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Abstract—In the era of big data, interest in analysis and
extraction of information from large data graphs is increasing
rapidly. This paper examines the field of graph analytics from
somewhat of a query processing point of view. Whether it be
determination of shortest paths or finding patterns in a data
graph matching a query graph, the issue is to find interesting
characteristics or information content from graphs. Many of
the associated problems can be abstracted to problems on
paths or problems on patterns. Unfortunately, seemingly simple
problems, such as finding patterns in a data graph matching a
query graph are surprisingly difficult. In addition, the iterative
nature of algorithms in this field makes the simple MapReduce
style of parallel and distributed processing less effective. Still,
the need to provide answers even for very large graphs is
driving the research. Progress, trends and directions for future
research are presented.

Keywords-big data; graph analytics; graph databases, Se-
mantic Web, social networks, graph paths, graph patterns;

I. INTRODUCTION

Simply put, Big Data Analytics takes data on an unprece-
dentedly large scale to make predictions, find patterns and
enhance understanding. In the past, the challenge was to
create/obtain data, but now, and more so in the future, it will
be what to do with all the available data. How will the data
be stored, shared or made open? How can the right subsets of
data be found for conducting data analytics? What advances
in algorithms as well as parallel and distributed implementa-
tions will be possible? The challenges for big data analytics
would be overwhelming if not for the progress already made
in several disciplines: statistics, numerical linear algebra,
machine learning, data mining, graph theory, graph mining,
databases and parallel and distributed processing.

In many cases, the data is numerical in nature (or can
be converted to this form). Often such data is captured in
a matrix and used to estimate parameters in a predictive
model. In other situations, the relationships between data
items is what is of most importance. In such cases, the data
may be captured in a graph. Many techniques have and are
being developed for performing analytics on graphs.

Graph analytics has wide ranging applications in many
diverse domains such as World Wide Web (WWW) data
management, Internet and overlay management, road net-
works, online social networks and bio-chemistry. Most of
these domains are characterized by massive, and in many

cases dynamic graphs. Many routine tasks in these domains
require analyzing the underlying graph via various types of
queries. For example, the famous page rank algorithm for
ranking Web search results is in essence a link analysis al-
gorithm, and it works by iteratively propagating the weights
(representing the importance of Web domains) through the
edges (representing the hyperlinks) of a Web graph. As a
second example, relationship analysis is a fundamental task
in many social networks such as Facebook, Twitter, and
LinkedIn. It is used for suggesting friends/products, and
placing advertisements. Relationship analysis necessarily
involves computing paths among the vertices (representing
users) in a social network. Fan et al. [1] demonstrate how
identifying suspects in a drug ring can be modeled as a
subgraph pattern search problem. Driving direction com-
putation in an online map application (e.g., Google maps,
MapQuest, etc.), connectivity monitoring and root cause
analysis in large-scale distributed systems, and identification
of chemical structures and analysis of biochemical pathways
in biological sciences are other examples of tasks requiring
graph analytics.

Traditional graph computation algorithms, many of which
are highly sequential in nature do not scale well to effec-
tively support massive graphs. Two distinct approaches have
been pursued in recent years to overcome the limitations
of traditional graph analytics — (a) designing paradigms
to distribute the computation among the machines of a
shared nothing cluster and (b) designing smart indexing
techniques for on-demand execution of graph queries. While
MapReduce (MR) is a popular cluster computing paradigm,
it is not well suited for graph analytics because many graph
analytics tasks are iterative in nature. Recently, alternative
paradigms based on the Bulk Synchronous Parallel (BSP)
programming model [2] have been proposed. These include
the “think like vertex” paradigm (exemplified by systems
like Pregel [3], Giraph [4] and GPS [5]) and the “think
like graph” paradigm. Many indexing schemes have been
proposed for various types of graph queries including dif-
ferential structures and G-String [6] (for pattern matching
queries) and 2-Hop [7], GRIPP [8] and Dual-labeling [9]
(for reachability queries).

Despite these recent advances, scalable graph analytics is
still challenging on multiple fronts. First, designing parallel



graph algorithms whether in the vertex-centric or graph
centric paradigms is not straightforward; certain problems
such as subgraph pattern matching are notoriously difficult to
parallelize. Second, the performance of cluster-based graph
computation frameworks is dependent upon multiple factors
such as vertex distribution among compute nodes, character-
istics of the algorithm in terms of whether the computation
is confined to subsets of compute nodes at various stages
of the computation, and computation and communication
capabilities of the cluster. Managing the inherent tradeoffs
among these diverse factors so as to achieve close to
optimal performance is a significant challenge. Third, many
of the existing graph indexes are brittle with respect to
graph changes, and hence are not cost-effective for dynamic
graphs. Thus, for dynamic graphs, it is necessary to design
indexing schemes that are more flexible and resilient to
graph changes. Fourth, in many applications such as Linked
Open Data, the graph data is geographically distributed (for
example, in multiple data centers). This adds an additional
layer of complexity. To our best knowledge very few of the
existing research efforts consider data that is split amongst
multiple locations.

The rest of this paper is organized as follows: Section II
provides basic definitions and outlines key problems in the
domain of graph analytics. Current and future applications of
graph analytics are discussed in section III. Computational
models and frameworks used for efficient parallel and dis-
tributed implementations are discussed in section IV. Finally,
section V concludes the paper.

II. GRAPH ANALYTICS

When relationships between data items take center stage
(e.g., social networks), big data analytics often takes the
form of graph analytics, in which the data items are repre-
sented as labeled vertices, and the relationships as labeled
edges. Many problems in graph analytics may be formulated
in terms of labeled multidigraphs. A labeled multidigraph
allows multiple directed edges between any two vertices, so
long as they are differentiably labeled. More formally, a la-
beled multidigraph may be defined as a 4-tuple G(V,E,L, l)
where

V = set of vertices

E ⊆ V × V × L (set of labeled edges)

L = set of labels

l : V → L (vertex labeling function)

(1)

The connections between vertices are characterized by a set
of edges. When not considering edge labels, E ⊆ V ×V and
the multidigraph becomes a digraph. For a digraph, uv ∈ E
mean that there is a directed edge from vertex u to v. The
same notation will be used for multidigraphs, rather than the
more detailed and precise projection uv ∈ π12(E).

A simple way to characterize the connectivity is in terms
of children and parents, as defined by the following two
set-valued functions.

child(u) = {v : uv ∈ G.E}
parent(u) = {w : wu ∈ G.E}

Many of the problems in graph analytics involve finding
paths, patterns or partitions in very large data graphs (e.g.,
graphs with a billion edges). These problems are strongly
interrelated. A path may be viewed as a simple linear
pattern and partitioning is needed for both path and pattern
problems, when graphs become too large to store or process
on a single machine or single thread.

A. Path Problems
1) Reachability: Path problems involve asking questions

about paths between vertices in graph G. The simplest is
given two vertices, u,w ∈ G.V , find a path (set of edges)
connecting them.

path(u,w) = uv1li1 , v1v2li2 , . . . , vnwlin+1
∈ G.E

This can be generalized to return all paths between u and
w.

a-paths(u,w) = {p : p = path(u,w)}

The arguments may also be generalized to sets of vertices.
Reachability is simply

reach(u,w) = ∃path(u,w)

Reachability analysis has applications in many domains
including XML indexing and querying, homeland security,
navigation in road networks and root causes analysis in
large-scale overlay-based distributed systems. A straight-
forward approach to this problem is to do an on-demand
traversal (breadth-first or depth-first) on the graph. However,
graph traversal is O(v + e) where v (e) is the number
of vertices (edges) in the graph. This makes traversal-
based approaches unsuitable for very large graphs especially
when the query loads are high. An alternate choice is to
compute the Transitive Closure (TC) of the graph. But
the storage costs of TC are too high (O(v2)). To address
these issues, several indexing-based approaches have been
proposed. As the name suggests, these approaches rely upon
certain indexes (sometimes stored in a relational database)
for speeding up the reachability query evaluation. The in-
dexes are constructed by doing a breadth-first or depth-first
traversal (a one-time cost), and harnessed to answer many
reachability queries. Examples of index-based reachability
analysis include 2-Hop, Duallabeling, and Gripp.

Future Directions: While reachability analysis in static
graphs has received considerable research attention in recent
years, surprisingly, there is very little work on reachability
analysis in dynamic (time-evolving) graphs. Many of the ap-
proaches cannot be extended to dynamic graphs in a straight-
forward manner because they are too brittle to handle graph



changes. In other words, even minor changes in the graph
require massive updates to the index structures. Developing
robust reachability analysis frameworks for dynamic graphs
poses many important challenges. First, there can be multiple
temporal classes of reachability queries including version-
specific reachability queries (where reachability testing is
done a specific version of the graph), inverse version-specific
queries (finding the first/nth/all version(s) satisfying a given
reachability test) and continual reachability queries (trigger
queries that require continuous monitoring of reachability
status). Each class has unique requirements and hence needs
very distinct approaches. Second, the straight forward ap-
proach of re-indexing the graph on every change is very
costly, and hence impractical. Thus, we need a framework
that manages the tradeoffs between the indexing costs and
query latencies. Third, we need better (and probably simpler)
indexing strategies that can be incrementally maintained as
the underlying graph changes. Fourth, most of the existing
studies on reachability analysis use Relational Databases
(RDBs) or main-memory indexing structures. However, both
of them have inherent limitations. While traditional RDBs
are often too bulky (and thus perform poorly especially for
ingesting large amounts of indexing data), main memory
indexing schemes are limited by the main-memory avail-
ability. An important and interesting question in this regard
is whether recent research on No-SQL databases such as
Cassandra, BigTable, MongoDB and DynamoDB can be
harnessed for storing reachability indexes.

In two recent research projects we demonstrated how
the interval-based indexing paradigm can be extended for
answering snapshot-specific and continuous reachability
queries in dynamic hierarchies and graphs [10], [11]. How-
ever, we believe that the research on reachability analysis in
dynamic graphs is in very nascent stages, and much more
work needs to be done to address the above challenges.

Finding paths constrained by a formal language, i.e.,
where labels of edges forming a path must form a string
from a formal language over an alphabet Σ, have recently
gained significant attention This can involve a single path
(e.g., shortest) or all paths between u and w. The problem of
finding simple paths constrained by regular expressions has
been studied quite intensively [12], [13]. Formal language
constrained graph problems were discussed in [14], who
showed that shortest path problems, when constrained by
a context-free language can be solved in polynomial time.
However, finding simple paths between a source and a given
destination, constrained by a regular language, is NP-hard,
unless the graph itself is treewidth bounded, when it can be
solved in polynomial time.

More research is needed in this area, especially in regard
to very large and distributed graphs, including the very large
data sets within the Linking Open Data project, discussed
in section III.B, later in this paper.

2) Shortest Path: The purpose of shortest path problems
is to find a path with the minimum distance (cumulative
edge weight) that includes all k vertices in the path. Versions
exists for both directed and undirected graphs. When k =
2, Dijkstra’s Algorithm [15] or the Bellman-Ford algorithm
[16] may be used. For a digraph, let the edge label l(e)
represent an edge weight, then given vertices u and w, find
s-path.

s-path(u,w) = argmin
p∈a-paths(u,v)

[ ∑
e∈p

l(e)
]

For k = 3, three applications of Dijkstra’s Algorithm (or
equivalent) will suffice to find the short path connecting all
three vertices. The all-pairs short path problem [17] is also
of interest in Big Data Analytics.

B. Pattern Problems

A simple and common form of pattern query, is to
take a query graph Q and match its labeled vertices to
corresponding labeled vertices in a data graph G.

pattern(Q,G) = Φ : Q.V → 2G.V such that
∀u′ ∈ Φ(u), l(u′) = l(u)

One may think of vertex u in the query graph Q having a
set of corresponding images {u′i} in the data graph G.

1) Graph Simulation: In addition to the labels of the
vertices matching, patterns of connectivity should match as
well; e.g., child match. Given, a possible match between
u ∈ Q.V and u′ ∈ Φ(u), it is accepted iff for each vertex
v in child(u) there is a vertex in Φ(v) that is present in
child(u′) as well.

matchc(u, u
′) = ∀v ∈ childQ(u),∃v′ ∈ Φ(v) such that

u′v′ ∈ G.E

Algorithms for graph simulation typically work as fol-
lows: For each vertex u ∈ Q.V , initially compute the
mapping set Φ(u) based on label matching. Then, repeatedly
check the child match condition, matchc, for all vertices
to refine their mapping sets until there is no change. For
example, in Figure 1, Φ(2Q) = {2G, 7G}, so both ver-
tices must undergo a child match, matchc(2Q, 2G) and
matchc(2Q, 7G). The matchc(2Q, 7G) condition is evalu-
ated as follows:

matchc(2Q, 7G) = ∀v ∈ {1Q, 3Q, 4Q},∃v′ ∈ Φ(v) such
that 7Gv

′ ∈ G.E

The matchc is true, since 8G ∈ Φ(1Q) and 7G 8G ∈ G.E,
5G ∈ Φ(3Q) and 7G 5G ∈ G.E, and 9G ∈ Φ(4Q) and
7G 9G ∈ G.E. If the matchc evaluated to false, vertex 7G
would be removed from Φ(2Q).

Similarly, one may wish to match parents. Given, a
possible match between u ∈ Q.V and u′ ∈ Φ(u), it is
accepted iff for each vertex in w in parent(u) there is a
vertex in Φ(w) that is present in parent(u′) as well.
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Figure 1. An Example for explaining the graph simulation algorithm

matchp(u, u′) = ∀w ∈ parentQ(u),∃w′ ∈ Φ(w) such that
w′u′ ∈ G.E

When the connectivity constraint is matchc, the pattern
matching model is referred to as graph simulation [18],
while when both matchc and matchp are used it is referred
to as dual simulation [19].

To further restrict the matches, one may wish to eliminate
solutions that contain large cycles which are possible to
appear with dual simulation. Various locality restrictions
may be added to dual simulation for this purpose. For strong
simulation [19], any solution (match in G) must fit inside a
ball of radius equal to diameter of the query graph Q.

Strict simulation [20] is based on strong simulation, but
applies dual simulation first to reduce the number of balls.
This also reduces the number of solutions.

A further restriction that reduces the number of balls and
makes the balls smaller, is called tight simulation [21]. First
the center of the query graph Q, call it uc, is found and then
balls are created for u′ ∈ Φ(uc). In addition, the radius of
these balls is equal to the radius, not the diameter, of the
query graph.

Tight simulation can be modified to produce results closer
to subgraph isomorphism by using cardinality restrictions
on child and parent matches to push results towards one-
to-one correspondences. This modification is referred to
as Cardinality Restricted (CAR)-tight simulation [22]. For
matchc(u, u

′) to be true, in addition to the constraints for
tight simulation, the child count for each label must be
at least as large for vertex u′ ∈ G.V as it is for vertex
u ∈ Q.V . For example, while tight simulation evaluates
matchC(2Q, 13G) to true, as 14G is used to match both of
2Q’s children, CAR-Tight simulation evaluates it to false, as
14G has only one C-labeled child, while vertex 2Q has two.

2) Graph Morphisms: More complex and often more
constrained forms of pattern matching occur when a com-
plete correspondence between edges is required.

matche(Q,G) = ∀uv ∈ Q.E,∃u′v′ ∈ Φ(u)× Φ(v)
⋂
G.E

This requires that for any edge uv ∈ Q.E, there must be
a corresponding edge u′v′ ∈ Φ(u) × Φ(v)

⋂
G.E. In such

case, the Φ(·) set-valued function may be decomposed into a
set of mapping functions {fi(·)} that map a vertex u ∈ Q.V
to a vertex u′ ∈ G.V . This form of pattern matching is

called graph homomorphism [23]. If we further require the
mapping functions {fi(·)} to be bijections between Q.V
and G′.V , where G′ is a subgraph of G (G′ ⊆ G), then the
form of pattern matching is called subgraph isomorphism
[24]. (Some authors make a distinction between subgraph
isomorphism and graph monomorphism (injective mapping),
by requiring for subgraph isomorphism that G′ to be induced
by the selected vertices, i.e., include all edges having both
endpoints in G′.V [25].) The difference between graph
homomorphism and subgraph isomorphism is that the former
requires a correspondence between vertices, while the latter
requires a one-to-one correspondence.

According to [26], the tightest upper bound known for
such pattern matching algorithms is

O(NQNG
NQ)

where NQ = vQ + eQ (the number of vertices and edges
in the query graph) and NG = vG + eG (same for data
graph). As query graphs increase in size, the complexity of
pattern matching goes up rapidly. Unless there is a fixed
upper bound on NQ, finding subgraphs matching the query
graph is NP-hard.

Figure 2 shows an example of a query graph Q and
data graph G, and all eight forms of pattern matching. In
the example, loosely inspired from Amazon’s product co-
purchasing network, if a product familty u is frequently
co-purchased with product family v, the graph contains a
directed edge uv from vertex u to v. Here, each letter inside
the vertex is the category of the product and represents its
label. Moreover, each number beside a vertex represents its
ID number. The subgraph matching results of this example
are displayed in Table I. For the first two rows, the set-
valued Φ function is given, while for the next four, results are
segmented into balls, and for the last two, mapping functions
are given. The column Count displays the total number of
vertices appearing in the results.

A more flexible type of morphism called graph homeo-
morphism [27] can be thought of as representing a topo-
logical match. The idea is that is does not matter whether
vertices u and v are connected directly, i.e., uv ∈ G.E or
indirectly. A sequence of edge subdivision and smoothing
operations can be performed as part of the topological
match. Subdivision occurs when a vertex w ∈ G.V is
inserted between u and v, replacing the edge uv with
uw and wv. Smoothing goes the other direction, replacing
uw,wv ∈ G.E with uv, so long as w is connected to nothing
else (indegree(w) = outdegree(w) = 1).

Table II shows the complexity results for the nine graph
pattern matching models discussed. The ones based on
graph simulation are in P , while those based on morphisms
are NP-hard. The table also indicates the containment
hierarchy. In many cases the results of one model are
strictly contained within that of another. In some cases,
they are incomparable, e.g., CAR-tight simulation and graph
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Figure 2. An Example of Subgraph Pattern Matching that shows the difference of the results for different Models

Table I
RESULTS OF DIFFERENT PATTERN MATCHING MODELS DISPLAYED IN FIGURE 2

Model Subgraph Results Count

Graph Simulation Φ(1, 2, 3, 4) → ({1, 6, 8, 12, 16, 19, 20, 24, 27, 30}, {2, 7, 13, 15, 17, 21, 23, 26, 29} 29

, {3, 4, 5, 9, 11, 14, 18, 22, 25, 28}, {3, 4, 5, 9, 11, 14, 18, 22, 25, 28})

Dual Simulation Φ(1, 2, 3, 4) → ({1, 6, 8, 12, 16, 19, 20, 24, 27, 30}, {2, 7, 13, 15, 17, 21, 23, 26, 29} 28

, {3, 4, 5, 9, 14, 18, 22, 25, 28}, {3, 4, 5, 9, 14, 18, 22, 25, 28})

Strong Simulation Φ(1, 2, 3, 4) → ({1, 6, 8}, {2, 7}, {3, 4, 5, 9}, {3, 4, 5, 9}), (12, 13, 14, 14) 20

, ({16, 19, 20}, {15, 17, 21}, {14, 18, 22}, {14, 18, 22})

Strict Simulation Φ(1, 2, 3, 4) → ({1, 6, 8}, {2, 7}, {3, 4, 5, 9}, {3, 4, 5, 9}), (12, 13, 14, 14) 12

Tight Simulation Φ(1, 2, 3, 4) → (1, 2, {3, 4, 5}, {3, 4, 5}), (12, 13, 14, 14) 8

CAR-Tight Simulation Φ(1, 2, 3, 4) → (1, 2, {3, 4, 5}, {3, 4, 5}) 5

Graph Homomorphism f(1, 2, 3, 4) → (1, 2, 3, 4), (1, 2, 3, 5), (1, 2, 4, 5), (1, 2, 3, 3), (1, 2, 4, 4), (1, 2, 5, 5), (12, 13, 14, 14) 8

Subgraph Isomorphism f(1, 2, 3, 4) → (1, 2, 3, 4), (1, 2, 3, 5), (1, 2, 4, 5) 5

Table II
COMPLEXITY CLASS OF DIFFERENT PATTERN MATCHING MODELS

Model Complexity Class Source Results Contained in

Graph Simulation Quadratic Henzinger et al. 1995 [18] -

Dual Simulation Cubic Ma et al. 2011 [19] Graph Simulation

Strong Simulation Cubic Ma et al. 2011 [19] Dual Simulation

Strict Simulation Cubic Fard et al., 2013 [20] Strong Simulation

Tight Simulation Cubic Fard et al., 2014 [21] Strict Simulation

CAR-Tight Simulation Cubic Fard et al., 2014 [22] Tight Simulation

Graph Homeomorphism NP-hard Fortune et al., 1980 [28] -

Graph Homomorphism NP-hard Hell and Nesetril, 1990 [23] Graph Homeomorphism and Tight Simulation

Subgraph Isomorphism NP-hard Garey and Johnson, 1979 [29] Graph Homomorphism and CAR-Tight Simulation

homomorphism.
So far the edge labels have been largely ignored. They

simply further restrict the edge matching, i.e., the edges’
endpoints must correspond and their labels must match.

matche(Q,G) = ∀uvλ ∈ Q.E,∃u′v′λ′ ∈ G.E and u′v′ ∈
Φ(u)× Φ(v) and λ = λ′

Labels may be integers, reals, vectors, strings or tuples,
depending upon the application. For query processing, in-
teger representations may often be used for speed (e.g.,
unique identifiers or hash codes for strings, etc.). For more
generalized queries, one may relax the label matching for
vertex/edge labels in query graph Q to include the following:

• Wildcards: Special characters are used to match zero

or more characters/one character.
• Regular Expressions: String patterns may be specified

using ranges, unions and closures.
• Variables: The use of variables, e.g., ?x hasColor
’red’ and ?x numTires 4, allows the label to
be unspecified, other than by the relationships it is
in. Query languages for graph databases and RDF
triplestores, allow variables for the relationship as well,
e.g., ?x ?y ’red’.

• Predicates: Implicit in label matching is the equality
predicate. Most practical query languages will at least
include the common six (=, !=, <, <=, >, >=).

Regarding the fact that answering pattern queries on
massive graphs can be very time consuming, devising tech-



niques to improve their response time is an active field
of research. An important technique is design and imple-
mentation of distributed algorithms to harness the power
of Big Data platforms for this purpose [30], [20]. Also, a
very recent thread of research investigating usage of view
and caching techniques with respect to pattern queries [31],
[22]. Moreover, real-world data graphs are evolving over
time; i.e., there are minor changes in their structure through
the time. Hence, it should be possible to design incremental
algorithms for pattern problems in many applications [32].

Another area of research involves situations where one
is interested in incomplete or inexact matches of Q in G.
For example, one could find maximum (or maximal) partial
matches of Q in G. Maximum can be measured in terms
of missing vertices or missing edges. The former problem
is called Maximum Common Subgraph (MCS), while the
latter is called Maximum Common Edge Subgraph (MCES).
A graph C is a common subgraph to graphs Q and G, when
it is isomorphic to subgraphs of each.

common(Q,G) = C such that C isomorphic to Q′ and G′

where Q′ ⊆ Q and G′ ⊆ G. An MCS is a common subgraph
with the maximum number of vertices [33], while an MCES
is a common subgraph with the maximum number of edges
[34]. These types of pattern matching are not the focus of
this paper, but the following paper [35] provides a good
survey.

The long term trend for research in graph pattern matching
is to the attack the problem of NP-hardness (e.g., Subgraph
Isomorphism and Graph Homomorphism, see Table II) from
two directions. Effective techniques for indexing, ordering
evaluations and pruning away vertices have provided huge
speed-up, e.g., compare the performance recent algorithms,
DualIso [36] and TurboIso [37], to that of the original
algorithm for subgraph isomorphism, Ullmann’s Algorithm
[24]. The other direction, is to create more sophisticated
polynomial algorithms that produce results more closely
resembling the results produced by Subgraph Isomorphism.
As shown in Table I, the move from graph simulation to
dual to strong to strict to tight to CAR-tight simulation,
illustrates the progress in this research direction. Although
more complex, an extension beyond dual simulation to also
check grandchildren could be tested. Many combinations of
checking grandchildren (or grandparents) could be added to
all the simulation models described above. The polynomial-
time algorithms developed could be closer to the results
produced by subgraph isomorphism. Unfortunately, provid-
ing absolute or relative error bounds is complicated by the
fact that related inexact problems like MSC and MCES are
Approximable APX-hard [38]. The other avenue is to apply
more computational power through parallel and distributed
techniques, see section IV.

III. APPLICATIONS

A. Graph Databases

Graph databases [39] have existed form some time. Re-
cently, with the emergence of NoSQL databases [40] as
an alternative to traditional Relational Databases for big
data applications requiring greater storage and performance,
graph databases, along with document databases, are gaining
in momentum. Some of the popular graph databases are
Neo4j [41], OrientDB [42] and Titan [43].

In this paper, the focus is not on graph databases, but
rather how advances in graph pattern matching could be
used in graph database engines to improve query processing.
Neo4j supports two query languages Cypher and Gremlin
[44]. Consider the following query in the Cypher language.

MATCH (x: Lawyer, y: Doctor, z: Lawyer,
x-[:FRIEND]->y,
x-[:COMPETES_WITH]->z,
y-[:FRIEND]->z)

Given two lawyers and one doctor, where the first lawyer is
a friend of the doctor and competes with the second lawyer,
whom the doctor is friends with, find all (or a sufficient
number of) occurrences of the query graph in the large
data graphs making up the graph database. Typically, graph
database query engines will solve such pattern matching
queries using (i) subgraph isomorphism, (ii) graph homo-
morphism or (iii) graph homeomorphism algorithms.

GraphQL [45] defines graph pattern matching in terms
of subgraph isomorphism. The paper defines a Φ function
similar to ours, but generalizes to matching a predicate fu
rather than a label l. Given a vertex u ∈ Q.V , the initial
matches in G are defined as follows:

Φ(u) = {u′ : u′ ∈ V.G and fu(u′)}

The pattern matching algorithm used in GraphQL first
computes Φ for all vertices in Q (these are called the feasible
mates) and then narrows down the choices by checking the
correspondence of edges.

The GrGen [26] uses graph homomorphism to match
query and data graphs. Although graph pattern matching
queries are much faster in graph databases than in relational
databases [44], current and new research ideas could be
incorporated for further speed-up. Graph databases can also
benefit from the considerable amount of research performed
on indexing techniques [46].

B. Semantic Web

The concept of Semantic Web has been introduced by
Tim Berners-Lee as an evolution of the World Wide Web to
enable data sharing and reuse “across application, enterprise,
and community boundaries”. The Semantic Web is based on
a number of standards, including the Resource Description
Framework (RDF), the Web Ontology Language (OWL)
and SPARQL. Conceptually, data encoded using RDF is



represented as a directed labeled multigraph, making RDF
similar in many respects to graph database models. In an
RDF graph, vertices are the resources (IRIs), blank nodes,
or literals and edges are formed from RDF triples (the
triple’s predicate, which is an IRI, is the edge’s label).
Strictly speaking, blank nodes may have no identifiers and
therefore no corresponding labels, which makes an RDF
graph slightly different than a multigraph introduced in
section II. However, it is a minor problem, since most RDF
serialization formats require blank node identifiers.

While many implementations of RDF triple-stores rely
on some form of a relational database, in some cases, RDF
triple-stores are organized as graphs [47]. Some other im-
plementations are quad stores, as RDF data sets may include
multiple graphs and the graph to which a triple belongs
is the fourth element, making it a quadruple. SPARQL is
the query language for RDF data sets, recommended by the
World Wide Web Consortium. The example Cypher query
from section III.A looks very similar when expressed in the
in the SPARQL query language:

SELECT ?x, ?y, ?z
WHERE { x a Lawyer . y a Doctor . z a Lawyer .

x friend y .
x competes_with z .
y friend z }

There has been a considerable amount research conducted
to optimize query engines for processing SPARQL queries
[48]. Much of the progress involved development of sophis-
ticated indexing strategies and graph-based storage models.

Recently, a Linking Open Data (LOD) project [49] has
been initiated to provide a method of publishing a variety
of structured data sets as interlinked RDF data sets. As of
2014, the LOD project comprised 1014 interlinked RDF
data sets spanning a multitude of knowledge areas, such
as life sciences, geographic, government, social networking,
publications, media, and linguistics. At the center of it is
DBpedia, an RDF representation of the Wikipedia, which is
interlinked with a high number of other data sets. Overall,
the size of the interlinked RDF graph in the LOD cloud is
measured in tens of billions of RDF triples and therefore
edges (over 80 billion as of this writing).

As the sizes of individual RDF data graphs continue to
grow dramatically, optimization of processing of SPARQL
queries becomes even more important, especially in view of
the need for complex, hypothesis-driven [50] and analytics-
related queries. Much effort must be dedicated to distributed
processing of SPARQL queries [51], [52]. Furthermore,
processing of federated SPARQL queries (introduced in
SPARQL 1.1) on the LOD graph is challenging and requires
vigorous research.

As the individual data sets dramatically increase in size,
RDF graph partitioning and its impact on distributed pro-
cessing of SPARQL queries and RDF graph analytics [53]
is of significant importance. SPARQL query processing was

formulated in terms of subgraph isomorphism and related to
graph databases in [54]. A SPARQL implementation based
on graph homomorphism is given in [55]. Even though
SPARQL’s OPTIONAL graphs and the UNION operator
offer much flexibility in query formulation, many RDF ana-
lytics tasks may be expressed much easier with the addition
of a other query types. For example, it will be important to
include query forms based on graph simulation and other
graph morphisms discussed in section II.B, which are not
directly available in SPARQL. This will require providing
additional query forms and/or relaxing the strict subgraph
isomorphism semantics of the current query language.

