class KMeansPPClusterer extends Clusterer with Error
The KMeansPPClusterer
class cluster several vectors/points using
the k-means++ clustering technique.
-----------------------------------------------------------------------------
- See also
ilpubs.stanford.edu:8090/778/1/2006-13.pdf -----------------------------------------------------------------------------
- Alphabetic
- By Inheritance
- KMeansPPClusterer
- Error
- Clusterer
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Instance Constructors
Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
val
DEBUG: Boolean
- Attributes
- protected
-
val
MAX_ITER: Int
- Attributes
- protected
-
var
_k: Int
- Attributes
- protected
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
-
val
cent: MatrixD
- Attributes
- protected
-
def
centroids(): MatrixD
Return the centroids.
Return the centroids. Should only be called after
cluster ()
.- Definition Classes
- KMeansPPClusterer → Clusterer
-
def
classify(y: VectorD): Int
Given a new point/vector y, determine which cluster it belongs to.
Given a new point/vector y, determine which cluster it belongs to.
- y
the vector to classify
- Definition Classes
- KMeansPPClusterer → Clusterer
-
def
clone(): AnyRef
- Attributes
- protected[java.lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
def
cluster(): Array[Int]
Given a set of points/vectors, put them in clusters, returning the cluster assignment vector.
Given a set of points/vectors, put them in clusters, returning the cluster assignment vector. A basic goal is to minimize the sum of the distances between points within each cluster.
- Definition Classes
- KMeansPPClusterer → Clusterer
-
def
clusterHartigan(): Array[Int]
Cluster the points using a version of the Hartigan-Wong algorithm.
Cluster the points using a version of the Hartigan-Wong algorithm.
- See also
www.tqmp.org/RegularArticles/vol09-1/p015/p015.pdf
-
val
clustered: Boolean
Flag indicating whether the points have already been clusterer
Flag indicating whether the points have already been clusterer
- Attributes
- protected
- Definition Classes
- Clusterer
-
val
clustr: Array[Int]
- Attributes
- protected
-
def
csize(): VectorI
Return the sizes of the centroids.
Return the sizes of the centroids. Should only be called after
cluster ()
.- Definition Classes
- KMeansPPClusterer → Clusterer
-
def
distance(u: VectorD, v: VectorD): Double
Compute a distance metric (e.g., distance squared) between vectors/points 'u' and 'v'.
Compute a distance metric (e.g., distance squared) between vectors/points 'u' and 'v'. Override this methods to use a different metric, e.g., 'norm' - the Euclidean distance, 2-norm 'norm1' - the Manhattan distance, 1-norm
- u
the first vector/point
- v
the second vector/point
- Definition Classes
- Clusterer
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
equals(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
finalize(): Unit
- Attributes
- protected[java.lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] )
-
final
def
flaw(method: String, message: String): Unit
- Definition Classes
- Error
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
-
def
getName(i: Int): String
Get the name of the i-th cluster.
Get the name of the i-th cluster.
- Definition Classes
- Clusterer
-
def
hashCode(): Int
- Definition Classes
- AnyRef → Any
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
def
name_(n: Array[String]): Unit
Set the names for the clusters.
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
-
val
pdf: VectorD
- Attributes
- protected
-
val
raniv: PermutedVecI
- Attributes
- protected
-
val
sizes: VectorI
- Attributes
- protected
-
def
sse(): Double
Compute the sum of squared errors (distance sqaured from centroid for all points)
-
def
sse(c: Int): Double
Compute the sum of squared errors (distance squared) from all points in cluster 'c' to the cluster's centroid.
Compute the sum of squared errors (distance squared) from all points in cluster 'c' to the cluster's centroid.
- c
the current cluster
-
def
sse(x: MatrixD): Double
Compute the sum of squared errors within the clusters, where error is indicated by e.g., the distance from a point to its centroid.
Compute the sum of squared errors within the clusters, where error is indicated by e.g., the distance from a point to its centroid.
- Definition Classes
- Clusterer
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
def
toString(): String
- Definition Classes
- AnyRef → Any
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )