Stochastic SVD on Hadoop

Shannon Quinn

(with thanks to Gunnar Martinsson and Nathan Halko of UC Boulder, and Joel Tropp of CalTech)
Lecture breakdown

• Part I
 – Stochastic SVD

• Part II
 – Distributed stochastic SVD
Part I: Stochastic SVD
Basic goal

• Matrix A
 – Find a low-rank approximation of A
 – Basic dimensionality reduction

$$\|A - QQ^*A\| < \epsilon$$
Basic algorithm

- **INPUT:** A, k, p
- **OUTPUT:** Q

1. Draw Gaussian $n \times (k + p)$ test matrix Ω
2. Form product $Y = A\Omega$
3. Orthogonalize columns of $Y \Rightarrow Q$
Basic evaluation

$$\mathbb{E} \left\| A - Q Q^T A \right\|_2 \leq \left(1 + \sqrt{\frac{k}{p-1}} \right) \sigma_{k+1} + \frac{e \sqrt{k+p}}{p} \cdot \left(\sum_{j > k} \sigma_j^2 \right)^{1/2}$$

$$\leq \left[1 + \frac{4 \sqrt{k+p}}{p-1} \cdot \sqrt{\min\{m, n\}} \right] \sigma_{k+1}$$

$$= C \cdot \sigma_{k+1}.$$
Approximating the SVD

1. Form $k \times n$ matrix $B = Q^T A$
2. Compute SVD of $B = \hat{U} \Sigma \hat{V}^T$
3. Compute singular vectors $U = Q \hat{U}$
Empirical Results

• 1000x1000 matrix
Power iterations

• Affects decay of eigenvalues / singular values

\[Y = (A A^*)^q A \Omega \]
Empirical Results

Approximation error e_k

Estimated Eigenvalues λ_j

- "Exact" eigenvalues
- λ_j for $q = 3$
- λ_j for $q = 2$
- λ_j for $q = 1$
- λ_j for $q = 0$
Empirical Results

Approximation error e_k

- Minimal error (est)
- $q = 0$
- $q = 1$
- $q = 2$
- $q = 3$

Estimated Singular Values σ_j

Magnitude

k

0 20 40 60 80 100

10^0 10^1 10^2

j

0 20 40 60 80 100

10^0 10^1 10^2
Part II: Distributed SSVD
Algorithm Overview

Algorithm 4.3: Stochastic Singular Value Decomposition

Given an \(m \times n \) matrix \(A \), a target rank \(k \), an oversampling parameter \(p \), and a number of power iterations \(q \), the following algorithm computes an approximate rank \(k \) singular value decomposition \(A \approx UV^T \).

Draw an \(n \times k + p \) random matrix \(\Omega \).
Form the product \(Y = A\Omega \).
Orthogonalize the columns of \(Y \rightarrow Q \).
\[\text{for } i = 1..q \]
\[\quad \text{Form the product } Y = AA^TQ. \]
\[\quad \text{Orthogonalize the columns of } Y \rightarrow Q. \]
\[\text{end} \]
Form the projection \(B = Q^TA \).
Compute the factorization \(\tilde{U} \Sigma^2 \tilde{U}^T = BB^T \).
Solve \(\tilde{V}^T = \Sigma^{-1} \tilde{U}^TB \).
Set \(U = Q\tilde{U}(:,1:k) \).
Set \(V = \tilde{V}(:,1:k) \).
SSVD Primitives

- Matrix-vector multiplication: \(y = Ax \)

Algorithm 4.5: Matrix Multiplication \(Ax \)

This algorithm forms the product \(y = Ax \) assuming \(A \) is stored in row major format.

Map

- Iterate \(A_{row} \)

 \[y_{row} = \langle A_{row}, x \rangle \]

 output \(y \)

- (midterm, anyone?)
SSVD Primitives

• Matrix-matrix multiplication: \(y = A^T A x \)

Algorithm 4.5: Matrix Multiplication \(A^T A x \)

This algorithm forms the product \(y = A^T A x \) assuming \(A \) is stored in row major format.

Map

Iterate \(A_{row} \)

\[
y_{partial} = \langle A_{row}, x \rangle \cdot A_{row}^T \]

output \(y_{partial} \)

Reduce

\[
y = \sum y_{partial} \]

output \(y \)
Matrix-matrix multiplication

• Very clever use of map/reduce

\[Cx = \sum_{i=1}^{M} A_{i}^{T} (A_{i}x) \]
\[= \sum_{i=1}^{M} v^{(i)} \]
\[= y \]

• Each Mapper outputs: \(< j, v^{(i)}_{j} > \)
SSVD Primitives

- Distributed orthogonalization: \(Y = A\Omega \)
 - Givens rotation
 \[
 G(i, j, \theta) = \begin{bmatrix}
 1 & \cdots & 0 & \cdots & 0 & \cdots & 0 \\
 \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots \\
 0 & \cdots & c & \cdots & -s & \cdots & 0 \\
 \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots \\
 0 & \cdots & s & \cdots & c & \cdots & 0 \\
 \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots \\
 0 & \cdots & 0 & \cdots & 0 & \cdots & 1
 \end{bmatrix}
 \]
 - Streaming QR
 - Sliding window
 - Merge factorizations
 1. Merge R
 2. Merge \(Q^T \)
Algorithm 4.7: Stochastic Singular Value Decomposition

The ssvd algorithm produces rank k matrices U, V, Σ that form an approximate singular value decomposition of matrix A.

1. Q-JOB
2. Bt-JOB
 \begin{algorithmic}
 \For {$i = 1..q$}
 3. ABt-JOB
 4. Bt-JOB
 \EndFor
 \end{algorithmic}

 Serial step:
 \begin{align*}
 &\text{compute } \tilde{U}\Sigma^2\tilde{U}^T = BB^T
 \end{align*}

4. U-JOB
5. V-JOB
Algorithm 4.7.1: Q-job

This algorithm forms the product $Y = A\Omega$, performs the streaming QR factorization and the first level merge.

Map

Iterate A_{row}

$Y_{row} = A_{row} \cdot \Omega$

$Y_{row} \rightarrow streamingQR$

output $Q_i^{r\times \ell}$ and $R_i^{\ell\times \ell}$.

$merge\{Q_i, R_i\}_{i=1}^{z}$

output $Q_{s\times\ell} R^{\ell\times\ell}$
2: B^T-job

Algorithm 4.7.2: B^T-job

This algorithm completes the second level merge and computes the product $B^T = A^T Q$. Optionally, partial sums of BB^T are formed and output to disk.

Map

$Q_i \leftarrow$ merge $\tilde{Q}_i, \tilde{R}_1, \ldots, \tilde{R}_M$

output Q_i as block of final Q.

Iterate A_{row}

$B^T_{\text{partial}} = (A_{row})^T \cdot Q_{row}$

output B^T_{partial}

Reduce

$B^T = \sum B^T_{\text{partial}}$

Option

$(BB^T)_{\text{partial}} = B_iB_i^T$
Algorithm 4.7.3: ABt-job

This algorithm computes the product AB^T, performs the streaming QR factorization and the first level merge.

Map

Iterate A_{row}

$$A_{block}(i,:) = A_{row}$$

foreach B_{row}^T

$$Y_{partial} = A_{block}(:,j) \cdot B_{row}^T$$

output $Y_{partial}$

Reduce

$$Y = \sum Y_{partial}$$

$Y \rightarrow$ streamingQR

output $Q_i^{r \times \ell}$ and $R_i^{\ell \times \ell}$

$merge\{Q_i, R_i\}_{i=1}^z$

output $Q^{s \times \ell} R^{\ell \times \ell}$
4: U-job

Algorithm 4.7.4: U-job

This algorithm computes the rank k factor U of the singular value decomposition.

Map

Iterate Q_{row}

$U_{row} = Q_{row} \tilde{U}$

output U_{row}
Algorithm 4.7.5: V-job

This algorithm computes the rank k factor V of the singular value decomposition.

Map

Iterate B_{row}^T

$$V_{row} = B_{row}^T \tilde{U} \Sigma^{-1}$$

output V_{row}
Mahout SSVD Parameters

<table>
<thead>
<tr>
<th>parameter</th>
<th>default</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>rank (-k)</td>
<td>none</td>
<td>decomposition rank</td>
</tr>
<tr>
<td>oversampling (-p)</td>
<td>15</td>
<td>oversampling</td>
</tr>
<tr>
<td>powerIter (-q)</td>
<td>0</td>
<td>number of additional power iterations</td>
</tr>
<tr>
<td>blockHeight (-r)</td>
<td>10,000</td>
<td>Y block height (must be (> (k + p)))</td>
</tr>
<tr>
<td>outerProdBlockHeight (-oh)</td>
<td>30,000</td>
<td>block height of outer products during multiplication, increase for sparse input</td>
</tr>
<tr>
<td>abtBlockHeight (-abth)</td>
<td>200,000</td>
<td>block height of (Y_i) in (AB^T) multiplication, increase for extremely sparse inputs</td>
</tr>
<tr>
<td>reduceTasks (-t)</td>
<td>1</td>
<td>number of reduce tasks (where applicable)</td>
</tr>
<tr>
<td>minSplitSize (-s)</td>
<td>-1</td>
<td>minimum split size</td>
</tr>
</tbody>
</table>
Block height

<table>
<thead>
<tr>
<th>blockHeight (-r)</th>
<th>1250</th>
<th>2500</th>
<th>5000</th>
<th>10000</th>
<th>20000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q-job per map</td>
<td>9</td>
<td>9</td>
<td>12</td>
<td>28</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>3.6</td>
<td>4</td>
<td>6</td>
<td>13</td>
<td>23</td>
</tr>
</tbody>
</table>
Power iterations

<table>
<thead>
<tr>
<th>phase</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q-job</td>
<td>4</td>
</tr>
<tr>
<td>Bt-job</td>
<td>16</td>
</tr>
<tr>
<td>ABt-job</td>
<td>12</td>
</tr>
<tr>
<td>U-job</td>
<td>2</td>
</tr>
<tr>
<td>V-job</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>q</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>26</td>
</tr>
<tr>
<td>1</td>
<td>52</td>
</tr>
<tr>
<td>2</td>
<td>80</td>
</tr>
<tr>
<td>3</td>
<td>107</td>
</tr>
</tbody>
</table>
Comparison to Lanczos

Algorithm 4.8.2: Lanczos SVD

Given an \(m \times n \) matrix \(A \) and a desired rank \(k \), Lanczos SVD computes the \(k \) dimensional eigen-decomposition, \(V \Sigma^2 V^T \), of \(A^T A \) which yields the right singular vectors \(V \) and singular values \(\Sigma \) of \(A \).

\[
q = A^T A \omega \\
q_1 = q / \|q\| \\
\text{while } i \leq k \text{ do} \\
\hspace{1em} \text{MapReduce step: Algorithm 4.5} \\
\hspace{2em} q = A^T A q_i \\
\hspace{1em} \text{Serial step:} \\
\hspace{2em} \text{for } j = 1..i \\
\hspace{3em} q \leftarrow q - (q_j, q) q_j \\
\hspace{3em} q_{i+1} = q / \|q\| \\
\hspace{2em} \text{collect: } \alpha, \beta \\
\hspace{1em} \text{end while} \\
\hspace{1em} \text{compute } X \Lambda X^T = T \\
\hspace{1em} V = Q X \\
\hspace{1em} \sigma_i = \sqrt{\lambda_i}
\]
Comparison to Lanczos
Comparison to Lanczos
Comparison to Lanczos
Datasets

- Wikipedia-all

<table>
<thead>
<tr>
<th>Execution times</th>
<th>minutes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q-job</td>
<td>4</td>
</tr>
<tr>
<td>Bt-job</td>
<td>49</td>
</tr>
<tr>
<td>ABt-job</td>
<td>127</td>
</tr>
<tr>
<td>U-job</td>
<td>1.5</td>
</tr>
<tr>
<td>V-job</td>
<td>7</td>
</tr>
<tr>
<td>$q = 0$</td>
<td>61</td>
</tr>
<tr>
<td>$q = 1$</td>
<td>235</td>
</tr>
</tbody>
</table>

- Wikipedia-MAX

<table>
<thead>
<tr>
<th>phase</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q-job</td>
<td>20</td>
</tr>
<tr>
<td>Bt-Job</td>
<td>365</td>
</tr>
<tr>
<td>ABt-job</td>
<td>571</td>
</tr>
<tr>
<td>U-job</td>
<td>8</td>
</tr>
<tr>
<td>V-job</td>
<td>14</td>
</tr>
<tr>
<td>total</td>
<td>1335</td>
</tr>
</tbody>
</table>
That’s SSVD!
Resources

• Randomized methods for computing the SVD of very large matrices

• Randomized methods for computing low-rank approximations of matrices
 – https://amath.colorado.edu/faculty/martinss/Pubs/2012_halko_dissertation.pdf

• SSVD on Mahout