C. Social Networks/Media and Web Mining

Graphs are employed heavily in online social net-
works/media (Facebook, Twitter, LinkedIn, etc.) and online
retailers (e.g., Amazon). The reason for this popularity is
that graphs offer a natural way of representing various kinds
of relationships that are important for these applications.
The friendship graph in Facebook, the follower graph in
Twitter, endorsement graph in LinkedIn and product affinity
graph in Amazon are some examples of social network
and media graphs. The characteristics and properties of
graphs vary significantly from one application to another.
For example, the follower-following relationship graph in
Twitter is a directed graph with various users as its vertices.
A directed edge from vertex u to vertex v signifies that the
user represented by u is a follower of user v. Note that most
of the graphs in most online social networks and e-commerce
companies are not only massive but also dynamic.

Social media companies are keen to derive business
intelligence by running various kinds of analytics on these
graphs. Computing various path related statistics is among
the most common type of graph analytics. For example,
social networking companies are interested in finding the
most “influential” persons amongst their user-base. A popu-
lar metric for quantifying influence is the number of vertices
within n hops of a given person. Thus, computing the
exact/approximate number of n-hop neighbors of all or a
subset of vertices is a common analytics task. Interestingly,
there are two problems embedded in this task – computing
the number of n-hop neighbors from scratch and maintaining
the statistics as the graph undergoes changes. A variant of
this problem is to estimate the influence as a weighted
sum of n-hop neighbors (for instance, Influence(v) =∑n

j=1
# of j-hop vertices

j ). In this equation, the contribu-
tion of a vertex to the influence score of another vertex
diminishes as the distance between them increases. Other
commonly employed path-related graph analytics tasks in-
clude: (a) computing shared n-hop neighbors between a
given pair of vertices (used for suggesting friends), (b)
computing one or more paths between a given pair of
vertices (for illustrating how a suggested friend is related to
a given user), and (c) computing graph centrality measures.



Graph pattern matching queries are also popular in social
media applications. Besides the relatively controlled environ-
ments provided by graph databases and their cousins RDF
triple-stores, there is a great deal of interest in graph pattern
matching in social networks/media and mining the Web in
general. As pointed out by [56], the data in such contexts are
more noisy, so that exact matching, particularly of complex
topology, may be less useful than inexact matching. For
these types of applications, some form of graph simulation
may be more useful than subgraph isomorphism.

For such applications, the use of graph homomorphism
is discussed in [57]. Graph homomorphism is more flexible
than subgraph isomorphism, as stated in Khan et al, 2013,
“In contrast to strict one-to-one mapping as in traditional
subgraph isomorphism tests, we consider a more general
many-to-one subgraph matching function. Indeed, two query
nodes may have the same match” [57]. Beyond that, the
work reported in the paper also relaxes the strict label
matching used in subgraph isomorphism [57]. Relaxations
to both graph homomorphism and subgraph isomorphism
are presented in [58]. The basic idea is similar to that of
graph homeomorphism in which an edge in one graph is
mapped/matched to a path in the other graph. A form of
graph homeomorphism where edges are mapped to simple
paths matching a regular expression is discussed in [59].

IV. COMPUTATIONAL MODELS AND FRAMEWORKS

For problems that have a few well-defined phases of
computations, MapReduce style computations provide a
means for highly parallel execution in large clusters with
hundreds or more machines [60]. Some classical examples
are word counting, statistics such as means and variances,
and page rank. Frameworks, like Hadoop [61], put such
capabilities within the hands of many programmers. Unlike
the Message Passing Interface (MPI) [62], only a limited
amount of specialized training is needed. The provision of
fault-tolerant execution and a high-performance distributed
file system further makes programming easier. Typically
in Hadoop, data is read from the Hadoop Distributed File
System (HDFS) by mappers based on a key values and
written back to HDFS, and read by reducers, merged and
again written back.

More complex algorithms, particularly iterative algo-
rithms, are less amenable to the basic MapReduce style.
Apache Storm [63] is similar to Hadoop, but focuses on
more efficient stream processing, allowing data to be sent
directly from one worker to another. Apache Spark [64]
maintains intermediate results in main memory to reduce the
number of slow page transfers to and from secondary storage
and thereby, speed up computations. Hadoop 2 [65] adds the
YARN resource manager, so that other programming models
in addition to MapReduce can be supported.

An alternative to dividing computations into mappers and
reducers for iterative algorithms, is to divide computations

into a series of supersteps that involve receiving input
messages, performing computations and sending output mes-
sages. Synchronization is system provided, since a task must
wait for all tasks within a superstep to complete, before
moving on the next superstep. This approach was made
popular with Bulk Synchronous Parallel (BSP) [2]. In cases,
where the number of superstep is not too large and work is
well balanced among the tasks, BSP can be quite useful for
implementing graph algorithms.

A special form of BSP, called vertex-centric, has become
popular for big data graph analytics. In this programming
model, each vertex of the graph is a computing unit which is
conceptually a task in BSP. Each vertex initially knows only
about its own status and its outgoing edges. Then, vertices
can exchange messages through successive supersteps to
learn about each other. When a vertex believes that it has
accomplished its tasks, it votes to halt and goes to inactive
mode. When all vertices become inactive the algorithm
terminates. Several frameworks support this style of pro-
gramming including Pregel [3], GPS [5] and Giraph [4].

Although the BSP computing model can be success-
fully used for graph, dual, strong, strict, tight, CAR-tight
simulation, our work has found significant overhead in
the synchronization. This is particularly true in the latter
supersteps when many of the vertices have dropped out
of the calculation. To obtain better performance, one may
resort asynchronous frameworks such as GraphLab [66] and
GRACE [67]. Unfortunately, this approach puts much of the
burden for synchronization back on the programmer.

Future research may pursue two research directions. First,
combining the ease of programming and high scalability
potentials of BSP, with the performance advantages of
asynchronous programming should be explored. Second,
effective combination of multi-core parallel programming
with cluster-based distributed programming, with minimal
complexity overhead should be pursued as well.

V. CONCLUSIONS

With the increasing importance and growing size of graph
stores and databases, recent research activity has increased
substantially. Progress has also been substantial, but many
challanges remain for future research.

REFERENCES

[1] W. Fan, J. Li, S. Ma, N. Tang, Y. Wu, and Y. Wu, “Graph
pattern matching: from intractable to polynomial time,” Proc.
VLDB Endow., vol. 3, no. 1-2, pp. 264–275, Sep 2010.

[2] L. G. Valiant, “A bridging model for parallel computation,”
Communications of the ACM, vol. 33, no. 8, pp. 103–111,
1990.

[3] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn,
N. Leiser, and G. Czajkowski, “Pregel: a system for large-
scale graph processing,” in SIGMOD. ACM, 2010, pp. 135–
146.



[4] “Giraph website,” http://giraph.apache.org/.

[5] S. Salihoglu and J. Widom, “GPS: A graph processing
system,” in SSDBM. ACM, 2013, pp. 22:1–22:12.

[6] H. Jiang, H. Wang, P. S. Yu, and S. Zhou, “GString: A novel
approach for efficient search in graph databases,” in ICDE,
2007.

[7] E. Cohen, E. Halperin, H. Kaplan, and U. Zwick, “Reacha-
bility and distance queries via 2-hop labels,” SIAM Journal
on Computing, vol. 32, no. 5, pp. 1338–1355, 2003.

[8] S. Trisl and U. Leser, “Fast and practical indexing and
querying of very large graphs,” ser. SIGMOD. ACM, 2007,
pp. 845–856.

[9] H. Wang, H. He, J. Yang, P. S. Yu, and J. X. Yu, “Dual
labeling: Answering graph reachability queries in constant
time,” in ICDE’06. IEEE, 2006, pp. 75–75.

[10] P. R. Mullangi and L. Ramaswamy, “SCISSOR: scalable
and efficient reachability query processing in time-evolving
hierarchies,” in 22nd ACM International Conference on In-
formation and Knowledge Management, CIKM’13, 2013.

[11] ——, “CoUPE: Continuous query processing engine for
evolving graphs,” in 2015 IEEE International Congress on
Big Data, 2015.

[12] A. O. Mendelzon and P. T. Wood, “Finding regular simple
paths in graph databases,” in Proceedings of the 15th Inter-
national Conference on Very Large Data Bases, ser. VLDB
’89. Morgan Kaufmann Publishers Inc., 1989, pp. 185–193.

[13] ——, “Finding regular simple paths in graph databases,”
SIAM Journal on Computing, vol. 24, no. 6, pp. 1235–1258,
1995.

[14] C. Barrett, R. Jacob, and M. Marathe, “Formal language
constrained path problems,” in Algorithm TheorySWAT’98.
Springer, 1998, pp. 234–245.

[15] E. W. Dijkstra, “A note on two problems in connexion with
graphs,” Numerische mathematik, vol. 1, no. 1, pp. 269–271,
1959.

[16] R. Bellman, “On a routing problem,” DTIC Document, Tech.
Rep., 1956.

[17] D. Z. Ghent, “On the all-pairs Euclidean short path problem,”
in Proceedings of the sixth annual ACM-SIAM symposium on
Discrete algorithms, vol. 76. SIAM, 1995, p. 292.

[18] M. R. Henzinger, T. A. Henzinger, and P. W. Kopke, “Com-
puting simulations on finite and infinite graphs,” in Founda-
tions of Computer Science, 1995. Proceedings., 36th Annual
Symposium on. IEEE, 1995, pp. 453–462.

[19] S. Ma, Y. Cao, W. Fan, J. Huai, and T. Wo, “Capturing
topology in graph pattern matching,” Proceedings of the
VLDB Endowment, vol. 5, no. 4, pp. 310–321, 2011.

[20] A. Fard, M. U. Nisar, L. Ramaswamy, J. A. Miller, and
M. Saltz, “A distributed vertex-centric approach for pattern
matching in massive graphs,” in Big Data Conference, Oct
2013, pp. 403–411.

[21] A. Fard, M. U. Nisar, J. A. Miller, and L. Ramaswamy,
“Distributed and scalable graph pattern matching: Models and
algorithms,” International Journal of Big Data (IJBD), vol. 1,
no. 1, 2014.

[22] A. Fard, S. Manda, L. Ramaswamy, and J. A. Miller, “Ef-
fective caching techniques for accelerating pattern matching
queries,” in Big Data (Big Data), 2014 IEEE International
Conference on. IEEE, 2014, pp. 491–499.
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