class LinearDiffEq extends Error
The LinearDiffEq
class may be used for solving a system of linear differential
equations that are ordinary and first-order with constant coefficients of the form
d/dt y(t) = a * y(t)
'y(t)' is the vector function of time and 'a' is the coefficient matrix. The initial value vector 'y0 = y(0)' must also be given. Note, higher-order differential equations may be converted to first-order by introducing additional variables. The above equation is the homogeneous case. Caveats: the following cases are not currently handled: (1) The non-homogeneous equation: 'd/dt y(t) = a * y(t) + f(t)'. (2) Complex or repeated eigenvalues.
- Alphabetic
- By Inheritance
- LinearDiffEq
- Error
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Instance Constructors
-
new
LinearDiffEq(a: MatrixD, y0: VectorD)
- a
the coefficient matrix
- y0
the initial value vector
Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
-
def
clone(): AnyRef
- Attributes
- protected[java.lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
equals(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
eval(t: Double): VectorD
Evaluate the solution for y(t) at time t.
Evaluate the solution for y(t) at time t.
- t
the time point
-
def
expV(v: VectorD): VectorD
Apply the exponential 'exp' function to each element of a vector.
Apply the exponential 'exp' function to each element of a vector.
- v
the vector to apply the exp function to
-
def
finalize(): Unit
- Attributes
- protected[java.lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] )
-
final
def
flaw(method: String, message: String): Unit
- Definition Classes
- Error
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
-
def
hashCode(): Int
- Definition Classes
- AnyRef → Any
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
-
def
printSol(): Unit
Print the solution to the differential equation.
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
def
toString(): String
- Definition Classes
- AnyRef → Any
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )