Packages

class Statistic extends Error

The Statistic class is used to collect values and compute sample statistics on them (e.g., waiting time). Contrast with TimeStatistic defined below.

Linear Supertypes
Error, AnyRef, Any
Known Subclasses
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. Statistic
  2. Error
  3. AnyRef
  4. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Instance Constructors

  1. new Statistic(name: String = "stat", unbiased: Boolean = false)

    name

    the name for this statistic (e.g., 'waitingTime')

    unbiased

    whether the estimators are restricted to be unbiased

Value Members

  1. final def !=(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  4. final def asInstanceOf[T0]: T0
    Definition Classes
    Any
  5. def clone(): AnyRef
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  6. final def eq(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  7. def equals(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  8. def finalize(): Unit
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  9. final def flaw(method: String, message: String): Unit

    Show the flaw by printing the error message.

    Show the flaw by printing the error message.

    method

    the method where the error occurred

    message

    the error message

    Definition Classes
    Error
  10. final def getClass(): Class[_]
    Definition Classes
    AnyRef → Any
  11. def hashCode(): Int
    Definition Classes
    AnyRef → Any
  12. def interval(p: Double = .95): Double

    Compute the confidence interval half-width for the given confidence level.

    Compute the confidence interval half-width for the given confidence level.

    p

    the confidence level

  13. final def isInstanceOf[T0]: Boolean
    Definition Classes
    Any
  14. def max: Double

    Return the maximum value in sample.

  15. var maxX: Double

    The maximum sample value

    The maximum sample value

    Attributes
    protected
  16. def mean: Double

    Compute/estimate the sample mean.

  17. def min: Double

    Return the minimum value in sample.

  18. var minX: Double

    The minimum sample value

    The minimum sample value

    Attributes
    protected
  19. def ms: Double

    Compute/estimate the mean square (ms).

  20. var n: Int

    The number of samples

    The number of samples

    Attributes
    protected
  21. val name: String
  22. def nd: Double

    Return the number of samples as a double.

  23. final def ne(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  24. final def notify(): Unit
    Definition Classes
    AnyRef
  25. final def notifyAll(): Unit
    Definition Classes
    AnyRef
  26. def num: Int

    Return the number of samples.

  27. def reset(): Unit
  28. def rms: Double

    Compute/estimate the root mean square (rms).

  29. def show: String

    Show the values of this collector's accumulators.

  30. def statRow: Array[Any]

    Return the summary statistics as a row/Array.

  31. def stddev: Double

    Compute/estimate the sample standard deviation.

  32. var sum: Double

    Sum of the sample values

    Sum of the sample values

    Attributes
    protected
  33. var sumSq: Double

    Sum of the sample values squared

    Sum of the sample values squared

    Attributes
    protected
  34. final def synchronized[T0](arg0: ⇒ T0): T0
    Definition Classes
    AnyRef
  35. def tally(x: Double): Unit

    Tally the next value and update accumulators.

    Tally the next value and update accumulators.

    x

    the value to tally

  36. def toString(): String

    Generate a row of statistical results as a string.

    Generate a row of statistical results as a string.

    Definition Classes
    Statistic → AnyRef → Any
  37. def variance: Double

    Compute/estimate the sample variance.

    Compute/estimate the sample variance. The denominator is one less for unbiased (n-1) vs. maximum likelihood (n) estimators. Also use n for population variance.

  38. final def wait(): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  39. final def wait(arg0: Long, arg1: Int): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  40. final def wait(arg0: Long): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from Error

Inherited from AnyRef

Inherited from Any

Ungrouped