
www.elsevier.com/locate/parco

Parallel Computing 30 (2004) 1233–1276
Parallel parsing of MPEG video on a
shared-memory symmetric multiprocessor

Suchendra M. Bhandarkar *, Shankar R. Chandrasekaran

Department of Computer Science, 415 Boyd Graduate Studies Research Center,

The University of Georgia, Athens, GA 30602-7404, USA

Received 1 July 2002; accepted 21 May 2004
Abstract

Video parsing refers to the detection and classification of abrupt and gradual scene

changes in a video stream. The detection of these changes forms an important preprocessing

step in applications that treat videos as sources of information. The parsed video is subse-

quently indexed to support content-based retrieval, navigation and browsing. Analysis of

video streams is computationally intensive with high data processing bandwidth require-

ments. Shared-memory symmetric multiprocessors (SMPs) have become increasingly ubiqui-

tous and affordable. Parallel processing on an shared-memory symmetric multiprocessor is

hence proposed as a means of dealing with the computational demands of video parsing.

Parallel versions of two algorithms that detect scene transitions in compressed video streams

are proposed. Both algorithms entail minimal decompression of the MPEG video. Three

granularities of parallelism based on data decomposition and task decomposition are inves-

tigated; Group of Pictures (GOP), Frame and Slice. Results of an SMP implementation show

that the GOP-level implementation, which represents the coarsest granularity of task and

data decomposition, performs the best in terms of speedup and synchronization overhead.

The slice and frame levels of granularity take second and third place, respectively. The spee-

dup is observed to be almost linear in the case of the GOP level of granularity, whereas the
0167-8191/$ - see front matter � 2004 Elsevier B.V. All rights reserved.

doi:10.1016/j.parco.2004.05.002

* Corresponding author. Tel.: +1 706 542 1082; fax: +1 706 542 2966.

E-mail address: suchi@cs.uga.edu (S.M. Bhandarkar).

mailto:suchi@cs.uga.edu 


1234 S.M. Bhandarkar, S.R. Chandrasekaran / Parallel Computing 30 (2004) 1233–1276
synchronization overheads are observed to be high for the frame and slice levels of

granularity.

� 2004 Elsevier B.V. All rights reserved.

Keywords:MPEG video; Video analysis; Video segmentation; Shared memory symmetric multiprocessors;

Parallel video parsing
1. Introduction

With the emergence of multimedia information systems, videos are being increas-

ingly looked upon as vital sources of information. A multimedia information system

goes well beyond a traditional information system in that it incorporates various

modes of non-textual digital data, such as digitized images, video and audio. One

of the greatest problems with emerging multimedia technologies is the difficulty of
rapidly and reliably extracting ‘‘key’’ information from images, video and audio

streams which could then be used for rapid browsing, indexing and content-based

retrieval of the relevant information [5,6,53]. Prominent applications that benefit

from this research are video/multimedia database servers, video surveillance and dig-

ital libraries.

A great deal of current research effort has been devoted to automatic extraction of

relevant information from video streams. Video parsing or scene change detection in

a video stream is typically used to extract key features in a video stream. These key
features are then used for rapid video browsing and automatic annotation and index-

ing of video streams to support content-based access to large video databases. The

video parsing operation is primarily domain-independent, i.e., no assumptions are

made about the semantics of the video or its underlying theme. Video parsing, there-

fore, is a crucial first step that precedes domain-dependent analysis of the video [53].

Some of the domain-independent features of interest in a video stream include scene

cuts, scene dissolves, fade-ins, fade-outs, pans and zooms. A scene cut is an abrupt

scene change. Fig. 1 depicts a scene cut between frames 89 and 90 in the Table Tennis
video sequence. Pans, dissolves, fades and zooms represent gradual scene changes in
Fig. 1. Scene cut between frames 89 and 90 in the Table Tennis video sequence. (a) Frame 88, (b) Frame 89

and (c) Frame 90.



S.M. Bhandarkar, S.R. Chandrasekaran / Parallel Computing 30 (2004) 1233–1276 1235
the video stream. Figs. 2–4 show the video frames involved in a pan, dissolve and

zoom respectively, in a video stream.

Due to the large amount of data involved, video streams are often compressed for

efficient transmission and storage. Scene detection techniques that are capable of

operating on compressed video data directly have a considerable advantage in terms
of execution time and memory requirement when compared to those that require full

frame decompression. In this paper we focus on detecting scene changes in com-

pressed video streams that are encoded using the MPEG-1 standard [9,14,30,31,37].

The MPEG-1 video compression algorithm relies on two basic techniques: block-

based motion compensation for reduction of temporal redundancy and Discrete

Cosine Transform (DCT)-based compression [48] for the reduction of spatial redun-

dancy. The motion information is computed using 16 · 16 pixel blocks and is trans-
mitted along with the spatial information. The motion information is also
compressed for higher efficiency. The temporal redundancy of video signals is

exploited using motion compensated prediction which assumes that the current

frame can be locally modeled as a transition of a video frame in the past or future.

The MPEG-1 standard defines three types of frames:
Fig. 2. Sequence of frames showing a pan.

Fig. 3. Sequence of frames in a video stream spanning a dissolve.

Fig. 4. Sequence of frames in a video stream spanning a zoom-in.



1236 S.M. Bhandarkar, S.R. Chandrasekaran / Parallel Computing 30 (2004) 1233–1276
• I frame (Intracoded): These pictures are purely intracoded using a DCT-based

technique [48] and yield the least compression. They are used mainly as random

access points in the video stream.

• P frame (Predictive): These frames are encoded using forward predictive coding,

i.e., with respect to a previous I or P frame. These frames give better compression
than I frames.

• B frame (Bidirectional or Interpolative): These frames are encoded using past and/

or future I/P frames as reference frames. B frames achieve the highest compression

but random access using these frames is not possible since they depend on a future

and/or past reference frame.

The basic unit for motion compensation in MPEG-1, is a 16 · 16 block of pixels
called a macroblock. Each frame is divided into a fixed number of macroblocks. The
motion estimation for encoding P and B frames entails finding, for each macroblock

in the P or B frame, the closest matching macroblock in the reference frames. In an I

frame, each macroblock is intracoded, using the DCT. In a P frame, a macroblock

may be intracoded or forward predicted. In a B frame, each macroblock may be

intracoded, forward predicted, backward predicted or bidirectionally coded. The en-

coder performs the function of calculating appropriate motion vectors for each

macroblock. The difference signal (prediction error) is also compressed using spatial

redundancy reduction techniques based on the DCT. The DCT-coded prediction
error signal consists of 16 · 16 pixel blocks and is transmitted along the rest of the
spatial information. Therefore, depending on the type of macroblock, motion vector

information is stored along with the compressed prediction error signal in each

macroblock.

To exploit spatial redundancy, the MPEG-1 standard uses block-based DCT

encoding with weighted quantization and run-length encoding [48]. After motion

compensation is performed, the remainder of data is divided into 8 · 8 blocks,
DCT encoded, weighted, quantized and run-length encoded for efficiency. During
the decoding of the MPEG-1 stream, I frames can be decoded independently. Decod-

ing of P frames requires the previously decoded reference frame (I or P) whereas

decoding of B frames requires either 1 or 2 reference frames (from the past or future).

So typical decoders buffer up to 3 frames (2 reference frames and the frame being

currently processed) in memory at any point in time. To facilitate decoding, encoders

typically rearrange the frames (out of their temporal sequence) in the MPEG-1

stream so that the reference frames are already decoded before they are needed

for decoding a B frame.
An MPEG-1 video stream is hierarchically structured. Each stream consists of

one or more sequences. A sequence is a random access unit and could represent a

scene context. A sequence consists of one or more Groups of Pictures (GOP). A

GOP consists of one or more frames. Each GOP starts with an I or a B frame

and ends with an I or a P frame. A frame, as discussed previously, can be encoded

as an I, P or B frame. A frame consists of one or more slices where a slice is used

to resynchronize the video stream in case of errors. A slice comprises one or

more macroblocks. A macroblock can be decomposed into pixel-level blocks.



S.M. Bhandarkar, S.R. Chandrasekaran / Parallel Computing 30 (2004) 1233–1276 1237
A macroblock is the 16 · 16 motion compensation unit whereas a block is the 8 · 8
DCT unit.

Several MPEG-1 video parsing algorithms are based on the analysis of DC

images. DC images are spatially reduced versions of the original frames in the

MPEG-1 stream and represent the DC coefficients of the DCT (Fig. 5). A video se-
quence comprised of DC images is called a DC sequence. A DC image retains most

of the global information in the original frame while requiring only a small fraction

of the original frame memory. Processing of DC images is much faster and the re-

sults are often satisfactory. MPEG-1 uses the YUV color format and each frame

in the video stream is encoded as three frames which are termed Y, U and V frames.

The Y frame represents the brightness or luminance component of the original frame

and U and V frames represent the color or chrominance components. A DC image of

a frame comprises DC images corresponding to the Y, U and V frames.
Traditionally parallel processing has been used for MPEG encoding and decoding

since both, encoding and real-time decoding are computationally intensive. Both,

shared and distributed memory architectures have been used for parallel video

processing. To date, we are not aware of any published work on parallel MPEG-1

video parsing. As parsing is closely related to decoding, it can also be expected to

benefit from parallelism. MPEG-1 coding with its inherent dependencies and other

nuances poses several challenges to the parallelization of video parsing.

The algorithms discussed in this paper directly exploit the motion compensation,
the prediction error signal and the DC coefficients in the DCT encoding of the

MPEG-1 video stream. The algorithms entail minimal decoding of the compressed

video stream, thus resulting in significant savings in terms of execution time and

memory requirement. The parallel algorithms are implemented on a shared memory

symmetric multiprocessor (SMP). We use the shared memory model for our imple-

mentation on account of its relative ease of programming abstraction and faster real-

ization. For a small number of processors, parallel implementations on shared

memory systems are typically faster than on distributed memory systems since the
interconnection network latency is observed to be a performance limiting factor in

the case of the latter.
Fig. 5. Original frame from the Table Tennis video sequence and its DC image. (a) Original frame and

(b) DC image.



1238 S.M. Bhandarkar, S.R. Chandrasekaran / Parallel Computing 30 (2004) 1233–1276
2. Related work

There has been a great deal of work on video parsing or scene change detection on

uncompressed video. Most of these techniques compute a global measure of differ-

ence between successive frames or images in the video stream and use a global thres-
holding scheme to determine and localize significant scene changes in the video

stream. The difference measures are typically based on gray level sums (computed

over the entire frame), gray level histograms, color histograms, gray level statistics

or color statistics computed for each frame in the video stream [1,32,34,39,52,53],

or motion discontinuities computed using temporal filtering [18,17,41]. Feature-

based approaches compute the difference in features such as edges between successive

frames of the uncompressed video [51]. In some cases, a domain-specific video

production model is used to guide the parsing process [11,15,47].
As previously mentioned, parsing techniques that entail minimal decompression

of the video stream have a definite advantage in terms of run time and memory

usage. A number of video parsing techniques are based on the analysis of DC images

[24,25,42,43,49,50]. Shen et al. [42,43] suggest the use of histograms of the DC

images derived from the DCT coefficients of the I frames in an MPEG-1 video

stream to detect scene changes. Scene cuts are detected by thresholding the difference

of the luminance histograms computed from the DC images of two consecutive I

frames in the MPEG-1 video stream. Dissolves are detected by computing the histo-
gram difference between the current DC image and the average of all DC images in a

window preceding the current I frame. Patel and Sethi [35,36,40] use the DC coeffi-

cients of the I frames to perform hypothesis testing on the luminance histogram.

Their approach implicitly assumes that the separation between successive I frames

in an MPEG-coded video stream is fixed and small. Meng et al. [29] and Ching

et al. [12] use the variance of the DC coefficients in the I and P frames and the pro-

portion of macroblocks in the P and B frames that are intracoded to detect scene

changes. Zhang et al. [54] and Kobla et al. [22,23] have observed that the number
of macroblocks with valid motion vectors in P or B frames tends to be low when

these frames lie on opposite sides of a scene change. This fact is used for detection

of abrupt scene changes whereas more gradual scene transitions are detected after

decompressing the relevant subset of video frames and analyzing the motion in

the decompressed video stream. Koprinska and Carrato [24,25] use a hybrid rule-

based/neural network approach to scene change detection where simpler scene

boundaries are detected by the rule-based system and the complex scene boundaries

are detected by the neural net. Song et al. [46] use a chromatic video editing model
for low motion videos based on the observation that the first order partial temporal

derivative of the video signal is zero for static scenes and the second partial temporal

derivative is zero for scenes with gradual changes.

Gamaz and Huang [13] propose a simple skipping algorithm for fast and accurate

detection of abrupt scene changes. The two I frames in a GOP are compared using

DC differences. If there is no appreciable difference, that GOP is skipped, else the P

and B frames in the GOP are processed for changes. The algorithm is simple and fast

but does not work for complex scene changes. Shen and Sethi [44,45] describe algo-



S.M. Bhandarkar, S.R. Chandrasekaran / Parallel Computing 30 (2004) 1233–1276 1239
rithms to detect features such as spatial gradients in MPEG-1 video which could be

subsequently used to detect scene changes. Yeo and Liu [49] present algorithms for

detecting abrupt and gradual scene changes, intrashot variations and flashlight

scenes in MPEG and motion JPEG video streams [48] using DC images. They pre-

sent an efficient technique for extracting a sequence of DC images from a compressed
video stream [49]. The key frames derived from the scene change detection algorithm

are subject to a clustering and matching process to generate a scene transition graph

which can be used for high-level representation and rapid browsing and navigation

of the video data [50]. Ngo et al. [33] use one dimensional spatio-temporal strips de-

rived from DC images and reduce the problem of working with a sequence of frames

to a problem of working with a two-dimensional image. A statistical DC histogram-

ming approach is used to detect the abrupt and gradual scene changes.

Video parsing techniques that rely primarily on chrominance and/or luminance
values (or their averages as reflected in the DC images) for the purpose of scene

change detection are prone to misses when there is little change in background color

or luminance between successive video shots and to false positives when there is a

change in background color, luminance or ambient lighting within a single shot.

Bhandarkar and Khombadia [7] have presented algorithms for computing the rela-

tive motion between successive frames to detect abrupt and gradual scene changes in

a compressed video stream. However, the approach suffers from the drawback that it

is not always possible to determine the motion vectors in the MPEG-1 video stream
[7]. Consequently, Bhandarkar et al. [8] have presented parsing algorithms that use

both DC images and motion vectors for detecting scene changes in MPEG-1 video.

It was shown that an integrated approach, that uses both, motion vectors and DC

histograms, performs better than the individual methods. Another class of tech-

niques does video parsing at the level of scenes and exploits frame and shot similarity

measures based on a semantic model. Kender and Yeo [21] present novel high-level

approaches for segmenting hierarchical scene structure in video. Scene boundaries

are determined using shot-to-shot coherence followed by a one pass on-the-fly shot
clustering algorithm. The video segmentation is then done at the theme level.

The output of the parsed video is used in content-based retrieval of the video

database [38]. Lienhart et al. [26] present a systematic method to compare and re-

trieve video sequences at four levels of temporal resolution, i.e., frame, shot, scene

and video. The video is transformed to an appropriate representation before com-

parisons are made. A normalized measure of distance between the representations

of two video sequences is defined for similarity. The method is domain independent

and can compare frames, shots or sequences. Jain et al. [19] present a technique for
querying a video database by content using video clips. The articles by Ahanger and

Little [3] and Jiang et al. [20] give an exhaustive review of video parsing techniques

and their use in content-based querying of video and multimedia databases.

MPEG-1 encoding and decoding have received the most attention from the view-

point of parallel processing. Bilas at al. [10] have implemented a shared memory par-

allel MPEG-1 decoder. Their scheme consists of a scan process that scans the

MPEG-1 stream, generates tasks and inserts them in a common queue. A pool of

worker processes removes the tasks from the queue and processes them. Their



1240 S.M. Bhandarkar, S.R. Chandrasekaran / Parallel Computing 30 (2004) 1233–1276
algorithm does not include frame level parallelism and assumes that all GOPs are

closed (i.e., all the inter-frame references lie strictly within a GOP). Mayer-Patel

[27] discusses parallel processing for special video effects such as titling, compositing

and blending. Three modes of parallelism are considered: (a) functional parallelism

where the video effects are decomposed into smaller subtasks that are mapped on
individual processors, (b) temporal parallelism where the video stream is partitioned

into sets of successive frames and the processors work on the entire set of frames

assigned to them, and (c) spatial parallelism where regions of video frames are as-

signed to individual processors. For instance, the left halves of all the frames can

be processed by one processor and the right halves can be processed by the other

processor.

Shen et al. [42] have implemented an MPEG-1 encoder on the Intel Touchstone

Delta and Intel Paragon parallel computers using the SPMD model of parallelism.
Akramullah et al. [4] have implemented a parallel MPEG-2 encoder on a network

of workstations connected via Ethernet and ATM. Parallelism is achieved at the level

of the GOP, i.e., each GOP is encoded by a single processor. A scheme for efficient I/

O and data distribution is presented. Although encoding is often done off line, the

performance is shown to be better than real-time. He et al. [16], propose a soft-

ware-based MPEG-4 encoder using a network of workstations. A Petrinet-based

modeling methodology is used to capture spatio-temporal relationships among the

multiple video objects at different levels of the MPEG-4 encoding hierarchy. Their
scheme incorporates automatic partitioning, allocation and scheduling of video ob-

jects to individual processors as well as dynamic determination of execution order

and synchronization requirements. With 20 processors, the performance is better

than real-time and multiple sequences can be encoded simultaneously. Agi and

Jagannathan [2] discuss a parallel MPEG-1 encoder on a CM-5 Machine where par-

allelism is achieved at the GOP level. Their scheme shows a linear speedup up to 16

processors, beyond which the speedup drops due to the bottlenecks in the commu-

nication network and the file I/O system. Meng et al. [28] present a compressed video
searching and editing system called WebClip for the web. WebClip works on

MPEG-1 compressed video allowing for editing functions such as cuts, pastes,

blends, dissolves etc. and does task/data distribution at the level of the GOP.
3. Parallel parsing of MPEG-1 video

Two different approaches to parallel parsing of MPEG-1 video are implemented
and analyzed in this paper. The first approach, termed as Approach 1, is based on

[7,8] and uses DC images and motion vectors to detect scene changes. The DC

images corresponding to Y, U and V images of each frame in the MPEG-1 stream

are generated using the method suggested in [49,50] which does not entail complete

decompression of the MPEG-1 stream. Abrupt scene changes (i.e., scene cuts) are

detected by thresholding the difference between the sum of the DC values from

the Y, U and V images of two consecutive frames. If there is a scene change between

two frames, this difference will exceed a prespecified threshold. Gradual scene



S.M. Bhandarkar, S.R. Chandrasekaran / Parallel Computing 30 (2004) 1233–1276 1241
changes (i.e., fades and dissolves) are detected by thresholding the difference between

the sum of DC values that are k frames apart [49].

In the case of video parsing using motion vectors, we exploit the fact that scene

changes such as scene cuts, pans and zooms exhibit definite patterns in the underly-

ing motion vector field. Abrupt scene changes are found by first computing the mo-

tion distances between two successive frames [7]. The motion distance denotes the

difference in the extent of motion between successive frames. Scene cuts are charac-

terized by large motion distances between the successive frames on either side of the

scene boundary [7]. In a pan scene, a majority of the motion vectors are aligned in

the direction of the pan. During a zoom-in or zoom-out, a majority of the motion

vectors either point outward or inward respectively. Dissolves are detected based

on the observation that the prediction error values in the encoded macroblocks

are high. Fig. 6 depicts an outline of a sequential algorithm for Approach 1.
The second approach, termed as Approach 2, is based on [33] in which only DC

image strips are used. Three strips, namely, the horizontal, vertical and diagonal

strips passing through the center of each DC image, are extracted for each frame

in the video. The corresponding strips from each frame are stitched together to form

a set of three 2-D images where each 2-D image corresponds to the horizontal, ver-

tical or diagonal strips. Scene changes are detected by segmenting these images. The

shapes of boundaries between the segments reveal the nature of the scene transitions.

Abrupt scene cuts and gradual scene changes are detected in the same manner as the
DC image approach [49]. Thresholding is performed on the difference sequences. For

some of the MPEG-1 streams that were tested, this approach gives better results than

the DC image approach. Detection of zoom-ins and zoom-outs is much more com-

plex and hence not performed. Fig. 7 depicts an outline of a sequential algorithm for

Approach 2.

The two approaches discussed above are parallelized in our parallel video parsing

system depicted in Fig. 8. The parallel video parsing system is similar to the parallel
Fig. 6. Outline of the sequential algorithm for Approach 1.



Fig. 7. Outline of the sequential algorithm for Approach 2.

Fig. 8. System organization.

1242 S.M. Bhandarkar, S.R. Chandrasekaran / Parallel Computing 30 (2004) 1233–1276
MPEG decoding system discussed in [10]. The system consists of a main or master

process, a group of worker or slave processes and a display process. The master

process scans the input MPEG-1 stream, prepares the tasks and assigns the tasks

to the worker processes. The workers process the tasks and convey the intermediate

and final results to the display process. The relevant information such as the DC

images and the motion vectors are extracted locally within the tasks assigned

to the workers and are shared with the other workers in order to compute the final



S.M. Bhandarkar, S.R. Chandrasekaran / Parallel Computing 30 (2004) 1233–1276 1243
results. All the processes use shared memory for communication and synchroniza-

tion. The master process prepares the parallel units of computation (i.e. tasks) and

inserts them in a circular queue in the shared memory. The workers remove the tasks

from the queue and process them. The master process does no computation per se,

but monitors the MPEG-1 stream for the beginning and end of a new frame or a
slice, or for a particular sequence of frames to build custom GOPs for the GOP-level

implementation (as discussed in the next section) before queuing tasks in the task

queue. All the decoding is done by the workers. The task queue is either common

to all workers or each worker could have its own task queue.

Since the MPEG-1 stream can be hierarchically decomposed into various layers

such as sequences, GOPs, frames, slices and macroblocks, it stands to reason to con-

sider these layers as potential parallel units of work. We have chosen GOPs, frames

and slices as possible units for task decomposition in our current implementation.
The sequence layer is not chosen because many available MPEG-1 videos have very

few sequences, typically just one. The macroblock layer is not chosen because in a

given slice the macroblocks are highly dependent on other macroblocks. Thus task

decomposition at the macroblock level would involve tremendous synchronization.

As a passing note, in our system (as in most MPEG-1 decoders), only three frames

and their related information reside in memory at any point in time. The three

frames are the two reference frames and the frame being currently decoded or ana-

lyzed. The related information comprises of DC images, motion vectors, and other
assorted data needed for the working of the system. Our parallel algorithms are

implemented on a 32-processor SUN Enterprise 10000 server which is a shared-

memory symmetric multiprocessor (SMP) running the SUN Solaris operating sys-

tem. Interprocess communication is done solely through shared memory.

3.1. Parallel MPEG-1 video parsing at the GOP level

When parsing MPEG-1 video at the GOP level, each worker process tackles a dis-
tinct GOP and processes the results. There is a distinction between the GOP assigned

to a worker process and the GOP present in the MPEG-1 stream. The traditional

GOP in an MPEG-1 stream consists of a set of frames with a unique start code

and header. As discussed in the introduction, a GOP in the MPEG-1 stream can start

with an I or a B frame and end with an I or a P frame. A GOP header has a special

bit called the closed bit. If this bit is set, no frame in that GOP depends on any other

frame in the preceding or succeeding GOP. Such a GOP is considered closed and can

be decoded independently. Thus, a closed GOP has to start with an I frame or a B
frame with no dependence on the previous GOP. However, due to the fact that the

MPEG-1 encoder transmits frames out of their true temporal order, the resulting

GOPs are not closed (Fig. 9). GOPs that are not closed entail communication and

synchronization overhead among the worker processes. Thus, the master process

has to preprocess the actual MPEG-1 stream to ensure that the GOPs are always

closed. The closed GOPs resulting from the preprocessing of the MPEG-1 stream

are called custom GOPs (Fig. 9). In the remainder of the paper, the term GOP im-

plies a custom GOP unless stated otherwise. Since the GOPs are independent, the



Fig. 9. The actual GOP in the MPEG-1 stream and the custom GOP.

1244 S.M. Bhandarkar, S.R. Chandrasekaran / Parallel Computing 30 (2004) 1233–1276
communication and synchronization overhead among the worker processes is mini-

mal. Most of the synchronization and communication is between the master process
and the worker processes.

3.1.1. Parsing using DC images and motion vectors (Approach 1)

The master process inserts the custom GOPs along with relevant header informa-

tion into the task queue. The worker processes remove the tasks from the queue and

process them independently with no communication between the workers. Each

worker process uses the algorithms in [7,8,49] for detecting scene cuts, pans, zooms

and gradual scene changes using the DC images and motion vector information de-
rived from the video segment within their respective GOPs. The results of the parsing

are inserted in a single shared data structure in memory that is indexed by the frame

number. No locks are required to access this shared structure since no two workers

handle the same frame. The workers access the task queue until it is empty. Access to

the task queue is synchronized. The pseudocode outlines for the master process and

the worker process are shown in Figs. 10 and 11 respectively.

Arriving at the results from the GOPs takes place in two steps. In the first step, a

worker process extracts the three DC images for each frame in its GOP, and com-
putes the sum of the DC values in each of the 3 images. In the second step, the dif-

ference between the sum for the current frame and the sum for the previous frame is

computed. Once the array of sums is available, finding the difference between sums

of successive frames or between sums that are k frames apart 1 can be done in any

manner. In the case where the span k of a dissolve is larger than the number of

frames in a GOP, the difference computation requires the sum of the DC values of

a frame in another GOP. This entails communication and synchronization among

the workers. Computing the motion vectors is done in a similar manner. Instead
of extracting the DC images, the workers compute the motion vectors within each

GOP. Detection of scene cuts, pans and zooms is done by computing the motion vec-

tors with respect to a reference frame within the GOP as is done in the sequential

algorithm.
1 For dissolve detection.



Fig. 10. Pseudocode outline of the master process for parallel video parsing at the GOP level

(Approach 1).

Fig. 11. Pseudocode outline of the worker process for parallel video parsing at the GOP level

(Approach 1).

S.M. Bhandarkar, S.R. Chandrasekaran / Parallel Computing 30 (2004) 1233–1276 1245
3.1.2. Parsing using DC image strips (Approach 2)

Recall that 1-D strips are extracted from the three DC images of each frame in the

MPEG-1 stream and stitched together to form a 2-D image. Each worker locally



1246 S.M. Bhandarkar, S.R. Chandrasekaran / Parallel Computing 30 (2004) 1233–1276
stitches the strips from the frames in its GOP. The scene changes are detected by seg-

menting the 2-D image using an edge detector in the (Y, U, V) feature space. Since

edge detection involves finding the difference in values between DC images of con-

secutive frames, the worker processes need to synchronize at the GOP boundaries.

The GOP-based scheme is modified slightly for this approach. Edge detection is done
while extracting the strips. This approach saves memory since storing the entire 2-D

image in memory is not necessary. Scene cuts and pans use the differences computed

between consecutive frames. Dissolves are implemented using the same k-difference

method used with the DC images in Approach 1. Each worker computes the sum of

the strips and if the value of the kth strip exists within the process, it computes the

difference. The sums obtained from the strips are kept in a shared address space. The

difference is then thresholded to check for peaks and plateaus. As before, parallelism

is affected when detecting dissolves if the span of the dissolve is greater than the num-
ber of frames in a GOP. The master process for Approach 2 is the same as that for

Approach 1. The pseudocode outline for the worker process in Approach 2 is

depicted in Fig. 12.
Fig. 12. Pseudocode outline of the worker process for parallel video parsing at the GOP-level

(Approach 2).



S.M. Bhandarkar, S.R. Chandrasekaran / Parallel Computing 30 (2004) 1233–1276 1247
3.2. Parallel MPEG-1 video parsing at the frame level

When parsing MPEG-1 video in parallel at the frame level, each worker process

deals with a single frame at a time and computes the results. This entails finer-

grained task and data decomposition compared to parallel video parsing at the
GOP level. Since the results are based on differences between successive frames,

worker processes dealing with successive frames need to synchronize and communi-

cate their results. To minimize the synchronization communication overhead, inter-

mediate results are temporarily buffered and the final results computed only after

every I frame in the MPEG-1 stream. This permits the workers to compute the inter-

mediate results locally without synchronization. But the inherent dependencies be-

tween I, P and B frames limits the extent of parallelism. If a worker is processing

an I or a P frame, no other worker is allowed to proceed concurrently because the
frames that follow the I or P frame will either depend on the I or P frame, or on

a frame succeeding the I or P frame. Thus, the presence of the reference frames (I

or P frames) in the MPEG-1 stream enforces sequential execution. Only a worker

that is currently processing a B frame can execute concurrently with other workers

that are also currently processing B frames. A higher percentage of B frames in

the MPEG-1 stream increases the extent of parallelism that can be realized at the

frame level.

3.2.1. Parsing using DC images and motion vectors (Approach 1)

The master process scans the MPEG-1 stream for the start and end markers of a

frame and inserts the frame along with the appropriate header in the task queue. The

worker processes remove the tasks from the task queue. Processing takes place in the

order of the frame numbers due to the inter-frame dependencies. The frames that ap-

pear early in the MPEG-1 stream have to be processed before the later frames. Thus,

the worker in possession of the frame with the lowest number takes precedence. If

the frame is a reference frame (I or P frame), the frame number decides the order.
If the frame is a B frame, then both of its reference frames must have been already
Fig. 13. Pseudocode outline of the master process for parallel video parsing at the frame level

(Approach 1).



1248 S.M. Bhandarkar, S.R. Chandrasekaran / Parallel Computing 30 (2004) 1233–1276
processed. The above two conditions enforce a global ordering on the computation.

A worker, not processing a frame, sleeps on a condition variable. The pseudocode

outline of the master process is given in Fig. 13.

The worker processes compute the results in two steps. In the first step, a worker

process extracts the DC images for all of its assigned frames, computes all the nec-
essary information from each frame including the sum of DC values and records the
Fig. 14. Pseudocode outline of the worker process for parallel video parsing at the frame level

(Approach 1).



S.M. Bhandarkar, S.R. Chandrasekaran / Parallel Computing 30 (2004) 1233–1276 1249
information in the shared memory. The first step is local to each worker process and

does not entail any synchronization. The second step involves synchronization after

every I frame in the MPEG-1 stream. After every I frame, the workers use the inter-

mediate information to compute the final results. To make this possible, the worker

that processes an I frame, sets a global variable that acts as a signal to all the other
workers. During the processing of the I frame, all the other workers suspend their

tasks since the I frame is a reference frame. After having processed its I frame, the

worker awakens the other sleeping workers. Since the global variable is now set,

all the workers halt the processing of any future frames and proceed to compute

the final results. They divide the preprocessed work among themselves and compute

the inter-frame differences. The pseudocode outline of the worker process for Ap-

proach 1 is shown in Fig. 14. The extraction of motion vectors is performed in a sim-

ilar manner. As in the previous case, the reference frames are resident in the shared
memory. To compute the motion distance for detection of scene cuts, the workers

access the reference frames synchronously. Detection of zooms and pans also entails

access to the reference frames [8]. Dissolves are detected using the prediction errors.

The differences in the prediction errors between consecutive frames are thresholded

to detect dissolves [7].

3.2.2. Parsing using DC image strips (Approach 2)

The master process for Approach 2 is the same as that for Approach 1. The work-
er processes extract the three strips, horizontal, vertical and diagonal, from the three
Fig. 15. Pseudocode outline of the worker process for parallel video parsing at the frame level

(Approach 2).



1250 S.M. Bhandarkar, S.R. Chandrasekaran / Parallel Computing 30 (2004) 1233–1276
DC images of the frames they are currently processing. The processing of the frames

follows the same order as in the case of Approach 1. At the end of each frame, the

worker processes synchronize to compute the pixel differences. Each worker process

computes the differences between its current frame and the stored values of the pre-

vious frame and stores the current values in the shared memory for the worker
processing the next frame in order. Dissolves are implemented using the same k-

difference method as in the case of Approach 1 (with DC images). At the end of a

frame, the worker computes the k-difference if the value of the kth frame exists

locally. If the value does not exist locally, then the worker processing the kth frame

computes the k-difference. The k-difference is then thresholded to check for peaks

and plateaus for potential dissolves. The pseudocode outline of the worker process

for Approach 2 is given in Fig. 15.

3.3. Parallel MPEG-1 video parsing at the slice level

When parsing MPEG-1 video at the level of slices, each worker is assigned a slice

to be processed. This represents the finest-grained task and data decomposition com-

pared to parallel video parsing at the GOP level or the frame level. The slice-level

implementation has the same overall structure as the frame-level implementation.

The workers process all the slices in a given frame before proceeding to the next

frame. When a reference frame is being processed by a group of workers, no other
worker can process the slices from the next frame. Likewise, when non-reference

frames are processed by a group of workers, no other worker can begin processing

the next reference frame since the two reference frames resident in the shared mem-

ory will be altered if the worker is allowed to process the next reference frame. Any

change in the reference frames will affect the processing of the non-reference frames.

To improve the efficiency, when workers are processing non-reference frames (B

frames), the reference frame immediately following them is allowed to be processed,

but the results are not updated in the shared memory. The results are buffered tem-
porarily and the shared memory is updated during synchronization. To minimize the

synchronization overhead, intermediate results are temporarily buffered and the final

results are computed during synchronization after every I frame in the MPEG-1

stream. As before, the inherent dependencies between I, P and B frames limit the ex-

tent of parallelism. Only the workers handling slices from B frames and the immedi-

ately succeeding I or P frame can execute in parallel. There are at least two circular

task queues used in this implementation. The master process uses one queue to fill all

slices belonging to a particular frame and proceeds to fill the other queue for a new
frame. This allows the insert-into-queue operation performed by the master process

and the remove-from-queue operations performed by the worker processes to be

overlapped without entailing a high synchronization overhead.

3.3.1. Parsing using DC images and motion vectors (Approach 1)

The master process scans the MPEG-1 stream for the start of a new slice and

inserts the slice along with the appropriate GOP, frame and slice headers into the



Fig. 16. Pseudocode outline of the master process for parallel video parsing at the slice level (Approach 1).

S.M. Bhandarkar, S.R. Chandrasekaran / Parallel Computing 30 (2004) 1233–1276 1251
task queue. Processing takes place in the order of the frame numbers. However,

the slices within a frame are processed in any order. The frames that appear

early in the MPEG stream have to be processed before the later frames. So all

the workers having slices from the lowest numbered frame take precedence. If the

frame is a B frame, the precondition of the availability of both its reference frames

must be met. If it is a reference frame, no other frames except the preceding B

frames should be active. The pseudocode outline of the master process is shown in

Fig. 16.
The worker process for parallel video parsing at the slice level is very similar to its

frame-level counterpart. The worker processes compute all the intermediate results

and synchronize at the end of every frame. In contrast to the frame-level implemen-

tation where a frame is processed by a single worker, here a frame is processed by all

workers. The master and worker processes are very similar in both cases, whether the

DC values or the motion vectors are used to determine scene changes. The pseudo-

code outline of the worker process is shown in Fig. 17.

3.3.2. Parsing using DC image strips (Approach 2)

The master process in Approach 2 is identical to the one in Approach 1 (Fig. 16).

However the structure of the worker process in Approach 2 more closely resembles

that of the worker process in Approach 2 of the frame-level implementation. The

three strips, horizontal, vertical and diagonal are extracted from the three DC images

of each frame. Since the workers work with slices rather than entire frames, the inter-

mediate data from all the slices are used to build a shared frame. The last worker to

finish in a frame extracts the 3 strips from the shared frame that has been built. At
the end of each frame, the differences are computed and the current values are stored

in the shared memory for the next frame. Dissolves are implemented using the

same k difference approach that is used in Approach 1 with the DC images. The

worker that processes the last slice within a frame, computes the sum of the strips

and computes the difference if the value of the kth frame exists locally. The difference

is then thresholded to check for peaks and plateaus. A more parallel version could

utilize all workers in the computation of the sums and differences, but is highly



Fig. 17. Pseudocode outline of the worker process for parallel video parsing at the slice level

(Approach 1).

1252 S.M. Bhandarkar, S.R. Chandrasekaran / Parallel Computing 30 (2004) 1233–1276
complex. The pseudocode outline for the worker process for Approach 2 is given in

Fig. 18.



Fig. 18. Pseudocode outline of the worker process for parallel video parsing at the slice level

(Approach 2).

S.M. Bhandarkar, S.R. Chandrasekaran / Parallel Computing 30 (2004) 1233–1276 1253
4. Analytical evaluation of performance

The performance of the various parallel MPEG-1 video parsing schemes discussed

in the previous section were analyzed in terms of speedup, synchronization over-

head and general memory requirements. The following terminology is introduced be-

fore the analytical expressions for speedup and synchronization overhead are
derived.

Tc: Time taken by a worker to process a single task,

T 1c : Computation time for a 1-worker system. This includes time taken by the worker
to access the task queue,



1254 S.M. Bhandarkar, S.R. Chandrasekaran / Parallel Computing 30 (2004) 1233–1276
T 1w;m: Wait time experienced by the worker in a 1-worker system waiting for the mas-

ter to initialize the task queue,

T n
w;m: Total wait time experienced by all the workers in an n-worker system waiting

for the master to initialize the task queue,

T n
w;w: Total time spent in synchronization between the workers in an n-worker

system,

Tw,r: Time taken by a worker to remove a job from the queue,

Tm,i: Time taken by the master to construct and insert a job into the queue,

T n
c : Computation time for an n-worker system,

T1: Total time for a 1-worker system,

Tn: Total time for an n-worker system,

St: Size of the task (GOP, slice or frame),

Sq: Size of the task queue in terms of number of tasks,
nt: Total number of tasks,

n: Total number of worker processes.
4.1. Parallel parsing at the GOP level

The total time taken by a 1-processor system T1 can be expressed as:

T 1 ¼ T 1w;m þ T 1c ð1Þ

where

T 1c ¼ ntT c þ ntT w;r ¼ ntK2St þ ntK3St ¼ ntðK2 þ K3ÞSt ð2Þ
and K2 and K3 are constants. The computation time Tc for a task and the time taken

to remove a task from the queue Tw,r are proportional to the task size St. The wait

time at the task queue for 1-processor system T 1w;m can be expressed as

T 1w;m ¼ T 1ðw;mÞi
þ T 1ðw;mÞl

ð3Þ

where T 1ðw;mÞi is the initial wait time encountered by the worker processes while the

task queue is being filled by the master process and T 1ðw;mÞl is the wait time encoun-
tered by the worker process at the task queue at any other time during execution. It is

clear that

T 1ðw;mÞi ¼ K1St ¼ Tm;i ð4Þ

where K1 is a constant, i.e., the initial wait time T
1
ðw;mÞi

, which includes the time taken

by the master process to construct a task and insert it in the task queue, is directly

proportional to the task size. If the execution of the worker process is overlapped

with the time taken by the master process to construct and insert tasks in the task

queue and if the time taken by a worker process on a task is greater than the time
taken by the master process to construct and insert a task in the task queue, i.e.,

T 1c > Tm;i then T 1ðw;mÞl
¼ 0. That is to say, there is a new task already present in the

task queue when the worker process has completed its current task. Hence



S.M. Bhandarkar, S.R. Chandrasekaran / Parallel Computing 30 (2004) 1233–1276 1255
T 1w;m ¼ T 1ðw;mÞi ¼ K1St ð5Þ

Note that the task queue is assumed to be of size 1 since a larger queue size is not

needed for a 1-worker system. From Eqs. (1)–(5)

T 1 ¼ K1St þ ðK2 þ K3ÞntSt ð6Þ

For an n-worker system, the initial wait time at the task queue T n
ðw;mÞi

is given by

T n
ðw;mÞi ¼ K1SqSt. Recall that the time Tc taken by a single worker process to process
a single task is given by Tc = K2St. It can be seen that if T c > T n

ðw;mÞi
þ ðn� 1ÞT w;r, the

master process will have reinitialized the task queue before a worker process needs to

access the task queue for its next task. This implies that the wait time for subsequent

access to the task queue T n
ðw;mÞl

¼ 0, i.e., no worker process will be kept waiting for

subsequent access to the task queue. The synchronization overhead between the

worker processes T n
w;w is given by

T n
w;w ¼ T n

ðw;wÞi
þ T n

ðw;wÞl
ð7Þ

T n
ðw;wÞi

is the initial wait time at the task queue where a worker needs to wait

while another worker is accessing the task queue and T ðw;wÞl is the time spent by a

worker in synchronizing with other workers over the duration of the computa-

tion. For a GOP-level implementation, since each worker processes its GOP

independently of the other workers, T ðw;wÞl ¼ 0 whereas T n
ðw;wÞi

¼ ðn� 1ÞK3St. The
time T n

c spent in computation by an n-worker system on n processors can be

expressed as:

T n
c ¼

T 1c
n

¼ ðK2 þ K3Þ
nt
n

� �
St ð8Þ

In Eq. (8) it is assumed that each worker process is assigned to an independent proc-

essor within the SMP. Thus

T n ¼ T n
c þ T n

w;m þ T n
w;w ¼ ðK2 þ K3Þ

nt
n

� �
St þ K1SqSt þ ðn� 1ÞK3St ð9Þ

The speedup r(n,nt) is given by

rðn; ntÞ ¼
T 1

T n ¼
K1St þ ðK2 þ K3ÞntSt

K1SqSt þ ðK2þK3ÞntSt
n þ ðn� 1ÞK3St

¼
n 1þ K1

ðK2þK3Þnt

� �

1þ Sq
K1

K2þK3
n
nt
þ nðn�1Þ

nt
K3

K2þK3

� � ð10Þ

Note that for most video streams, K1,K3� K2 and Sq� nt, i.e., the time taken to

construct a task, queue a task or remove a task from the queue is much smaller than

the time taken to process it, and the size of the task queue is much smaller than the

number of tasks (GOPs) in the video stream. In the limit as nt! 1, i.e., as the video
stream becomes longer it can be seen from Eq. (10) that



1256 S.M. Bhandarkar, S.R. Chandrasekaran / Parallel Computing 30 (2004) 1233–1276
rlðnÞ ¼ lim
nt!1

rðn; ntÞ ¼ n ð11Þ

Also, for a given value of nt, in the limit as n ! 1, i.e., as the number of processors
are increased it can be seen from Eq. (10) that

rkðntÞ ¼ lim
n!1

rðn; ntÞ ¼ 0 ð12Þ

Thus, better speedup is realized for video streams that are longer (i.e., have a larger

number of GOPs) in comparison to the number of processors in the SMP i.e., the

ratio nt
n is very high. The synchronization overhead x(n,nt) is given by:

xðn; ntÞ ¼
T n
w;m þ T n

w;w

T n ¼ K1SqSt þ ðn� 1ÞK3St
K1SqSt þ ðn� 1ÞK3St þ ðK2þK3ÞntSt

n

¼ 1

1þ K2þK3
K1Sqþðn�1ÞK3

� �
nt
n

� � ð13Þ

In the limit as nt! 1 it can be seen that

xlðnÞ ¼ lim
nt!1

xðn; ntÞ ¼ 0 ð14Þ

and

xkðntÞ ¼ lim
n!1

xðn; ntÞ ¼ 1 ð15Þ

These results are to be expected since the initial wait time at the task queue becomes

negligible compared to the total processing time as the length of the video stream in-

creases for a given value of number of processors n. Also, for a given video stream,

the initial wait time at the task queue becomes increasingly significant as the number

of processors n increases.

4.2. Parallel parsing at the frame level

As in the case of parallel parsing at the GOP level,

T 1 ¼ T 1c þ T 1w;m ð16Þ

and

T n ¼ T n
c þ T n

w;m þ T n
w;w ð17Þ

It can be seen that

T 1c ¼ ðK2 þ K3ÞntSt ð18Þ
and

T 1w;m ¼ T 1ðw;mÞi þ T 1ðw;mÞl ¼ K1St þ 0 ¼ K1St ð19Þ

Hence

T 1 ¼ K1St þ ðK2 þ K3ÞntSt ð20Þ



S.M. Bhandarkar, S.R. Chandrasekaran / Parallel Computing 30 (2004) 1233–1276 1257
Also the time Tc taken by a worker to process a task can be expressed as

T c ¼ T c;1 þ T c;2 ð21Þ
where Tc,1 represents the inherently serial portion and Tc,2 the parallelizable portion

of Tc. Let Tc,1 = K4St and Tc,2 = K5St such that K4 + K5 = K2. Hence

T n
c ¼ K4ntSt þ

K5ntSt
an

ð22Þ

where 0 < a < 1 takes into account the synchronization and communication over-
head between the n worker processes i.e. the term T n

ðw;wÞl
in

T n
w;w ¼ T n

ðw;wÞi þ T n
ðw;wÞl ð23Þ

where T n
ðw;wÞi

¼ ðn� 1ÞK3St as in the GOP case. Hence

T n ¼ T n
w;m þ T n

w;w þ T n
c ¼ T n

ðw;mÞi þ T n
ðw;mÞl þ T n

ðw;wÞi þ T n
ðw;wÞl þ T n

c

¼ K1SqSt þ ðn� 1ÞK3St þ K4ntSt þ
K5ntSt

an
ð24Þ

Note that T n
ðw;mÞl ¼ 0 as in the GOP case. Hence

rðn; ntÞ ¼
T 1

T n ¼
K1St þ ðK2 þ K3ÞntSt

K1SqSt þ ðn� 1ÞK3St þ K4ntSt þ K5ntSt
an

¼ K1 þ ðK2 þ K3Þnt
K1Sq þ ðn� 1ÞK3 þ K4nt þ K5nt

an

¼
an 1þ K1

ntðK3þK4þK5Þ

� �

a n
nt

� �
Sq

K1
K3þK4þK5

� �
þ anðn�1Þ

nt
K3

K3þK4þK5

� �
þ an K4

K3þK4þK5

� �
þ K5

K3þK4þK5

ð25Þ

Note that in the frame-level implementation, the parameter a is related to the frac-
tion of B frames in the GOP. Recall that the presence of I and P frames imposes

sequential execution in parallel video parsing at the frame level. The degree of par-

allelism that can be exploited at the frame level increases with the fraction of B
frames in the GOP. Also note that the inclusion of the factor a in T n

c takes into ac-

count T n
ðw;wÞl

and a separate expression for T n
ðw;wÞl

is not necessary. In the limit as

nt! 1, i.e., as the number of frames in a GOP becomes increasingly large,

rlðnÞ ¼ lim
nt!1

rðn; ntÞ ¼
an

K5
K3þK4þK5

þ an K4
K3þK4þK5

� � ð26Þ

Furthermore, when the percentage of parallelizable code is high, K4K2 ¼
K4

K4þK5
! 0 and

hence an K4
K3þK4þK5

! 0. In which case,

rlðnÞ 	 a 1þ K3

K2

� �
n ð27Þ



1258 S.M. Bhandarkar, S.R. Chandrasekaran / Parallel Computing 30 (2004) 1233–1276
which is linear in n. As the number of processors increase, i.e., n ! 1,

lim
n!1

rlðnÞ ¼ lim
n!1

1
K4

K3þK4þK5
þ K5

anðK3þK4þK5Þ
¼ K3 þ K4 þ K5

K4

¼ K3 þ K2

K4

ð28Þ

Thus the speedup reaches an asymptotic limit as the number of processors is in-

creased for large GOP sizes causing the efficiency to fall to zero.

The synchronization overhead x is given by

xðn; ntÞ ¼
T n
w;m þ T n

w;w

T n ð29Þ

The value of T n
w;w is given by T

n
w;w ¼ T n

ðw;wÞi
þ T n

ðw;wÞl
where T n

ðw;wÞi
¼ ðn� 1ÞK3St as in

the GOP case and

T n
ðw;wÞl

¼ T c;2
an

� T c;2
n

¼ K5St
nt
n

� � 1

a
� 1

� �
ð30Þ

Hence

xðn; ntÞ ¼
K1SqSt þ ðn� 1ÞK3St þ K5St nt

n

� �
1
a � 1
� �

K1SqSt þ ðn� 1ÞK3St þ ntK4St þ nt
an K5St

¼
K1Sqþðn�1ÞK3

nt
þ K5

n
1
a � 1
� �

K1Sqþðn�1ÞK3
nt

þ K4 þ K5
an

� � ð31Þ

From Eq. (31) in the limit as nt! 1,

lim
nt!1

xðn; ntÞ ¼ xlðnÞ ¼
K5
n

1
a � 1
� �

K4 þ K5
an

¼ 1� a

1þ a K4
K5
n

� � ð32Þ

In the limit as K4
K5

! 0, i.e., as the parallelizable fraction of the code increases, from

Eq. (32), it can be seen that

lim
K4
K5

!0
xlðnÞ ¼ 1� a ð33Þ
4.3. Parallel parsing at the slice level

The analysis of parallel video parsing at the slice level is along the same lines as

the analysis at the frame level. The only difference is that here nt is the average num-

ber of slices in a frame. The variable a is interpreted as the fraction of worker proc-
esses that can proceed concurrently. In fact, in most cases a 	 1. The only case where
the value of a deviates substantially from 1 is when the worker processes processing a
subsequent reference frame are finished whereas the worker processes processing a

previous B frame have not yet finished processing. This is an infrequent occurrence

since the processing of frames is typically completed in the temporal sequence of

their occurrence in the video stream.



S.M. Bhandarkar, S.R. Chandrasekaran / Parallel Computing 30 (2004) 1233–1276 1259
5. Experimental evaluation of performance

The performance of the various parallel MPEG-1 video parsing schemes discussed

in the previous section was experimentally verified in terms of speedup, synchroniza-

tion overhead and general memory requirements. All our experiments were con-
ducted on a SUN Enterprise 10000 server which is a shared memory symmetric

multiprocessor (SMP) machine with 32 Ultrasparc 400MHz processors and 32GB

of shared memory running the Solaris 8 operating system. All programs are com-

piled with gcc version 2.7.2.2. The programs use the Solaris shared memory library.
All the processes in the system are traditional UNIX processes. Shared memory is

used as the medium of communication. Shared memory is preferred over message

queues since the latter have strict restrictions on the sizes of allowed messages.

5.1. Parallel parsing at the GOP level

5.1.1. Approach 1

Speedup curves for the parallel MPEG-1 parsing at the GOP-level with Approach

1 using DC images are shown in Fig. 19(a) and (b). The speedup is computed with
0

5

10

15

20

25

30

0 5 10 15 20 25 30 35

S
pe

ed
up

Number of workers

Speedup Curves: GOP Approach 1

Task Queue Size = 32

GOP size=6
GOP size=12
GOP size=18
GOP size=24

0

5

10

15

20

25

30

0 5 10 15 20 25 30 35

S
pe

ed
up

Number of workers

Speedup Curves: GOP Approach 1

Task Queue Size = 48

GOP size=6
GOP size=12
GOP size=18
GOP size=24

(a)

(b)

Fig. 19. Speedup curves for parallel MPEG-1 parsing at the GOP level with Approach 1 using DC images.

(a) Task queue size = 32 and (b) Task queue size = 48.



1260 S.M. Bhandarkar, S.R. Chandrasekaran / Parallel Computing 30 (2004) 1233–1276
respect to the time taken by a single worker system. It can be seen that the speedup

increases almost linearly with the increase in number of workers up to 31. Since the

maximum number of processors in the SMP is 32 and one of the processors is as-

signed to the master process, the maximum number of workers possible (with an

assignment of one processor per worker) is 31. If more than 31 worker processes
are executed, the processes are time-shared on the processors available on the

SMP. Two different sizes for the task queue (32 and 48) with upto 31 worker

processes were examined. As the graphs in Fig. 19(a) and (b) show, there is not much

difference in the speedup values. It should be noted that the time taken to insert one

GOP into the queue is much less than the time taken to process a GOP. Since there

are 31 workers, for task queue sizes greater than 32, the workers do not spend any

time waiting for the task queue to be filled. Hence speedup does not vary for task

queue sizes greater than 32. Since the GOP level utilizes the coarsest granularity
of parallelism with minimal synchronization, the speedup is observed to scale in

a manner that is almost linear. This is in conformity with the theoretical analysis

presented in the previous section.

The speedup in Fig. 19(a) and (b) was seen to be affected by the GOP size. The

GOP size refers to the number of frames in the traditional GOP from which the cus-

tom GOPs are constructed. Four different GOP sizes were examined. The GOP size

was found to directly impact the load imbalance among the worker processes and

hence the speedup. Since all the worker processes execute on processors of the same
speed, if the GOPs are not equally divided among the workers, load imbalance

would result. The effect of this imbalance is more noticeable when the size of the

GOP is large and the number of GOPs in the MPEG stream is small. Also, the
0

5

10

15

20

25

30

35

5 10 15 20 25 30 35

S
yn

ch
ro

ni
za

tio
n 

O
ve

rh
ea

d 
(%

)

No. of Workers

Synchronization Overhead: GOP Approach 1

No. of GOP’s = 1024
No. of GOP’s = 1536
No. of GOP’s = 2048

Fig. 20. Synchronization overhead for parallel MPEG-1 parsing at the GOP level with Approach 1 using

DC images.



S.M. Bhandarkar, S.R. Chandrasekaran / Parallel Computing 30 (2004) 1233–1276 1261
disparity in the speedup values, for GOPs of different sizes, is observed to increase

with the number of worker processes. This can be attributed to fact that as the num-

ber of worker processes increases, so does the initial wait time.

Synchronization overhead is measured as the percentage of the total execution

time that is spent in synchronization primitives. Fig. 20 shows the synchronization
overhead as a function of the number of worker processes for Approach 1. Three

different values for the total number of tasks (i.e., GOPs) nt are considered, 1024,

1536 and 2048. The synchronization waits are due to stalls resulting from access

to shared data (which includes the task queue) and stalls resulting from data depend-

encies. The initial wait is for the task queue to get filled for the first time. The initial

wait time increases with an increase in the number of worker processes. The later

wait times, caused by inter-process synchronization, are small since the worker proc-

esses work independently of each other. The synchronization overhead is thus ob-
served to increase with an increase in the number of worker processes. The

synchronization overhead is also observed to reduce as the number of GOPs in

the video stream (i.e., tasks) increases for a given number of worker processes. These

observations are in conformity with the theoretical analysis presented in the previous

section.
0

5

10

15

20

25

30

0 5 10 15 20 25 30 35

S
pe

ed
up

Number of workers

Speedup Curves: GOP Approach 2

Task Queue Size = 32

GOP size=6
GOP size=12
GOP size=18
GOP size=24

0

5

10

15

20

25

30

35

5 10 15 20 25 30 35

S
yn

ch
ro

ni
za

tio
n 

O
ve

rh
ea

d 
(%

)

No. of Workers

Synchronization Overhead: GOP Approach 2

No. of GOP’s = 1024
No. of GOP’s = 1536
No. of GOP’s = 2048

(a)

(b)

Fig. 21. Parallel MPEG-1 parsing at the GOP level with Approach 2 using DC image slices. (a) Speedup

curves and (b) synchronization overhead curves.



