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Abstract—Increased commodity use of mobile devices with
sensory capabilities has the potential to enable mission-critical
monitoring applications in various domains. However, these
mobile-enabled monitoring applications have to often work in
environments where a delay-tolerant network (DTN) is the only
feasible communication paradigm. DTNs are multi-hop networks
prone to long delays and frequent disruptions. Unfortunately,
there is a lack of effective and scalable support for building
sophisticated DTN-based monitoring applications. Detection of
complex (composite) events, for example, is fundamental to
monitoring applications. However, there is little work in designing
scalable complex event detection (CED) techniques for DTNs. The
current plan-based CED techniques are mostly centralized,and
hence are inherently unscalable for DTNs.

In this paper, we createComet, – a decentralized plan-based,
efficient and scalable CED for DTNs. Comet shares the task of
detecting complex events (CEs) among multiple nodes, with each
node detecting a part of the CE by aggregating two or more
primitive events or sub-CEs. Comet uses a uniqueh-function to
construct cost and delay efficientCED trees. As finding an optimal
CED plan requires exponential-time, Comet finds near-optimal
detection plans for individual CEs through two novel heuristic
planning techniques:multi-level push-pull conversion and virtual
CED tree creation. Performance results show that Comet reduces
cost by up to 89% compared to pushing all primitive events and
over 60% compared to a two-level exhaustive search algorithm.

I. I NTRODUCTION

Recent years have seen the advent and large-scale prolif-
eration of mobile devices such as smart phones and different
types of mobile wireless sensors that are capable of acquiring
and disseminating various kinds of sensory data. This has
the potential to enable sophisticated monitoring applications.
However, these devices are increasingly being used in envi-
ronments where infrastructure limitations preclude continuous,
reliable end-to-end network connectivity. Examples of such
domains include battlefield surveillance and monitoring ofre-
mote rural areas, seismology, interplanetary space exploration,
and oceanography.

Delay-tolerant networking (DTN) has been proposed and
is being increasingly adopted as the networking architecture
for such environments [1], [2], [3]. DTNs exist outside of the
Internet; DTN links are characterized by long delays, frequent
interruptions, and high error rates [4]. Research on DTNs has
primarily focused on routing issues either for unicasting or

for multicasting [5], [3], [6], [7], [8]. Only recently havere-
searchers started to study issues such as caching for DTNs [9].

Unfortunately, despite the apparent importance of monitor-
ing applications for these domains, there is little research on
providing effective and efficient support for building them.
Several of the essential components of modern monitoring ap-
plications have been designed for Internet-based environments
where the underlying network provides continuous, reliable,
low-latency end-to-end connectivity, and they do not work well
in a mobile-DTN setting. A prime example is thecomplex
event detection (CED)component.Complex events (CEs)are
composed (using various operators) from multiple atomic,
possibly geographically distributedprimitive events(PEs) [10],
[11], [12], [13].

Most of the popular CED techniques are based on plans
that rely, explicitly or implicitly, on centralized processing of
PEs. However, centralization is unacceptable in networks that
are prone to long delays and frequent disruptions. While the
cost and latency imposed by a centralized CED framework
may be tolerable for high-bandwidth wired networks, it is
prohibitively expensive for DTNs. There are three reasons for
this. First, centralization prevents exploiting topological prox-
imity of event sources. Generally, communication overhead
is lower when PEs are processed from nearby sources, and
then partial CEs are detected and forwarded to the sink. This
is because nearby processing allows early elimination of PEs
that cannot be part of a CE—as opposed to sending all PEs
to the sink directly. Second, most existing CED techniques
assume network connectivity between various PE sources and
the event destinations almost always exists; this does not
hold for DTNs, so PEs cannot be pulled at arbitrary times.
Moreover, pushing of some PEs is necessary because of rare
DTN availability. This assumption does not hold for DTNs
where certain links might be unavailable for long durations.
Third, DTNs operate on a store-and-forward paradigm, and
hence PEs will be stored at intermediate nodes until the
next link becomes available. It is advantageous to process
PEs and detect sub-CEs at intermediate nodes when waiting
for the availability of the next link. While there are a few
decentralized CED systems [14], [15], they are not plan-
based. Planning is important for comprehensively exploring
the cost-delay tradeoffs so that the system utilizes the available



resources in an optimal fashion.
This paper contributes a novel, decentralized multi-stage

framework, calledComet, for efficient and scalable CED in
mobile-DTNs. To the best of our knowledge, Comet is the first
plan-based decentralized system. Comet supports distribution
of the CED process among multiple nodes, with each node
detecting a part of the CE (sub-CE) by aggregating two or
more PEs or sub-CEs. Because finding an optimal (lowest)
cost plan is NP-complete, Comet includes a heuristic planning
algorithm that, given a CED delay tolerance, derives a CED
plan with low cumulative communication cost. The CED plan
output by Comet specifies where (on which nodes) the sub-
CED tasks are hosted, which constituent events are pushed
to that node, which constituent events are pulled by that
node, and in what order. Comet can exploit both single target
pulls (in which instances from a single event source are
retrieved) and multi-target pulls (in which event instances from
multiple sources are retrieved), and it incorporates several
novel features.

• First, we present a technique to construct a cost and delay
efficient detection tree for a CE given the destination and
the PE sources. Ideally, the CED tree should minimize both
the cost and the delay of transferring PE instances from
the source to destination. However, it is often impossible
to achieve both. We combine these two factors into a novel
h-functionand use it to guide our tree construction.

• We design a multi-level push-pull conversion mechanism
that can work in conjunction with multi-level CED trees.
Our cost-delay sensitive heuristic algorithm operates in
two phases: first by converting as many proactive push
operations as possible into single-target pulls; and then by
converting as many of the remaining pushes as possible
into multi-target pulls.

• Third, any planning strategy that works at the granularity
of links suffers from the limitation that it cannot explore
certain plans. Specifically, suboptimality can result from
the need for certain PEs to be pushed along a particular
link while other PEs are pulled along the same link. Comet
overcomes this limitation by creating multiple virtual
topologies through a unique technique calledshorting.

We have run extensive experiments with Comet. Perfor-
mance results show that Comet reduces cost in some topolo-
gies by over 89% compared to pushing all primitive events,
and over 60% compared to a two-level exhaustive search
algorithm. Moreover, in most topologies, Comet outperforms
all other techniques, often by similar margins. This includes
both skewed topologies and topologies with increasing depth.

II. BACKGROUND AND CHALLENGES

In this section we briefly discuss the fundamentals of CED
and DTN. Then, we formally state the problem of CED on
DTNs and explain why the existing CED techniques are not
appropriate for DTNs.

A. DTN

DTNs are mobile networks in which continuous, bi-
directional, end-to-end connectivity between two arbitrary
hosts is not guaranteed. The links (also referred to ascon-
tacts) of a DTN are characterized by intermittent connectivity
(depending upon when the end-nodes of a link come within
each other’s wireless range), asymmetric data rates, and high
error rates. DTNs operate on a store-and-forward paradigm
where a node stores a packet it receives until an onward
link towards its destination becomes operational. Based on
the temporal link connectivity characteristics, DTNs can be
classified into two broad classes:scheduled-contacts DTNs
andopportunistic-contacts DTNs. In scheduled-contacts DTN,
the contacts among nodes occur according to a schedule,
as opposed to in an ad-hoc manner in opportunistic-contacts
DTNs. In other words, the up and down times of the links
of a scheduled contacts DTN can be predicted to a reason-
able degree of accuracy. The data ferry network that uses
buses/trams operating according to a specified schedule is an
example of scheduled-contact DTN. In this paper, we confine
our discussion to scheduled-contacts DTNs.

Our discussion is based on the following conceptual model
of scheduled-contact DTNs. The DTN is composed ofN
nodes represented as{V1, V2, . . . , VN}. A link is the intermit-
tent connection between two nodes. The link between nodes
Vf andVg is represented asLfg. Each link is associated with
five properties. The expected disconnection period of the link
Lfg, represented asEDP (Lfg), is the time duration between
two consecutive active sessions of the link. In other words,
once Lfg becomes disconnected, it is expected to remain
dormant forEDP (Lfg). Analogously, the expected active
period ofLfg, represented asEAP (Lfg), is the time duration
for which Lfg is expected to remain active after gaining
connectivity. The bandwidth ofLfg, denotedBW (Lfg), is
the number of bytes per second that can be transferred over
Lfg when the link is active. The latency ofLfg (represented as
LT (Lfg)) is the time required for a packet to travel fromVf

to Vg when theLfg is operational. Generally,EDP (Lfg) ≫
LT (Lfg). The worst case delay in transferring a packet along
Lfg is denoted asDL(Lfg). AlthoughDL(Lfg) is equal to
the sum ofEDP (Lfg) andLT (Lfg), it can be approximated
asEDP (Lfg) (sinceEDP (Lfg) ≫ LT (Lfg)).

Each link is also assumed to be associated with a cost factor
(denoted asCF (Lfg) for link Lfg). The cost factor represents
the cost of transferring one packet of data over the link. In
this paper, we regard the cost factor as a generic parameter
specified according to the characteristics and constraintsof the
DTN. A commonly used cost factor is the inverse of the link
bandwidth (CF (Lfg) =

µ
BW (Lfg)

), whereµ is a constant.

B. CED

CEs are composed from two or more PEs. PEs are events
that are generated atomically from the sources. Each event
(PE or CE) is associated with a unique identifier. Variablepei
denotes a PE with IDi, andpeji represents thejth instance of
pei. Each event instance is also associated with aStart-Time



and anEnd-Time. An event instance is said tooccur within a
certain time duration if both the Start-Time and the End-Time
of the instance fall within the duration.

As in previous CED schemes [10], [16], [11], our system
supports a standard set of event composition operators (shown
below). Most of the operators incorporate a time window
argument (represented asw) which specifies the maximum
duration between any two PE instances that are part of a
CE instance. Below, we provide informal descriptions of the
operators. Formal descriptions can be found elsewhere [10].

• and operator (and(pe1, pe2, . . . , pem;w)): An instance
of the CE is detected when at least one instance of every
constituent PE occurs within a sliding window of length
w. The Start-Time of the CE is set to theminimumof the
Start-Times of constituent PE instances and End-Time of
the CE is themaximumof the End-Times of constituent
PE instances.

• seqoperator (seq(pe1, pe2, . . . , pem;w)): A special case
of theand operator where the PE instances must occur in
thesame orderas specified in the parameter list (i.e.,∀i ∈
{1, . . . , (m− 1)}, pei.End-Time ≤ pei+1.Start-Time).

• or operator (or(pe1, pe2, . . . , pem)): A CE instance is
detected each time an instance of any one the constituent
PEs occurs. In contrast to theand and theseqoperators
theor operator does not require a time window parameter.

• negationoperator (!): Negation operator is used to specif-
ically exclude events inand andseqoperators.

If pek appears as an argument in the definition ofcei, then
pek is said to be aconstituent eventof cei.

C. Problem Statement

Consider a set ofm PE sources. Each PE source resides on
a DTN node. The DTN may have additional nodes other than
those that host PE sources. Every node is assumed to have
computation, communication (radio transmission) and storage
capabilities.

For each CE, a node of the DTN is designated as its
destinationor sink (represented asVD(cei) for the complex
event cei). This is the node at which the CE is eventually
needed. For example, this can be a base station on earth (in
case of interplanetary DTNs) or a logistics planning camp
(in battlefield DTNs). Each CE is also associated with a
delay tolerance limit(or simply delay tolerance, represented
as∆(cei)), which signifies the the maximum detection delay
that can be tolerated for that CE. The delay for a CE instance
is the difference between the time at which the last constituent
PE instance of the CE occurred and the time at which the CE
was detected at the destination. The delay of the CE is the
maximum of the detection delay over all of its instances.

Given (1) the topology of the DTN (including the EDP, EAP,
BW and LT of various links), (2) the location and source of
each PE, and (3) the definition of a set of CEs that needs to
be detected, their respective destinations, and their individual
delay tolerance limits, the problem is to come up with a plan
that minimizes the cumulative cost of detecting the set of CEs.
The cost of a linkLfg under a certain CED plan is the product

V1

V7V6V5V4

V3V2

pe1 pe4pe3pe2

1/1 1/2 1/4 1/8

(1,1) S
(pe1,pe2,pe3,pe4)

F       V1:

S

(c) Centralized Push-Pull:
(pe4)

F
       S1

       (pe1,pe2)
V1: S2

       (pe3)

(a) (b) Centralized All-Push:

(1,1)

(1,1) (1,1) (1,1)(1,1)

Fig. 1. Centralized CED on DTN

of its cost factor (CF (Lfg)) and the average number of bytes
transferred through the link per unit time. The cumulative cost
of a detection plan is the sum of the costs of all links involved
in the plan.

The plan will essentially include three things: (1) where (on
which node(s)) the CED process will execute; (2) for each
node involved in the CED, which of its constituent events
will be pro-actively sent (pushed) to the node, and which will
be obtained by the node when needed (pulled); and (3) if a
node pulls multiple constituent events, in what order wouldit
be done. A CED plan is usually represented as a set offinite
state machines (FSMs). Each node executing the CED process
has an associated FSM that specifies the sequence of push and
pull operations that are executed by that node.

D. Challenges

With an example, we now explain two existing CED tech-
niques and discuss why they cannot be trivially adopted for
DTN settings. Figure 1(a) shows a scheduled contacts DTN
with 7 nodes. There are fourpe1 through pe4, residing on
nodesV4 through V7 respectively. The PE frequencies are
shown in the diagram, where the notationx/y means thatx
events are generated everyy time units. The numbers next to
the link indicate their respective cost factors and EDP. Suppose
the CEsce1 = and(pe1, pe2, pe3, pe4; 2) is to be detected at
the nodeV1.

The simplest centralized CED approach is to push every
instance of each PE as soon as it occurs to the destinations
of all CEs that it is part of. The destination checks which
set of PE instances result in a CE instance. No other nodes
perform any CED tasks. This approach is an adaptation of
the CED technique used in active databases and triggers [16],
[11]. In this plan, each CE is associated with a single FSM
at its respective destination. Figure 1(b) shows the only FSM
(at nodeV1) of this plan. The other nodes do not perform any
detection tasks, and hence do not have associated FSMs.

This approach yields the lowest delay but is very costly—
in fact this approach has maximum cost. This is because it
pushes instances irrespective of whether an instance has any
chance of being a part of a CE instance. In our example, most
instances ofpe1 will not become part of any CE because an
instance ofpe4 is produced only once in 8 seconds, and the
window length is 2. A main drawback of this approach is that



it fails to utilize higher delay tolerance limits for lowering
CED costs.

An alternate technique proposed by Akdere et al. [10],
attempts to alleviate the problem by selectively pushing certain
(usually the cheapest) PEs to the destinations. A destination
pulls the other component PEs when it notices (based on PE
instances that have arrived) that there is likelihood of a CE
instance. The problem is to decide, for each CE, which PE
sources will be pulled by its destination and in what order, so
that the detection cost is minimized while ensuring that the
detection delay does not exceed the specified tolerance limit.
The authors provide an optimal algorithm that is exponential-
time. They also proposes a heuristic algorithm. Their algorithm
employs two kinds of pulls –single-target pullsin which the
destination sends out a pull request to only one PE source
at a time andmulti-target pulls (or simultaneous pulls) in
which the node simultaneously pulls from multiple PE sources.
Note that in this technique also, the entire CED process
essentially occurs at the CE’s destination. The plan for a CE
will consist of a start state in which certain PEs are pushed to
the destination, possibly followed by a sequence of states,each
corresponding to a single or a multi-target pull. Figure 1(c)
illustrates one such plan force1.

Even this technique suffers from several limitations. First, it
can still result in significant degree of wasted communication.
In Figure 1(a), one of the lowest-cost centralized CED plan for
ce1 will involve pushingpe4 to V1, andV1 pulling pe3, pe2 and
pe1 in that order. Note, however, that for a significant fraction
of pe4 instances, there might not be anype3 instances that
occur within the time window (w = 2). Pushing such events
to V1 will result in higher costs, especially if the cost factor of
L13 is high. In general, it is better to discard such instances
early on. Second, due to frequent and potentially long link
disconnections, pulling events by the destination will add
significantly to the detection delay. In our example, pulling pe3
can add up to2× (EDP (L1,3)+EDP (L3,6)). The factor of
two is because the request and response messages can each be
preceded by a link disconnection. The problem is exacerbated
in situations where PE sources are several hops away from
the destination. Considerable delay savings can be obtained
by pulling pe3 from V3. In general, when the EDP of the
links closest to the sources is relatively high, it is beneficial to
push the PE to an intermediate node. The destination can then
pull from the intermediate node. Centralized CED techniques
(including the sophisticated one that allows selective push and
pull) preclude such plans.

III. C OMET OVERVIEW

Comet addresses the above limitations by distributing the
CED process among multiple DTN nodes. In other words,
multiple nodes may share the task of detecting a CE. A
unique aspect of our approach is that it employsmulti-level
hierarchical structures calledCED Trees(defined later in the
section) as the basis for detecting CEs. In this paper, our focus
is on the CED planner, which devises cost effective CED
plans. The plans produced by Comet are fed into anexecution

and adaptation enginethat executes the plans and adapts them
to cope with various dynamics. The execution and adaptation
engine is beyond the scope of the current paper.

As mentioned in Section II, Comet has to provide answers
to a set of important and inter-related questions.(1) Which
sub-CEs of the given CE are to be detected? In other words,
how do we (recursively) divide a CE into multiple sub-CEs?
(2) Where (on which nodes) are the processes for detecting
the given CE and each of its sub-CEs going to be hosted?
Finally, (3) For each CE and sub-CE, which of its component
events (PEs or other sub-CEs) are going to be pushed to its
hosting node, and which component events are going to be
pulled, via single-target and multi-target pulls, and in which
order? The goal is to come up with answers to these questions
such that the delay tolerance limit of each CE is respected and
the cumulative cost of detecting CEs is minimized.

Before discussing the design of our CED planner, we state a
few fundamental assumptions that will be used throughout our
discussion. First, we assume the planner knows the frequencies
of the various PEs of a given CE and the topology of the
DTN and the properties of various links (EDP, EAP, BW, LT,
CF, and DL). Second, the nodes of the DTN have enough
storage to hold all the incoming data until it can be transferred
to the next node along its path. Third, once a link becomes
active, its EAP and BW are sufficient to transfer all the data in
the outgoing buffers of its end nodes. Dealing with resource
constraints requires effective prioritization of communication,
storage and processing of events, and it is part of our future
work.

Fundamental to our CED planner is the concept of a CED
tree. The CED tree of a complex eventcei is composed ofcei’s
destination as its root and the source nodes ofcei’s component
PEs as it leaves (although a PE source can be a non-leaf node).
Comet computes cost-and-delay effective paths (see below)
from the source of each component PE to the CE destination.
The DTN links and nodes that are part of at least one such
path (from a component PE source tocei’s destination) form
edges and the intermediate nodes of the CED tree. A DTN
node that lies at the intersection of the paths from two or
more PE sources to the CE destination is called ajunction.

Our system operates on a per-CE basis – i.e., for each
individual CE in the system, the CED planner modules are
invoked independently to produce a multi-level near-optimal
CED plan for that CE. Our CED planner is comprised of
three novel components, namely, aCED tree construction
component, amulti-level push-pull conversion component, and
a virtual topology creation component. The first component
employs a novel cost and delay heuristic to create an efficient
CED tree for each CE. Our second component addresses
the challenges in extending the push-pull conversion-based
planning strategy to multi-level CED trees. The third com-
ponent creates multiple virtual trees for a given CED tree to
overcome the potential suboptimality caused by operating at
link granularity (see Section IV-C). Comet creates a set of
virtual CED trees, executes the push-pull component on each
topology, and selects the best plan among them.
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IV. D ECENTRALIZED CED PLANNING IN COMET

In this section, we explain each of the three components of
Comet’s decentralized CED planner.

A. CED Tree Construction and Sub-CE Determination

The first challenge in supporting multi-level CED is to
construct an efficient CED tree for each CE. We do this
by computing cost-and-delay effective paths from each com-
ponent PE source to the CE destination. Ideally, the path
should minimize both the cost and the delay of transferring
PE instances from the source to destination. However, in
most practical scenarios it is almost impossible to obtain
such paths – DTN links that have minimum cost may not
have minimum delay, and vice-versa. We address this problem
by assigning weights to DTN links according to a novelh-
function that combines both cost and the delay characteristics
of links. The h-value of a DTN linkLfg is computed as
h(Lfg) = α×

CF (Lfg)
MAX-CF +(1−α)×

(DLfg)
MAX-DL , whereCF (Lfg)

andDL(Lfg) are the cost factor and delay ofLfg respectively,
MAX-CF and MAX-DL are the maximum cost factor and
maximum delay over all links in the DTN, andα is a weight
factor that can be used to adjust the relative importance of
cost factor and delay respectively. Notice that the lower the
cost factor and delay of a DTN link, the lower theh value.

Once the h-values of all the DTN-links are determined, we
use Dijkstra’s shortest path algorithm [17] to find the path
with minimal cumulativeh value from each PE source to the
CE destination. The union of these paths form the CED tree.
We then determine the set of junction nodes in the CED tree.
Each junction in the CED tree may potentially host a sub-
CED process. The sub-CE to be hosted at a junction nodeVf

is determined by applying the same operator as that of the
original CE to the set of PEs and sub-CEs that intersect atVf .

B. Multi-Level Push-Pull Conversion Component

Given a CED tree (original or virtual), this module produces
a near-optimal plan (in terms of detection costs) consisting of
push-pull schedules at every junction node for detecting the
corresponding CE/sub-CE. Our technique starts with a simple
plan in which the CED process at every junction node follows
a simple 2-state FSM analogous to the all-push plan. This
module progressively transforms the FSMs at the junction

node through conversion of the corresponding links from push
to pull (see Figure 2).

Our scheme operates in two distinct phases. In the first
phase, as many links as possible are converted from push
to single-target pull without violating the detection delay
tolerance limit. In the second phase, we convert as many of
the remaining push links as possible to multi-target pulls (i.e.,
pull them simultaneously with sibling links that already have
pull status). The rationale for performing these two phasesin
this order is that, while converting a push link to a sequential
pull always yields higher cost savings, it also substantially
increases the CED delay (as much as2×EDP (Lfg) for link
Lfg). On the other hand, generally, converting a push link to
a multi-target pull causes only marginal increase (or in some
cases no increase) in detection delay. Our scheme essentially
follows a greedy strategy by seeking to maximize cost savings
with each conversion in the first phase, and trying to obtain
further cost savings, albeit in (relatively) smaller amounts for
each conversion, while ensuring that the resulting impact on
delay is marginal.

Two important questions need to addressed when converting
links from push to single target pulls in the first phase.(1) For
each junction node, which set of links should be converted
from push to pull so that the cost of the plan is minimal and
the corresponding delay does not exceed the tolerance?(2) If a
node has multiple incoming pulls, in which order should they
be performed? Since the optimal algorithm to solve question1
is exponential even for centralized settings (single levelCED
trees), we adopt a greedy heuristic approach. Since our goal
is to minimize cumulative costs, our heuristic is the ratio of
cost reduction to the delay increase caused by a push-to-pull
conversion. We denote thecost-to-delay ratioas CDR, so
CDR(Lfg) =

Cost Reduction obtained by convertingLfg from push to pull
Delay increase caused by convertingLfg from push to pull .

Our technique performs push to single target pull conversions
in the decreasing order of the links’ CDR values until a stage
where any additional conversion would cause violation of the
specified delay tolerance. If a node has several incoming pull
links, the respective component events are pulled in increasing
order of their frequencies. The idea is to let the sub-CED
process at a node advance only after resolving the most
difficult hurdles.

Computing CDR values requires estimation of the cost and
delay of a multi-level CED plan. We extend the FSM-based
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cost estimation model [10] for multi-level CED trees. The idea
is to use a bottom-up approach to estimate the frequencies of
various sub-CEs. This is in turn used to estimate the amount
of data transferred per unit time at every link in the CED tree.
The cost of a plan is the weighted sum of data transferred per
unit time overall links in the tree, the weight being the cost-
factor of the link. The delay of a plan is also estimated through
a bottom up approach. At each junction node, we estimate
the delay of the corresponding CE/sub-CE by analyzing the
critical path of its FSM (longest sequence of operations),
along with the EDP values of the incoming links and the
delays of its constituent events. Our technical report provides
the mathematical formulation and a detailed discussion of our
cost and delay estimation models [18].

In the second phase, our planner checks the links that still
have a push status at the end of the first phase to see if any
of these links can be converted to multi-target pulls. In order
to ensure that delay tolerance limit is honored we enforce the
following condition: a linkLfg that has push status at the end
of phase 1 can be converted to a simultaneous pull with a
sibling link Lfh only if (1) Lfh already has pull status and
(2) the push-pull conversion ofLfg doesn’t violate the delay
tolerance limit. We consider the links for conversion in the
decreasing order of the estimated cost reduction.

C. Virtual Topology Creation Component

The above multi-level push-pull conversion technique as-
sumes that the junction node of the CED tree hosts a sub-CED
process. In most scenarios, executing this component on the
original CED tree is sufficient for obtaining a near-optimal
plan. However, in certain settings, performing sub-CED at
every junction node of the original CED tree will yield plans
that are suboptimal irrespective of the combination and order
of links that are pushed and pulled.

Figure 3-a gives one such example. In this CED tree,
there is one junction node (V3) other than the destination
V1. On this topology, if the delay tolerance limit is large,
our push-pull conversion module will produce the following
plan: pe3 is pushed toV3; V3 pulls pe2; the detected sub-CE
(and(pe3, pe2)) is pushed toV1; thenV1 pulls pe1. The cost
in this case is 0.7943 per unit time. In fact, this is the lowest
cost planif V3 is forced to detect the sub-event and(pe3, pe2).
However, the true lowest-cost plan is to pushpe3 all the way
up toV1, which will then pullpe1 and subsequently pullpe2.

This yields a cost of 0.5167 per unit time. However, executing
our push-pull module on the original CED tree fails to produce
this plan.

Our mechanism to circumvent this problem is to create
multiple virtual CED trees by selectively eliminating one
or more junction nodes through a unique technique called
shorting. When we short a particular junction node, sayVf ,
we remove it from the topology and connect each of its
children (sayVg and Vh) to Vf ’s parent node, sayVe. The
cost factor of the new link betweenVg and Ve is set to the
sum of the cost factor of the original link betweenVg andVf

and the cost factor of the original link betweenVf and Ve

(CF (Leg) = CF (Lef ) +CF (Lfg)). This is because the cost
of transferring a byte of data fromVg to Ve in the original
topology isCF (Lef ) + CF (Lfg) if Vf were to just act as a
transit node (instead of detecting the sub-CE). Analogously,
EDP (Leg) is set toEDP (Lef ) + EDP (Lfg) because this
is the worst case disconnectivity period betweenVg andVe in
the original topology. However,EAP (Leg) is approximated as
min(EAP (Lef ), EAP (Lfg)) andBW (Leg) is approximated
asmin(BW (Lef ), BW (Lfg)). The reason is that this repre-
sents the worst case EAP and bandwidth betweenVg andVe in
the original topology. Figure 3-b indicates a virtual topology
created by shortingV3. The numbers next to the links indicate
the CF and EDP values, respectively.

Theoretically, we can create virtual topologies by shorting
every possible combination of junction nodes and executing
the push-pull module on these topologies to yield an optimal
plan. However, this is inefficient because it will require us
to execute the push-pull module on

∑r

b=1

(

r
b

)

where r is
the number of junctions in the original CED tree excepting
the original destination. Therefore, we adopt alevel-based
strategy. Suppose the original CED tree is of heightH . If
the tree isshorted at levelq, all the junctions that are at
leastq hops away from the destination are eliminated. Note
that if a tree is shorted at level1 we get a single-level tree.
If the original CED tree is of heightH , Comet generates
H− 1 virtual trees by shorting at levelsH− 1 through1. The
push-pull module is executed on each of these virtual trees in
addition to the original CED tree and the lowest cost plan is
selected. In our example, if we execute the push-pull strategy
on the virtual topology generated by shorting at level 1, which
eliminatesV3 (see Figure 3-b), we get the aforementioned
lowest-cost plan (pushingpe3 all the way up toV1 and then
pulling pe2 followed by pe1).

V. EXPERIMENTAL EVALUATION

A. Experiment Setup

We have implemented bothCometand our DTN simulator
in Java. The DTN simulator simulates the DTN model de-
scribed in Section II-A. The simulator contains a number of
DTN nodes, each of which connects to its neighbors according
to a given schedule. Each DTN node can be either a PE source,
a CE sink, or a junction node, depending on how the CED
tree is constructed. If the node is a PE source, it generates
PE instances according to a Poisson distribution. We use the
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Fig. 4. Performance of the four algorithms with nonuniform cost and uniform
latency per link.

Zipfian distribution to generate the PE occurrence frequencies.
Each DTN node is also capable of executing the sub-CED
plan, which is represented as a finite state machine.

In all of our experiments, we assume that the DTN links
are reliable when they are in operation. Also, recall that
we assume the expected active period (EAP) of all links
is sufficiently long to transmit all data in the buffer of the
sending node. We will focus on two major properties of the
DTN link – Bandwidth and Expected Disconnection Period
(again, see Section II-A). Our planner and DTN simulator
support different models for bandwidth and EDP. However,
for simplicity, we use three categories of bandwidths: low
bandwidth (128 Kbps), medium bandwidth (256 Kbps) and
high bandwidth (1.2 Mbps). We define the cost factor as
packet size
bandwidth

. For EDP, we also use three categories: low EDP
(30 seconds expected disconnection period), medium EDP
(2.5 minutes expected disconnection period), and high EDP
(5 minutes expected disconnection period).

B. Results

For each experiment, we show the results of four different
algorithms. The baseline plan isAll-Push, where all events are
pushed to the sink immediately.All-Pushalways satisfies any
delay restriction for which there exists a feasible plan. The
Centralized Optimalplan is the one suggested as optimal in
the work by Akdere et al. [10]. Note that it is optimal only for
solutions in which pulling of events occurs only at the sink,so
Comet, with its multi-stage nature, can outperformCentralized
Optimal. The Centralized Heuristicplan is our adaptation of
the heuristic algorithm suggested in [10]. Finally, Comet is
our novel multi-stage heuristic plan described in Section IV.

Figure 4 shows results of cost for the aforementioned four
algorithms. The delay tolerance ranges from 0 to 250 minutes.
The topology in this experiment is such that the EDP is high
(5 minutes) for all links, and the bandwidth per link is 128
Kbps on all links connected to the sink, 1.2 Mbps on all links
connected to the sources, and 256 Kbps on all other links. Note
that for delay restrictions smaller than 16.5 minutes, there is
no feasible solution, even withAll-Push.

The results clearly show that Comet is superior to the other
three algorithms. Comet has a cost that is 89% less thanAll-
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Fig. 5. Performance of the four algorithms with uniform costand uniform
latency per link.

Push, 66% less thanCentralized Heuristic, and 56% less than
Centralized Optimal. Specifically, as expected,All-Push fails
to filter PEs and so incurs a large cost across various DTN
links due to transmission of PEs that cannot be part of any
CE. While the other two algorithms—Centralized Optimaland
Centralized Heuristic—are able to filter out some PEs. Comet
is superior to both because its multi-stage nature allows PEs
to be pulled from nodes closer to the source; i.e., from the
leaves to the interior nodes, which filters out additional PEs.
Again, Centralized Optimaland Centralized Heuristiconly
pull events at the destination. Note that creating a multi-stage
optimal algorithm is infeasible because it is exponential in the
number of links.

A comparison of theCentralized Heuristicto Centralized
Optimal shows that whileCentralized Heuristicproduces
identical results in some cases, it is inferior in other cases.
This is becauseCentralized Heuristicfirst examines sequential
pulls, which can result in searching of a subspace of the
solution space in which the optimal plan does not occur.
Centralized Optimalenumerates all possible plans in which
pulls are performed at the sink.

Figure 5 shows results for a similar experiment as was
shown in Figure 4, except that the cost per link is uniform.
The results are similar in many cases, but there is a range of
delay restrictions–85 to 100—in which Comet has a higher
cost thanCentralized Optimal. This occurs because when the
cost per link is uniform, the benefit of pulling PEs close to
the source is lower. AsCentralized Optimalexplores more
of the (plan) solution space, it can and does perform better
for this small range of delay restrictions. Future work will
address this issue; briefly, we plan to explore the potential
of concurrent pulls when the delay tolerance is modest. The
timing of pull requests may be reassigned so that the event
sources with similar frequencies will be pulled concurrently
depending on the given delay tolerance. We will also consider
re-scanning the overlay tree topology to balance the sub-CE
latencies for different subtrees, which will eventually fully
utilize the potential concurrency in detecting CEs.

Figure 6 shows results for the same two experiments as dis-
cussed above, except that the link latency is now nonuniform.
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Fig. 6. Performance of the four algorithms with nonuniform latency per link,
for both uniform (top) and nonuniform (bottom) cost per link.

The links connected to the sink have an EDP of 5 minutes,
an EDP of 30 seconds for the links connected to the sources,
and an EDP of 2.5 minutes for all other links. Essentially, this
experiment shows similar, if not quite as pronounced, results
to Figure 4.

Next, Figure 7 shows results for the same two experiments
as discussed in Figure 6, except that the ordering of FSM status
changes are determined using only cost rather than the ratio
of cost to latency. Note that in this experiment we compare
only the two versions of Comet.

This experiment makes it clear that it is better to use the
ratio of cost to latency for ordering potential status changes
in Comet. On one hand, using purely cost, irrespective of the
change in latency, may cause Comet to choose pull operations
that can cause significant plan latency increases and also leads
to fewer pull operations elsewhere in the plan due to the delay
tolerance. On the other hand, using the ratio of cost reduction
to latency better balances the change of both cost and latency.
It also can leverage the potential of pull concurrency, which
can in turn lead to cost reduction with only a small latency
penalty.

Figure 8 shows results of the four algorithms on a skewed
topology, in which the degree of junction nodes varies from 1
to 3. The EDP is set to high (5 minutes) for all links, and the
bandwidth per link is 128 Kbps for all links connected to the
sink, 1.2 Mbps for all links connected to the sources, and 256
Kbps on all other links. Again Comet is superior to all other
algorithms, even with such a skewed topology. On average,
Comet is 61% less thanCentralized Optimal, 69% less than

0 20 40 60 80 100 120
0

0.5

1

1.5

2

2.5

Delay Tolerance (Minutes)

C
o

st
 P

er
 M

in
u

te

 

 

Comet
Cost Only Heuristic

0 20 40 60 80 100 120
0

2

4

6

8

10

12

14

Delay Tolerance (Minutes)

C
o

st
 P

er
 M

in
u

te

 

 

Comet
Cost Only Heuristic

Fig. 7. Performance of Comet with different heuristics. Thetop figure has
uniform cost per link, and the bottom figure has nonuniform cost per link.
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Fig. 8. Performance of Comet where the degree of the junctionnodes is
varied (randomly) from 1 to 3.

Centralized Heuristic, and 89% less thanAll-Push in term of
cost per minute.

Figure 9 shows the impact of the depth of CED tree on
the cost of the detection plan. When the depth of CED tree
increases, the cost decreases. This is due to the multi-stage
sub-CE detection of Comet; recall that it allows the PEs to
be pulled from junction nodes closer to the source. This not
only alleviates the load at the links connected to the sink,
where the bandwidth is usually limited, but also significantly
removes the unnecessary latency due to the long turnaround
time of the pull request and reply between the sink and source.
At times when there is no PE satisfying the pull request,
the penalty is limited because of the relative short latency
between the junction node and the source. Note that at the
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Fig. 9. Performance of Comet with different CED tree depth.

10 20 30 40 50 60 70 80 90
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Delay Tolerance (Minutes)

C
o

st
 P

er
 M

in
u

te

 

 

Comet Phase 1 Only
Comet 2−Phase

Fig. 10. Benefit of using two-phase algorithm in Comet.

same time, the cost of centralized optimal remains constant,
because centralized detection plans do not utilize the junction
node to further reduce the plan cost and latency.

Figure 10 shows the benefit of the 2-phase algorithm of
Comet. The concurrent pull phase of Comet (which is the
second phase) further explores the concurrency of pull oper-
ations, especially when the delay tolerance is modest. Most
of the time, the 2-phase algorithm results in a significant cost
reduction compared with the algorithm with only conversion
of pushes to single target pulls (which is the first phase).
The second phase further reduces the cost by converting more
pushes to pulls, but without a significant latency penalty. Note
that in this figure, when the delay tolerance is 10 and 90
minutes, there is no difference between the single phase and
two-phase algorithms. This is because (1) at the tolerance of
10 minutes, the only available plan is to push all events to the
sink; and (2) at 90 minutes, there is nothing for the concurrent
pull phase to improve, because the first phase has already
converted all the available push operations.

VI. D ISCUSSION

As our experimental study has demonstrated, Comet pro-
duces high quality plans in most cases. However, there is
room for further improvement. We have identified two specific
avenues for improvement. First, in the push-pull conversion
module, multi-target pulls are explored only when no more
push links can be converted to single target pulls. This can

be problematic in certain situations – a decision to converta
particular link from push to single-target pull may preclude
several conversions from push to multi-target pulls in the
second phase, which collectively might have yielded higher
cost savings. An attractive option is to identify and reverse
problematic single-target conversions in the second phase.
Second, currently, if we short the CED tree at a particular
level all the junctions at that level are eliminated. A better
strategy is to operate at a finer granularity and short only the
set of junction nodes that are contributing to higher detection
costs. Since an exhaustive search of all possible combinations
of junction nodes is highly inefficient (see Section IV-C, we
need to design a simple heuristic for checking whether shorting
a particular node will lead to higher cost savings.

In addition to these immediate improvements, there are
a number of open challenges that require significant en-
hancement of our current system. First, we assume that the
various nodes and links in the system have enough stor-
age and bandwidth resources to hold and transfer all event
instances. These assumptions may not be valid for highly
resource constrained environments. In such scenarios, theplan-
ner will have to incorporate smart and effective prioritization
and load-shedding mechanisms. Second, we need to design
incremental strategies to deal with environmental dynamics
such as additions/deletions of CEs and variations in link and
node characteristics. Third, many domains DTN nodes are
powered by batteries. For these domains, it is important to
consider power consumption as an additional factor during
CED planning. Addressing these challenges is a part of our
future work.

VII. R ELATED WORK

CED originated in the field of active database systems as a
mechanism to respond automatically to events that are taking
place either inside or outside of the database system [11].
Current work on CED has focused on two main issues, namely,
reducing the computational overheads at the server [12], [13]
and reducing the communication costs [10]. The plan-based
CED technique [10] reduces the communication overheads
of CED by intelligently pushing and pulling PEs. There are
several crucial differences between Comet and these existing
systems. Most importantly, the above techniques are central-
ized in the sense that the entire CED process occurs at a
single node. Comet on the other hand is based on multi-level
CED paradigm and it enables sharing of CED tasks among
multiple nodes. Chandramouli et al. [19] study the problem of
accurately estimating latency in distributed event processing
systems. Distributed data stream processing [20], [21], [22],
[23], [24], [25], [26] is another area that is closely related to
our work. However, as Akdere et al. [10] have noted, data
stream processing systems have to rely exclusively on push-
based data transfer. On the other hand, CED systems have the
flexibility of utilizing both push and pull data transfer modes
thus providing an additional dimension for optimization. It
is also noteworthy that most of the current distributed data
stream processing systems have been assuming a traditional,



continuously-connected network. Our work also bears similar-
ity to poller-pollee model used for data/status aggregation in
wireless sensor networks [27]. Research on data aggregation
has mostly focused on reducing the number of pollers and its
impact on false alarm rates. Our work is somewhat orthogonal
in that it addresses planning with respect to ordering and
scheduling of push and pull operations (proactive and reactive
modes). It will be interesting to study the interactions between
these two problems.

DTN has been an active area of research for the past few
years [6], [5]. The major focus is designing effective routing
and message dissemination schemes [6], [7], [8]. Typically,
routing strategies exploit connectivity patterns, node mobility
patterns, packet replication, and social affinity for achieving
effective packet delivery [5], [28], [3]. Unfortunately, research
on building applications and systems on DTNs has thus far
been confined to simple web applications, distributed file
systems, and caching [29], [30], [9]. This paper is a step
towards closing this critical gap.

VIII. C ONCLUSION

Current centralized CED techniques have significant lim-
itations that make them ineffective for multi-hop DTN en-
vironments. In this paper, we present Comet, which, to the
best our knowledge is the first decentralized multi-level CED
planner in which the multiple DTN nodes share CED tasks.
Comet’s planner is characterized by three novel techniques.
First, it constructs cost-and-delay efficient CED trees using a
unique h-function. Second, it incorporates a two-phase push-
pull conversion heuristic that employs both single-targetand
multi-target pulls to progressively lower CED costs. Third,
a unique technique called shorting is designed for creating
virtual topologies. Shorting creates virtual CED trees by elimi-
nating junction nodes at various levels of the CED tree, thereby
countering scenarios in which detecting sub-CEs at every
junction leads to suboptimality. Through extensive experi-
mental evaluation, we have shown that in most cases Comet
produces significantly better plans than existing centralized
CED mechanisms.
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