi-bit marking occurs,
we always choose a value which indicates the highest spam-
miness; 2) Randomly Selecting Strategy: randomly pick one
value; 3) Conservative Strategy: we always choose a value
which indicates lowest spamminess. Figure 18 shows the effect
of different strategies on two Bloom filter sizes, 192KB and
512KB, respectively.

Figure 18 shows the effect of these three strategies for HAI
under two different sizes: 192KB and 512KB. The two sizes
are chosen to illustrate the impact of strategies under high
and low multi-bit marking errors. Equation 10 indicates that
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the probability for multi-bit marking error is high when the
Bloom filter size is small. When Bloom filter size is small
(here 192KB) the aggressive strategy always has lower false
negative rate than the other two. Meanwhile false positive
should follow the reverse trend of the false negative. The
aggressive strategy results show a very different false positive
measurement compared to bogofilter for any threshold less
than 0.5. The conservative strategy gives the best result in the
false positive measurement and has about the same false posi-
tive as bogofilter. The random selection strategy is somewhere
between but much closer to the aggressive approach.

But for larger bit-vectors (here 512KB), the differences
among strategies are small. This is because the overall multi-
bit marking error is small. All three strategies lead to very low
false positives. Users can retain conservative strategy but still
preserve a high filter accuracy. Overall this result indicates
that the multi-bit handling strategies do not affect the filter
accuracy in a significant way for large bit-vectors. However,
to avoid false positives, we still recommend and use the third
strategy in all other experiments.

H. Impacts of Approximations in the Pruning and the Scoring
Stages

All previous HAI accuracy studies focus on the query stage
only with fast pruning and fast scoring disabled. In practice,
all three stages could introduce classification errors. In this
section, we study the impacts of fast pruning and fast scoring
on filter accuracy. The HAI filter accuracy with different setups
are presented in Figure 19. The four setups are:1) HAI with
Query, where we setup the HAI with only approximate lookup
enabled. 2) HAI with Query + Pruning, which is the HAI filter
with approximate pruning and approximate lookup enabled.
3) HAI with Query + Scoring, which is the HAI filter with
approximate lookup and approximate scoring enabled. 4) HAI
with Query + Pruning + Scoring, which is the HAI with all
three approximations enabled. The result in Figure 19 shows
that false positive rates remain identical. The false negative
rates are very close and have no significant difference. This
matches with our expectation that the main error introduced by
the overall approximation comes from the approximate lookup.

V. RELATED WORK

Message classification is a well-studied topic with applica-
tions in many domains. This section makes a brief description
of the related work in two categories: classification techniques
for anti-spam purpose, and fast classification techniques using
Bloom filters.

A. Anti-SPAM Techniques

Anti-spam is a very active area of research, and various
forms of filters, such as white-lists, black-lists [6], [16], and
content-based lists [13] are widely used to defend against
spam. White-list based filters only accept emails from known
addresses. Black-list filters block emails from addresses known
to send out spam. Content-based filters make estimations of
spam likelihood based on the text of that email message
and filter messages based on a pre-selected threshold. Most
of content-based filters use a Bayesian algorithm [13] to
estimate message spamminess, and have been used in many
spam filter products [15]. Recently, there have been several
proposals about coordinated real-time spam blocking, such
as the distributed checksum clearing house [26]. Most of
these spam filters focus on improving the spam filtering
accuracy. The work presented in this paper differs from them
by investigating the accuracy-speed tradeoff. We have shown
that with a carefully chosen algorithm, Bayesian filters can
gain throughput with only a small loss on false negative rates.

Many assumptions used by Bayesian filters to combine indi-
vidual token probability for an overall score, such independent
tokens, are not true for email messages, and more sophisticated
classification techniques, such as k-nearest neighbors. In prac-
tice, naive Bayesian classifiers often perform well [21], [23],
[27], [30], and the current state of spam filtering indicates that
they work very well for email classifications. Nevertheless,
the work presented in this paper is to speedup the probability
lookup stage for the probability calculation, and we expect the
approach is applicable toward other classification techniques.



IEEE TRANSACTIONS ON COMPUTERS, VOL. 60, NO. 1, JANUARY 2011 14

B. Bloom Filters Based Applications

Hash-based compressed data structure has recently been
applied in several network applications, including IP traceback
[28], traffic measurements [10] and fast IP packet classifica-
tions [5]. For traffic measurement and traceback applications,
Bloom filters are used to collect packet statistics and very
often using hardware-based Bloom filters [7]. Bloom filter
has also been adopted to build the proxy cache for the large
scale web caching sharing protocol [11].The work presented
in this paper uses Bloom filter to improve software processing
speed, and investigate the trade off between throughput and
accuracy. Among all these previous Bloom filter applications,
the closest related work is the high speed packet classification
using Bloom filter, which first studied the tradeoff between
accuracy and the processing speed. This previous study uses
bloom filter for membership testing, the work in this paper
uses an extended bloom filter that supports value retrieving.

Bloom filter based technique has also been applied to
collaborative spam filtering [17]. Our approach differs from
previous approaches by providing a more general scheme for
approximate data retrieval that can support arbitrary data value
range. We also considered an additional level of approximation
by applying lossy encoding to data representations. Moreover,
this paper provides extensive studies on the impacts of var-
ious system parameters, which are novel compared to other
previous works.

VI. CONCLUSIONS

In this paper, we have explored the benefit of using approxi-
mate classification to speed up spam filter processing. Using an
extended Bloom filter to make approximate lookup and lossy
encoding to approximately represent the statistic training data,
we demonstrate close to an order of magnitude of speed up
over two well-known spam filters. The result also shows that
with careful selection of Bloom filter parameters, the errors
introduced by the approximation becomes very small and the
high speed filter with approximation can achieve very similar
false positive and false negative rates as normal Bayesian
filters.

The proposed extended Bloomfilter demonstrates the trade-
off between the accuracy and the speed. In different from the
traditional Bloomfilter, this extension is applicable for data
retrieval. Although the nature of approximations prevents this
scheme from being applied to the applications that require pre-
cise data retrieval, our experiences in this paper indicate that it
can benefit the applications that have speed demands and are
resilient to a low retrieval error rate. We are currently exploring
the feasibility to apply the scheme to other statistical-based
applications, such as risk management, and reputation-based
filtering.
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