class CheckLP extends Error

The CheckLP class checks the solution to Linear Programming (LP) problems. Given a constraint matrix 'a', limit/RHS vector 'b' and cost vector 'c', determine if the values for the solution/decision vector 'x' minimizes the objective function 'f(x)', while satisfying all of the constraints, i.e.,

minimize f(x) = c x subject to a x <= b, x >= 0

Check the feasibility and optimality of the solution.

Linear Supertypes
Error, AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. CheckLP
  2. Error
  3. AnyRef
  4. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Instance Constructors

  1. new CheckLP(a: MatriD, b: VectoD, c: VectoD)

    a

    the M-by-N constraint matrix

    b

    the M-length limit/RHS vector (make b_i negative for ">=" constraint => surplus)

    c

    the N-length cost vector

Value Members

  1. final def !=(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  4. final def asInstanceOf[T0]: T0
    Definition Classes
    Any
  5. def clone(): AnyRef
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  6. final def eq(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  7. def equals(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  8. def finalize(): Unit
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  9. final def flaw(method: String, message: String): Unit
    Definition Classes
    Error
  10. final def getClass(): Class[_]
    Definition Classes
    AnyRef → Any
  11. def hashCode(): Int
    Definition Classes
    AnyRef → Any
  12. def isCorrect(x: VectoD, y: VectoD, f: Double): Boolean

    Check whether the solution is correct, feasible and optimal.

    Check whether the solution is correct, feasible and optimal.

    x

    the N-length primal solution vector

    y

    the M-length dual solution vector

    f

    the optimum (minimum) value of the objective function

  13. def isDualFeasible(y: VectoD): Boolean

    Determine whether the solution dual feasible 'y <= 0 and y a <= c'.

    Determine whether the solution dual feasible 'y <= 0 and y a <= c'.

    y

    the M-length dual solution vector

  14. final def isInstanceOf[T0]: Boolean
    Definition Classes
    Any
  15. def isOptimal(x: VectoD, y: VectoD, f: Double): Boolean

    Check whether the optimum objective function value f == c x == y b.

    Check whether the optimum objective function value f == c x == y b.

    x

    the N-length primal solution vector

    y

    the M-length dual solution vector

    f

    the optimum (minimum) value of the objective function

  16. def isPrimalFeasible(x: VectoD): Boolean

    Determine whether the solution primal feasible 'x >= 0 and a x [<= | >=] b'.

    Determine whether the solution primal feasible 'x >= 0 and a x [<= | >=] b'.

    x

    the N-length primal solution vector

  17. final def ne(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  18. final def notify(): Unit
    Definition Classes
    AnyRef
  19. final def notifyAll(): Unit
    Definition Classes
    AnyRef
  20. final def synchronized[T0](arg0: ⇒ T0): T0
    Definition Classes
    AnyRef
  21. def toString(): String
    Definition Classes
    AnyRef → