NIFTY: A System for Large Scale Information Flow Tracking and Clustering

Caroline Suen, Sandy Huang, Chantat Eksombatchai, Rok Sosic, Jure Leskovec
Stanford University

Presentation by- Ankita Joshi
Organization

1. Introduction
2. Proposed Method
3. NIFTY System Evaluation
4. Processing of Documents
5. Analysis of Memes
6. Conclusion
NIFTY: News Information Flow Tracking, Yay!

Meme: Short textual phrases that travel and mutate through the Web. They remain relatively intact as they propagate from website to website.

Peaks[6]: Different participants in online media space shape the dynamics of attention the content receives, across a time period. This observation of a time period shows peaks. (Number of mentions of a topic over time).
Introduction (Need)

1. Online information content has taken increasingly dynamic form -> real time aspect
2. Granularity -> coarse-grained, fine grained
3. Sheer volume and time span of Web data
4. Efficient online incremental algorithms
Overview of The NIFTY Pipeline

- Continuous Stream of Documents
 - Phrase Extraction
 - Phrase Filtering
 - Spam Detection
 - Duplicate Removal
 - Language Detection
 - Phrase Clustering
 - Phrase Graph Creation
 - Graph Partitioning
 - Cluster Processing
 - Cluster Cleanup
 - Cluster Archiving
 - Visualization
 - Web Interface
1. Data set covers online media activity since August 1, 2008.
2. 6.1 billion documents and 2.8 billion unique quoted phrases
3. Total size of data set : 20 TB
4. They used Spinn3r, a service that monitors 20 million internet resources, to obtain new documents.
Phrase Extraction

Each document D comprises of a news report or a blog post.

Phrases: According to “Memetracker” [1], phrase is a quoted string that occurs in one or more documents.
Document and Phrase Filtering

1. First Pass
Eliminate documents if they are duplicates or URLs are from among the blacklist.
Phrases having less than 3 or more than 30 words are eliminated.
At least 50% of the characters in the phrase should be ASCII characters for the phrase to be considered.
2. Second pass:
Infrequent phrases: Appearing in fewer than 5 distinct documents
Language Filtering: Phrases which have less than 75% English words.
URL to domain name ratio: unique URL/number of unique domain names > 6
Sanitized set of documents $D \Rightarrow$ Document Base
Filtered set of phrases $P \Rightarrow$ Phrase Base
Example of Meme Evolution

- We have a discovery - we have observed a new particle consistent with a Higgs boson. But which one? That remains open.
- We have a discovery. We have observed a new particle that is consistent with a Higgs boson.
- We have observed a new particle that is consistent with a Higgs boson.
- We have indeed discovered a particle consistent with the Higgs boson.
- Consistent with the Higgs boson.
1. Phrase Graph Creation

Purpose: To create a directed weighted acyclic graph.

What is phrase distance??
Levenshtein Distance Algorithm

We use this algorithm to find the substring edit distance.

Minimum number of word insertions, deletions or substitutions needed to transform one string into a substring of another string.
For example, the Levenshtein distance between "kitten" and "sitting" is 3, since the following three edits change one into the other, and there is no way to do it with fewer than three edits:

1. kitten → sitten (substitution of "s" for "k")
2. sitten → sittin (substitution of "i" for "e")
3. sittin → sitting (insertion of "g" at the end).
Edge Creation

1. Pair of nodes (phrases) <-> their substring edit distance
2. Task is to determine whether one is derived from the other
3. An edge is created between two phrases in the graph, if the decision tree returns True.
Algorithm 1 Decision tree to determine if an edge should be created between phrases in the phrase graph

Require: Phrases p_1 and p_2

(1) Set l_p to the minimum number of words in p_1 or p_2.
(2) Compute s_1 and s_2 by stripping the stop words from p_1 and p_2, respectively.
(3) Set l_s to the minimum number of words in s_1 or s_2.
(4) Set d to the substring edit distance between s_1 and s_2.

if $l_s \geq 2$ and $d = 0$ then
 return True
else if $l_p = 4$ and $l_s = 4$ and $d \leq 1$ then
 return True
else if $l_p = 5$ and $l_s > 4$ and $d \leq 1$ then
 return True
else if $l_p = 6$ and $l_s \geq 5$ and $d \leq 1$ then
 return True
else if $l_p > 6$ and $l_s > 3$ and $d \leq 2$ then
 return True
else
 return False
NIFTY reduces the number of pair-wise distance calculations by using Locality Sensitive Hashing.

In this paper to find candidate pairs of phrases, they have used Shingling + Min Hashing
A k-shingle for a document is a sequence of k characters that appears in the document.
Example: For $k=2$ doc= abcab
Set of shingles = \{ ab, bc, ca \}
Min Hashing[4]

1. We have the set of k-shingles
2. Encode the set into a Boolean Matrix
 Shingles => Rows
 Documents => Columns
Jaccard Similarity : 3/6
Jaccard Distance : 1-(3/6)
Imagine rows are permuted randomly
minhash function $h(C) =$ number of the first row in which the column has 1
Create a signature through each column.
Locality Sensitive Hashing of the signatures! => candidate pairs
Example[5]
From signature matrices hash columns to buckets, and elements of the same bucket become candidate pairs.

FOR NIFTY : 4 - character shingles from phrases => Perform min - hashing => compute phrase signatures => each pair of phrases having a common signature is tested for edge existence.
Edge Weights

\[
w(ps, pd) = c \cdot \frac{|pd|}{(D_{\text{edit}}(ps, pd) + 1) \cdot (T_{\text{peak}}(ps, pd) + 1)}.
\]

Edge from node ps to pd,

- $|pd|$ is the number of documents containing phrase pd
- $D_{\text{edit}}(ps, pd)$: Substring edit distance between ps and pd
- $T_{\text{peak}}(ps, pd)$: Time difference between the first volume peaks between each of the two phrases.
2. Phrase Graph Partitioning

1. Given a weighted directed acyclic graph the goal is to delete a set of edges with a minimum total weight.
2. Start with a working set that includes all root phrases, nodes with outdegree 0.
3. For each node not in the working set, we find the cluster its neighbour is assigned to, then for each cluster we sum up the edge weights for all neighbours in the cluster. The node is attached to the cluster with the largest sum, edges to other clusters are removed.
4. Algorithm terminates when all nodes are in the working set.
Output of partitioning..

Set of clusters referred to as the cluster base C.
Filtering by Phrase Mutation: Remove all clusters including a single phrase mutation.
Filtering by peaks: Most news follows a predictable popularity cycle with at most 2 peaks. Remove clusters with more than 5 peaks.
Incremental Phrase Clustering

1. Phrase Graph Creation

a. Daily creation of phrase graphs
b. Only consider edges between phrases where at least one phrase is new.
c. Edges to new phrases can be freely added to graph.
2. Phrase Graph Partitioning

a. Preserve existing clusters by preserving all edges that existed a day before.

b. Edge is selected over the other edges and kept in graph if both its phrases already existed the day before.

c. Only edges of newly added nodes can thus be removed.
3. Cluster completion and removal

a. *Completed cluster*: Average document frequency within last 3 days is less than 20% of its frequency at its highest peak.

b. No new phrases are added to completed clusters.

c. A cluster is *removed* from the phrase graph, if its highest peak is more than 7 days old.
Visualization

1. Rank clusters by popularity.
2. Each cluster c is assigned a time based popularity score $S(c)$ based on the number of document mentions and cluster correctness using the exponential decay formula:

$$S(c) = \sum_{p \in c} \sum_{t=t_p}^{t_c} \exp \left[- \left(\frac{t_c - t}{48} \right) \right] \cdot M_p(t)$$

p is a phrase in c, t is the time of the earliest mention of phrase p, t_c is the current time, and $M_p(t)$ is the number of document mentions of p at time period t. 48 in the formula corresponds to 2 days.
Evaluation of NIFTY

1. Locality Sensitive Hashing

Using LSH speeds up the algorithm
Experiments done on one week of data with 38,000 phrases.

Without LSH: 721 million pairwise comparison
With LSH: 26 million
Evaluation of NIFTY cont..

2. Phrase Graph Partitioning

Different Edge selection methods

a. Pick outgoing edge with highest edge weight
b. Pick outgoing edges from the cluster with the most neighbours to the node.
c. Pick outgoing edges from the cluster of the node having the highest total weight.
Method 3 performs best. Method 2 better at retaining edges and Method 1 gives a better edge weight.
NIFTY vs MEMETRACKER

1. Resource Usage

(a) Running time

(b) Memory usage
NIFTY vs. MEMETRACKER cont..

2. Meme Cluster Quality
ANALYSIS OF MEMES
Properties of meme clusters
Properties of Phrases

(a) World length

(b) Volume
5. https://class.coursera.org/mmds-002/lecture/36
QUESTIONS?

Thank You