1262 S.M. Bhandarkar, S.R. Chandrasekaran / Parallel Computing 30 (2004) 1233–1276
5.1.2. Approach 2

Speedup curves for the parallel MPEG-1 parsing at the GOP-level with Approach

2 using DC image strips are shown in Fig. 21(a). Four different sizes of GOPs are

used to test the speedup. As in the case of Approach 1, the smaller-size GOPs per-

form better than the larger-size GOPs. From Fig. 21(b) it can be observed that
the synchronization overhead increases with an increase in the number of worker

processes. This is due to the increased initial wait experienced by the worker

processes while the master process fills the task queue. As in the case of

Approach 1, the synchronization overhead is also observed to reduce as the number

of GOPs in the video stream (i.e., tasks) increases for a given number of worker

processes.

5.2. Parallel parsing at the frame level

5.2.1. Approach 1

Fig. 22(a) and (b) shows the speedup curves for parallel video parsing at the frame

level with Approach 1 which uses DC images. Two different sizes for the task queue

were examined, i.e., 32 frames and 48 frames. The speedup was observed to be sub-

linear because of high synchronization overhead which limits parallelism. The spee-

dup was observed to level off as the number of worker processes exceeded 12 (Fig.
1

2

3

4

5

6

7

0 5 10 15 20 25 30 35

S
pe

ed
up

Number of workers

Speedup Curves: Frame Approach 1

Task Queue Size = 32

No. of Frames=4010 (65% B Frames)
No. of Frames=8142 (65% B Frames)
No. of Frames=8142 (40% B Frames)

1

2

3

4

5

6

7

0 5 10 15 20 25 30 35

S
pe

ed
up

Number of workers

Speedup Curves: Frame Approach 1

Task Queue Size = 48

No. of Frames=4010 (65% B Frames)
No. of Frames=8142 (65% B Frames)
No. of Frames=8142 (40% B Frames)

(a)

(b)

Fig. 22. Speedup curves for parallel MPEG-1 parsing at the frame level with Approach 1 using DC

images. (a) Task queue size = 32 and (b) task queue size = 48.



S.M. Bhandarkar, S.R. Chandrasekaran / Parallel Computing 30 (2004) 1233–1276 1263
22(a) and (b)). The size of the task queue did not make a noticeable difference. Load

imbalance was not a significant factor because of the finer granularity of task and

data decomposition. The speedup values were seen to be particularly sensitive to

the fraction of B frames in the video stream. Video streams with a higher percentage

of B frames were seen to yield higher speedup values (Fig. 22). For a given percent-
age of B frames, the speedup values were observed to be higher for video streams

with more frames. Overall, the speedup values were observed to be more sensitive

to the percentage of B frames in the video stream (which determines the value of

a) than the total number of frames in the video stream (which determines the value

of nt).

The frame-level implementation involves high synchronization overhead. The

overhead, measured as the percentage of total time spent in synchronization, was ob-

served to be almost constant with respect to an increasing number of worker proc-
esses. The initial wait time, as discussed in the analysis of parallel video parsing at the

GOP-level, was present here as well but was overshadowed by the enormous amount

of subsequent synchronization. The synchronization overhead did not depend on the

number of frames in the MPEG-1 stream because every frame is associated with the

same amount of processing and synchronization overhead, rather it was seen to de-

pend on the percentage of B frames in the video stream. As shown in Fig. 23, for a

video stream with 8142 frames, the synchronization overhead was approximately

55% with 65% B frames and approximately 65% with 40% B frames. For a video
stream with 4010 frames and 65% B frames, the synchronization overhead was ob-

served to be approximately 59%. Thus, for a given number of processors and per-

centage of B frames, the synchronization overhead was seen to decrease with an
52

54

56

58

60

62

64

66

68

0 5 10 15 20 25 30 35

S
yn

ch
ro

ni
za

tio
n 

O
ve

rh
ea

d 
(%

)

No. of worker processes

Synchronization Overhead: Frame Approach 1

Task Queue Size = 32

No. of frames = 4010, 65% B frames
No. of frames = 8142, 65% B frames
No. of frames = 8142, 40% B frames

Fig. 23. Synchronization overhead for parallel MPEG-1 parsing at the frame level with Approach 1 using

DC images.



1264 S.M. Bhandarkar, S.R. Chandrasekaran / Parallel Computing 30 (2004) 1233–1276
increasing number of frames in the video stream. However, for a a given number of

processors and number of frames in the video stream, the synchronization overhead

was observed to be far more sensitive to the percentage of B frames in the video

stream; the synchronization overhead increased sharply even with a small decrease

in the percentage of B frames in the video stream.

5.2.2. Approach 2

Fig. 24(a) depicts the speedup for parallel video parsing at the frame level using

DC image slices (Approach 2). As in the case of Approach 1, the speedup was seen

to be sublinear due to the high synchronization overhead which limits the extent of

parallelism. The speedup was observed to level off for more than 12 worker proc-

esses. Approach 2 was also observed to incur high synchronization overhead as de-

picted in Fig. 24(b). The synchronization overhead was observed to be almost
constant with respect to the number of worker processes. As in the case of Approach

1, the synchronization overhead was observed to be more sensitive to the percentage

of B frames in the video sequence rather than the total number of frames in the video

sequence.
1

2

3

4

5

6

7

0 5 10 15 20 25 30 35

S
pe

ed
up

Number of workers

Speedup Curves: Frame Approach 2

Task Queue Size = 32

No. of Frames=4010 (65% B Frames)
No. of Frames=8142 (65% B Frames)
No. of Frames=8142 (40% B Frames)

52

54

56

58

60

62

64

66

68

0 5 10 15 20 25 30 35

S
yn

ch
ro

ni
za

tio
n 

O
ve

rh
ea

d 
(%

)

No. of worker processes

Synchronization Overhead: Frame Approach 2

Task Queue Size = 32

No. of frames = 4010, 65% B frames
No. of frames = 8142, 65% B frames
No. of frames = 8142, 40% B frames

(a)

(b)

Fig. 24. Parallel MPEG-1 parsing at the frame level with Approach 2 using DC image slices. (a) Speedup

curves and (b) synchronization overhead curves.



S.M. Bhandarkar, S.R. Chandrasekaran / Parallel Computing 30 (2004) 1233–1276 1265
5.3. Parallel parsing at the slice level

5.3.1. Approach 1

Experiments were conducted for four different frame resolutions. The resolution

affects the number of slices in a frame. Four different frame resolutions were consid-
ered: 32 slices/frame, 64 slices/frame, 96 slices/frame and 128 slices/frame. Also, two

different sizes for the task queue (32 and 48) were considered. The size of a single

slice, however, was kept constant. As Fig. 25(a) and (b) shows, the slice-level imple-

mentation yielded speedup figures that are better than the frame-level implementa-

tion but worse than the GOP-level implementation. Since the slice-level

implementation is similar to its frame-level counterpart, it is constrained by a similar

synchronization overhead. The improvement over the frame-level implementation

can be attributed to the parallel processing of a frame by several worker processes.
In the frame-level implementation, a worker works on a single frame and if that

frame happens to be a reference frame, then that worker process is the only one that

is permitted to run whereas the other workers in the system are forced to remain idle.
0

2

4

6

8

10

12

14

16

18

20

22

0 5 10 15 20 25 30 35

S
pe

ed
up

Number of workers

Speedup Curves: Slice Approach 1

Task Queue Size = 32

No. of Slices/Frame=32
No. of Slices/Frame=64
No. of Slices/Frame=96
No. of Slices/Frame=128

0

2

4

6

8

10

12

14

16

18

20

0 5 10 15 20 25 30 35

S
pe

ed
up

Number of workers

Speedup Curves: Slice Approach 1

Task Queue Size = 48

No. of Slices/Frame=32
No. of Slices/Frame=64
No. of Slices/Frame=96
No. of Slices/Frame=128

(a)

(b)

Fig. 25. Speedup curves for parallel MPEG-1 parsing at the slice level with Approach 1 using DC images.

(a) Task queue size = 32 and (b) task queue size = 48.



26

27

28

29

30

31

32

33

34

0 5 10 15 20 25 30 35

S
yn

ch
ro

ni
za

tio
n 

O
ve

rh
ea

d 
(%

)

No. of processors

Synchronization Overhead: Slice Approach 1

Task Queue Size = 32

Slices per frame = 32
Slices per frame = 64
Slices per frame = 96

Slices per frame = 128

Fig. 26. Synchronization overhead for parallel MPEG-1 parsing at the slice level with Approach 1 using

DC images.

1266 S.M. Bhandarkar, S.R. Chandrasekaran / Parallel Computing 30 (2004) 1233–1276
In the slice-level implementation, almost all the workers are active during the

processing of all frames, thus improving the speedup.

Fig. 25(a) and (b) shows the speedup results for four different frame resolutions.

The speedup performance was seen to be better for larger frame resolutions due to

the relatively infrequent synchronization amongst the workers which is in conform-

ity with the theoretical analysis. Load imbalance was not seen to be a major issue

because of the fine granularity of task and data decomposition. Although the spee-
dup was sublinear in the number of worker processes, the speedup values were better

than those in the case of the frame-level implementation. Also, the speedup curve in

the case of the slice-level implementation did not display the saturation (i.e., leveling

off) effect that it did in the case of the frame-level implementation.

Fig. 26 depicts the synchronization overhead for the slice-level implementation.

The synchronization overhead was observed to decrease as the number of slices in

a frame (i.e., frame resolution) was increased. This was expected since the workers

synchronize less frequently and spend more time in computation between synchroni-
zation when the frame resolution is increased. The synchronization overhead also

exhibited a slight increasing trend with an increase in the number of worker proc-

esses. These experimental observations were in conformity with the theoretical anal-

ysis presented earlier.

5.3.2. Approach 2

The experimental results in the case of Approach 2, were similar to those in the

case of Approach 1. As shown in Fig. 27(a), the speedup was observed to be sublin-
ear in the number of worker processes. However the speedup values were higher than



0

2

4

6

8

10

12

14

16

18

20

22

0 5 10 15 20 25 30 35

S
pe

ed
up

Number of workers

Speedup Curves: Slice Approach 2

Task Queue Size = 32

No. of Slices/Frame=32
No. of Slices/Frame=64
No. of Slices/Frame=96
No. of Slices/Frame=128

26

27

28

29

30

31

32

33

34

0 5 10 15 20 25 30 35

S
yn

ch
ro

ni
za

tio
n 

O
ve

rh
ea

d 
(%

)

No. of processors

Synchronization Overhead: Slice Approach 2

Task Queue Size = 32

Slices per frame = 32
Slices per frame = 64
Slices per frame = 96
Slices per frame = 128

(a)

(b)

Fig. 27. Parallel MPEG-1 parsing at the slice level with Approach 2 using DC image slices. (a) Speedup

curves and (b) synchronization overhead curves.

S.M. Bhandarkar, S.R. Chandrasekaran / Parallel Computing 30 (2004) 1233–1276 1267
those in the corresponding frame-level implementation. As in the case of Approach

1, the speedup values were better for higher frame resolutions. The synchronization

overhead is depicted in Fig. 27(b). As in the case of Approach 1, the synchronization

overhead was seen to decrease with an increase in the frame resolution. For a given

frame resolution, the synchronization overhead was seen to exhibit a slight increas-

ing trend with an increase in the number of worker processes.

5.4. Memory requirements

The system-wide memory requirements are depicted in Fig. 28 for the GOP-level,

frame-level and slice-level implementations. The GOP-level implementation was seen

to consume the most memory and the memory requirement increased with an in-

crease in the size of the GOP. The memory requirements also increased with an in-

crease in size of the task queue since for larger task queues, a larger number of GOPs

were stored in memory. In the GOP-level implementation, each worker process had

to retain 3 frames and the associated data in its local memory. As the number of
worker processes was increased, so did this local memory requirement.



0

10

20

30

40

50

60

70

0 5 10 15 20 25 30 35

M
em

or
y 

(M
B

)

Number of workers

Memory Requirements: Approach 1

GOP
Frame

Slice

Fig. 28. Memory requirements for the three levels of parallel processing granularity: GOP, frame and

slice.

1268 S.M. Bhandarkar, S.R. Chandrasekaran / Parallel Computing 30 (2004) 1233–1276
For the frame-level implementation, the memory requirements were seen to be

less stringent. The principal contender for memory was the task queue. However,

since each slot in the task queue holds a single frame it occupied much less space than

the slot in the task queue in the GOP-level implementation. The 3 frames resident in

memory and their associated data were common to all the worker processes. This

memory requirement did not increase with the number of worker processes which

is in contrast to the GOP-level implementation. The slice-level implementation
boasted the least memory requirement. The task queue occupied the least amount

of memory since each slot in the task queue holds only a single slice. As in the case

of the frame-level implementation, the 3 frames resident in memory and their asso-

ciated data were common to all the workers and thus this memory requirement did

not increase with the number of worker processes.

5.5. Multiple task queues

The video parsing system discussed thus far used a single global task queue that

was shared by all the worker processes. The slice-level implementation used two or

more queues which were also shared by all the workers. Since a shared global queue

results in contention among the processors, an improved version of the system was

implemented in which each worker was provided with its own task queue. The rest of

the system and its working were unchanged.

In the improved version of the video parsing system, the master process scans the

MPEG-1 stream and queues the tasks (custom GOPs, frames or slices) onto each of
the worker queues in a round-robin fashion. The worker processes read the tasks



S.M. Bhandarkar, S.R. Chandrasekaran / Parallel Computing 30 (2004) 1233–1276 1269
from their respective task queues. For the slice method, each worker has its individ-

ual set of multiple queues. The remainder of the processing by the workers is the

same as that in the case of the single task queue implementation. It should be noted

that the master process would still need to synchronize with the worker processes but

the need for synchronization amongst the worker processes is reduced. The pseudo-
code description of the master process for the multiple-queue version of the parallel

video parsing algorithm at the GOP level, frame level and the slice level is given in

Figs. 29–31, respectively. The pseudocode description of the worker process for the

multiple-queue implementation at the GOP level, frame level and slice level is the

same as that of its single-queue counterpart.

Fig. 32 depicts the synchronization overhead for the multiple-queue implementa-

tion of the video parsing algorithm based on the GOP level of parallelism. The syn-

chronization overhead in the case of the multiple-queue implementation was
observed to be lower than its single-queue counterpart—a 35% average reduction

in the synchronization overhead based on the single-queue implementation. How-

ever, there is still some initial wait time involved for the worker processes in the mul-

tiple-queue implementation since the master initializes the worker task queues in a

round-robin manner. This initial wait time is lower in the case of the multiple-queue

implementation and increases with an increase in the number of worker processes.

Hence the overall synchronization overhead was observed to have an increasing

trend with respect to the number of worker processes (Fig. 32). As in the case of
Fig. 29. Main process for parallel video parsing at the GOP level with multiple task queues.



Fig. 30. Main process for parallel video parsing at the frame level with multiple task queues.

Fig. 31. Main process for parallel video parsing at the slice level with multiple task queues.

1270 S.M. Bhandarkar, S.R. Chandrasekaran / Parallel Computing 30 (2004) 1233–1276
the single-queue implementation, the synchronization overhead was also observed to

have a decreasing trend with respect to the number of GOPs in the video stream.



2

4

6

8

10

12

14

16

18

20

22

5 10 15 20 25 30 35

S
yn

ch
ro

ni
za

tio
n 

O
ve

rh
ea

d 
(%

)

No. of Workers

Synchronization Overhead With Multiple Queues: GOP Approach 1

No. of GOP’s = 1024
No. of GOP’s = 1536
No. of GOP’s = 2048

Fig. 32. Synchronization overhead for the multiple-queue GOP-level implementation: Approach 1.

52

54

56

58

60

62

64

66

0 5 10 15 20 25 30 35

S
yn

ch
ro

ni
za

tio
n 

O
ve

rh
ea

d 
(%

)

No. of worker processes

Synchronization Overhead With Multiple Queues: Frame Approach 1

Task Queue Size = 32

No. of frames = 4010, 65% B frames
No. of frames = 8142, 65% B frames
No. of frames = 8142, 40% B frames

Fig. 33. Synchronization overhead for the multiple-queue frame-level implementation: Approach 1.

S.M. Bhandarkar, S.R. Chandrasekaran / Parallel Computing 30 (2004) 1233–1276 1271
Fig. 33 depicts the synchronization overhead for the multiple-queue implementa-

tion of the frame-level video parsing algorithm (Approach 1). The overall synchro-

nization overhead was seen to be lower than in the case of the single-queue

implementation but only marginally—a 4% average reduction in the synchronization

overhead based on the single-queue implementation. This was expected since the



1272 S.M. Bhandarkar, S.R. Chandrasekaran / Parallel Computing 30 (2004) 1233–1276
initial wait time for the worker processes is a small fraction of the subsequent wait

time due to data dependencies. Note that whereas the multiple-queue implementa-

tion can reduce the initial wait time for the worker processes it cannot alleviate

the wait times due to stalls caused by data dependencies. As in the case of the sin-

gle-queue implementation, the synchronization overhead for the multiple-queue
implementation was observed to be sensitive to the fraction of B frames in the video

stream i.e., the synchronization overhead increased sharply with a relatively modest

decrease in the fraction of B frames in the video stream. The synchronization over-

head also exhibited a decreasing trend with respect to the number of frames in the

video stream in a manner similar to the single-queue implementation. The synchro-

nization overhead was observed to be almost constant with respect to the number of

worker processes in a manner similar to the single-queue implementation.

Fig. 34 depicts the synchronization overhead for the multiple-queue implemen-
tation of the slice-level video parsing algorithm (Approach 1). The overall synchro-

nization overhead was seen to be lower than in the case of the single-queue

implementation—a 12% average reduction in the synchronization overhead based

on the single-queue implementation. Note that this reduction is significantly greater

than the reduction observed in the case of the multiple-queue frame-level implemen-

tation but significantly lower than that observed in the case of the multiple-queue

GOP-level implementation. This was expected since the initial wait time for the work-

er processes in the slice-level implementation as fraction of the total wait time (which
includes wait times due to data dependencies) lies between the corresponding values

for the frame-level implementation (very low) and the GOP-level implementation

(very high). As in the case of the single-queue slice-level implementation, the synchro-

nization overhead for the multiple-queue slice-level implementation was observed to
22

23

24

25

26

27

28

29

0 5 10 15 20 25 30 35

S
yn

ch
ro

ni
za

tio
n 

O
ve

rh
ea

d 
(%

)

No. of processors

Synchronization Overhead With Multiple Queues: Slice Approach 1

Task Queue Size = 32

Slices per frame = 32
Slices per frame = 64
Slices per frame = 96

Slices per frame = 128

Fig. 34. Synchronization overhead for the multiple-queue slice-level implementation: Approach 1.



S.M. Bhandarkar, S.R. Chandrasekaran / Parallel Computing 30 (2004) 1233–1276 1273
have a decreasing trend with respect to the frame resolution (number of slices per

frame). The overall synchronization overhead was almost constant with respect to

the number of worker processes as in case of the single-queue implementation.
6. Conclusions and future work

In this paper, a parallel parsing system for MPEG-1 video streams was designed

and implemented, and its results were analyzed. The results showed that MPEG-1

video parsing is amenable to parallel processing on a shared-memory symmetric mul-

tiprocessor (SMP). Two different parsing algorithms were implemented and ana-

lyzed. The parallel video parsing algorithms were implemented for 3 levels of

granularity of task and data decomposition, i.e., the GOP-level, frame-level and
slice-level. Since MPEG-1 video exhibits inherent dependencies, the coarsest granu-

larity of parallelism, i.e., the GOP-level, was observed to yields the best results in

terms of speedup and synchronization overhead. The custom GOP-level implemen-

tation was followed by the slice-level and the frame-level implementations (in that

order) in terms of speedup and synchronization overhead.

The synchronization overhead was seen to be impacted by the initial wait timewhen

the worker task queue(s) is (are) being initialized by the master process. Since the

worker processes in the GOP-level implementation process their assigned GOPs inde-
pendently, the initial wait time had a greater impact on the overall synchronization

overhead. In contrast, in the frame-level implementation, the worker processes had

to synchronize frequently due to the inherent data dependencies between the frames

within a GOP. Hence, the contribution of the initial wait time towards the overall syn-

chronization overhead was relatively insignificant. Replacing the single task queue by

multiple task queues, one for each worker process, resulted in a reduction in the initial

wait time and had the most impact on the GOP-level implementation and the least on

the frame-level implementation in terms of overall synchronization overhead. Overall,
the speedup of the GOP-level implementation was observed to be the most scalable

with respect to the number of processors within the SMP whereas the speedup of

the frame-level implementation was seen to be the least scalable. The slice-level imple-

mentation was observed to lie between the GOP-level and frame-level implementa-

tions in terms of speedup, synchronization overhead and scalability of speedup and

synchronization overhead with respect to the number of processors within the SMP.

Future work will include implementing the parallel video parsing algorithms on a

hybrid platform consisting of a distributed memory network of nodes where each
node is a shared memory symmetric multiprocessor (SMP). Parsing algorithms based

on more advanced video encoding standards such as MPEG-4 and MPEG-7 will also

be investigated.
References

[1] N. Adami, R. Leonardi, Identification of editing effects in image sequences by statistical modeling,

in: Proceedings 1999 Picture Coding Symposium, Portland, OR, April 1999.



1274 S.M. Bhandarkar, S.R. Chandrasekaran / Parallel Computing 30 (2004) 1233–1276
[2] I. Agi, R. Jagannathan, A portable fault-tolerant parallel software MPEG-1 encoder, in: Proceedings

of Second IASTED/ISMM International Conference on Distributed Multimedia Systems and

Applications, Stanford, CA, August 1995.

[3] G. Ahanger, T.D.C. Little, A survey of technologies for parsing and indexing digital video, Journal of

Visual Communication and Image Representation 7 (1) (1996) 28–43, March.

[4] S.M. Akramullah, I. Ahmad, M.L. Liou, Parallel MPEG-2 encoder on ATM and Ethernet connected

workstations. Lecture Notes in Computer Science, vol. 1557, Springer-Verlag, Berlin, 1999, pp. 572–

574.

[5] F. Arman, A. Hsu, M.Y. Chiu, Image processing on compressed data for large video databases, in:

Proceedings of ACM International Conference on Multimedia, Anaheim, CA, August 1993, pp. 267–

272.

[6] F. Arman, R. Depommier, A. Hsu, M.Y. Chiu, Content-based browsing of video sequences, in:

Proceedings of ACM International Conference on Multimedia, August 1994, pp. 97–103.

[7] S.M. Bhandarkar, A.A. Khombadia, Motion-based parsing of compressed video, in: Proceedings of

IEEE International Workshop on Multimedia Database Management Systems, Dayton, Ohio,

August 5–7, 1998, pp. 80–87.

[8] S.M. Bhandarkar, Y.S. Warke, A.A. Khombadia, Integrated parsing of compressed video, in:

Proceedings of International Conference on Visual Information Management Systems, Amsterdam,

The Netherlands, June 2–4, 1999, pp. 269–276.

[9] V. Bhaskaran, K. Konstantinides, Image and Video Compression Standards: Algorithms and

Architectures, Kluwer Academic Publishers, 1995, pp. 161–194.

[10] A. Bilas, J. Fritts, J.P. Singh, Real-time parallel MPEG-2 decoding in software, Technical Report 516-

96, Department of Computer Science, Princeton University, March 1996.

[11] S.S. Cheung, A. Zakhor, Automatic News Watcher, Technical Report, Video and Image Processing

Laboratory, University of California, Berkeley, 1999.

[12] H. Ching, H. Liu, G. Zick, Scene decomposition of MPEG compressed video, in: Proceedings of SPIE

Conference on Digital Video Compression: Algorithms and Technologies, San Jose, CA, vol. 2419,

February 1995, pp. 26–37.

[13] N. Gamaz, X. Huang, Scene change detection in MPEG domain, in: Proceedings of IEEE Southwest

Symposium on Image Analysis and Interpretation, 1998, pp. 12–17.

[14] D.L. Gall, MPEG: A video compression standard for multimedia applications, Communications of

the ACM 34 (4) (1991) 46–58.

[15] A. Hampapur, R. Jain, T. Weymouth, Production model-based digital video segmentation, Journal

of Multimedia Tools and Applications 1 (March) (1995) 1–38.

[16] Y. He, I. Ahmad, M.L. Liou, A software-based MPEG-4 encoder using parallel processing, IEEE

Transactions on Circuits and Systems for Video Technologies 8 (7) (1998) 909–920.

[17] P.R. Hsu, H. Harashima, Detecting scene changes and activities in video databases, Proceedings of

IEEE International Conference on Acoustics, Speech, Signal Process 5 (April) (1994) 33–36.

[18] P.R. Hsu, H. Harashima, Spatiotemporal representation of dynamic objects, in: Proceedings of IEEE

International Conference on Computer Vision and Patterm Recognition, 1993, pp. 14–19.

[19] A.K. Jain, A. Vailaya, X. Wei, Query by video clip, ACM Journal of Multimedia Systems 7 (5) (1999)

369–384.

[20] H. Jiang, A. Helal, A.K. Elmagarmid, A. Joshi, Scene change detection techniques for video database

systems, ACM Journal of Multimedia Systems 6 (3) (1998) 186–195.

[21] J.R. Kender, B.L. Yeo, Video scene segmentation via continuous video coherence, in: Proceedings of

IEEE Conference on Computer Vision and Pattern Recognition, June 1998, pp. 367–373.

[22] V. Kobla, D. Doermann, K.I. Lin, C. Faloutsos, Compressed domain video indexing techniques

using DCT and Motion Vector information in MPEG video, Proceedings of SPIE Conference on

Storage and Retrieval for Image and Video Databases V 3022 (1996) 200–211.

[23] V. Kobla, D. Doermann, K.I. Lin, C. Faloutsos, Compressed domain video indexing techniques

using DCT and motion vector information in MPEG video, Proceedings of SPIE Conference on

Storage and Retrieval for Image and Video Database V 3022 (February) (1997) 200–211.

[24] I. Koprinska, S. Carrato, Video segmentation of MPEG compressed data, in: Proceedings of ICECS,

Lisboa, Portugal, September 7–10, 1998.



S.M. Bhandarkar, S.R. Chandrasekaran / Parallel Computing 30 (2004) 1233–1276 1275
[25] I. Koprinska, S. Carrato, Detecting and classifying video shot boundaries in MPEG compressed

sequences, in: Proceedings of EUSIPCO-98, Rhodes, Greece, September 1998.

[26] R. Lienhart, W. Effelsberg, R. Jain, VisualGREP: A systematic method to compare and retrieve

video sequences, Proceedings of SPIE Conference on Storage and Retrieval for Image and Video

Databases VI 3312 (1997) 271–282.

[27] K. Mayer-Patel, A parallel software-only video effects processing system, Ph.D. Dissertation,

Computer Science, University of California, Berkeley, December 1999.

[28] H.J. Meng, D. Zheng, S.F. Cheng, Searching and editing MPEG compressed video in a distributed

online environment, ACM Journal of Multimedia Systems 7 (4) (1999) 282–293, July.

[29] J. Meng, Y. Juan, S.F. Chang, Scene change detection in a MPEG compressed video sequence,

Proceedings of SPIE Conference on Digital Video Compression: Algorithms and Technologies 2419

(February) (1995) 14–25.

[30] [MPEG 1] ISO/IEC 11172-2, Information Technology—Coding of Moving Pictures and Associated

Audio for Digital Storage Media at upto about 1.5 Mbit/s—Video, Geneva, 1993.

[31] [MPEG 2] ISO/IEC JTC1/SC29/WG11/702 Revised, Information Technology—Generic Coding of

Moving Pictures and Associated Audio, Recommendation H.262, Draft Intl. Standard, March 1994.

[32] A. Nagasaka, Y. Tanaka, Automatic video indexing and full-video search for object appearances, in:

Proceedings of IFIP TC2/WG2.6 2nd Working Conference on Visual Database Systems, September

30–October 3, 1991, pp. 113–127.

[33] C.W. Ngo, T.C. Pong, R.T. Chin, Detection of gradual transitions through temporal slice analysis, in:

Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Fort Collins, CO,

June 23–25, 1999, pp. 36–41.

[34] K. Otsuji, Y. Tonomura, Projection detecting filter for video cut detection, in: ACM Intlernational

Conference on Multimedia, August 1993, pp. 251–257.

[35] N. Patel, I.K. Sethi, Compressed video processing for cut detection, IEE Proceedings—Vision, Image

and Signal Processing 143 (3) (1996) 315–323.

[36] N. Patel, I.K. Sethi, Video shot detection and characterization for video databases, Pattern

Recognition 30 (4) (1997) 583–592.

[37] L.A. Rowe, K. Patel, B.C Smith, Performance of a software MPEG video decoder, Proceedings of

ACM International Conference on Multimedia 34 (4) (1991) 46–58.

[38] Y. Rui, T.S. Huang, S. Mehrotra, Constructing table-of-content for videos, ACM Journal of

Multimedia Systems 7 (5) (1999) 359–368.

[39] H. Sawhney, J. Hafner, Efficient color histogram indexing, in: Proceedings of IEEE International

Conference on Image Processing, Austin, TX, November 13–16, 1994, pp. 66–70.

[40] I.K. Sethi, N. Patel, A statistical approach to scene change detection, in: Storage and Retrieval for

Image and Video Databases, SPIE, vol. 2420, February 1995, pp. 329–338.

[41] B. Shararay, Scene change detection and content-based sampling of video sequences, in: Digital Video

Compression: Algorithms and Technologies, SPIE, vol. 2419, February 1995, pp. 2–13.

[42] K. Shen, L.A. Rowe, E.J. Delp, A parallel implementation of an MPEG-1 encoder: faster than real

time, in: Proceedings of SPIE Conference on Digital Video Compression: Algorithms and

Technologies, San Jose, CA, February 1995.

[43] K. Shen, E.J. Delp, A fast algorithm for video parsing using MPEG compressed sequences, in:

Proceedings of IEEE International Conference on Image Processing, October 23–26, 1995,

Washington DC, pp. 252–255.

[44] B. Shen, I.K. Sethi, Convolution-based edge detection for image/video in block DCT domain, Journal

of Visual Communication and Image Representation 7 (4) (1996) 411–423.

[45] B. Shen, I.K. Sethi, Block-based manipulations of transformed-compressed images and videos, ACM

Journal of Multimedia Systems 6 (2) (1998) 113–124, April.

[46] S.M. Song, T.H. Kwor, W.M. Kim, H. Kim, B.D. Rhee, Detection of gradual scene changes for

parsing of video data, Proceedings of SPIE Conference Storage and Retrieval for Image and Video

Databases IV 3312 (1997).

[47] D. Swanberg, C.F. Shu, R. Jain, Knowledge guided parsing in video databases, in Storage and

Retrieval for Image and Video Databases, SPIE, vol. 1908, 1993, pp. 13–24.



1276 S.M. Bhandarkar, S.R. Chandrasekaran / Parallel Computing 30 (2004) 1233–1276
[48] G.K. Wallace, The JPEG still picture compression standard, Communications of the ACM 34 (4)

(1991) 30–44.

[49] B.L. Yeo, B. Liu, Rapid scene analysis on compressed video, IEEE Transactions on Circuit and

Systems for Video Technology 5 (6) (1995) 533–544.

[50] B.L. Yeo, On fast microscopic browsing of MPEG-compressed video, ACM Journal of Multimedia

Systems 7 (4) (1999) 269–281.

[51] R. Zabih, J. Miller, K. Mai, A feature-based algorithm for detecting and classifying production

effects, ACM Journal of Multimedia Systems 7 (2) (1999) 119–128, March.

[52] H.J. Zhang, A. Kankanhalli, S.W. Smoliar, Automatic partitioning of full-motion video, ACM

Journal of Multimedia Systems 1 (1) (1993) 10–28.

[53] H.J. Zhang, S.W. Smoliar, Content-based video indexing and retrieval, IEEE Multimedia 1 (2) (1994)

62–72.

[54] H.J. Zhang, C.Y. Low, S.W. Smoliar, Video parsing and browsing using compressed data, Journal of

Multimedia Tools Applications 1 (1) (1995) 89–111.


	Parallel parsing of MPEG video on a shared-memory symmetric multiprocessor
	Introduction
	Related work
	Parallel parsing of MPEG-1 video
	Parallel MPEG-1 video parsing at the GOP level
	Parsing using DC images and motion vectors (Approach 1)
	Parsing using DC image strips (Approach 2)

	Parallel MPEG-1 video parsing at the frame level
	Parsing using DC images and motion vectors (Approach 1)
	Parsing using DC image strips (Approach 2)

	Parallel MPEG-1 video parsing at the slice level
	Parsing using DC images and motion vectors (Approach 1)
	Parsing using DC image strips (Approach 2)


	Analytical evaluation of performance
	Parallel parsing at the GOP level
	Parallel parsing at the frame level
	Parallel parsing at the slice level

	Experimental evaluation of performance
	Parallel parsing at the GOP level
	Approach 1
	Approach 2

	Parallel parsing at the frame level
	Approach 1
	Approach 2

	Parallel parsing at the slice level
	Approach 1
	Approach 2

	Memory requirements
	Multiple task queues

	Conclusions and future work
	References


