object StatFunction
The StatFunction
companion object extends statistics vector operations to matrices.
The StatFunction
object/class is the functional analog to the StatVector
object/class.
- Alphabetic
- By Inheritance
- StatFunction
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
-
def
clone(): AnyRef
- Attributes
- protected[java.lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
def
corr(xa: Functions, t: VectorD): MatrixD
Return the correlation matrix for the functions over the time points.
Return the correlation matrix for the functions over the time points. Note: sample vs. population results in essentailly the same values.
- xa
the array of functions
- t
the vector of time points
-
def
cov(xa: Functions, t: VectorD): MatrixD
Return the sample covariance matrix for the functions over the time points.
Return the sample covariance matrix for the functions over the time points.
- xa
the array of functions
- t
the vector of time points
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
equals(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
finalize(): Unit
- Attributes
- protected[java.lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] )
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
-
def
hashCode(): Int
- Definition Classes
- AnyRef → Any
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
def
mean(xa: Functions, t: VectorD): VectorD
Return the mean vector containing the cross-sectional means over the time points.
Return the mean vector containing the cross-sectional means over the time points.
- xa
the array of functions
- t
the vector of time points
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
-
def
pcov(xa: Functions, t: VectorD): MatrixD
Return the population covariance matrix for the functions over the time points.
Return the population covariance matrix for the functions over the time points.
- xa
the array of functions
- t
the vector of time points
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
def
toMatrix(xa: Functions, t: VectorD): MatrixD
Convert the array of functions 'xa' with time points 't' into a matrix.
Convert the array of functions 'xa' with time points 't' into a matrix.
- xa
the array of functions
- t
the vector of time points
-
def
toString(): String
- Definition Classes
- AnyRef → Any
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )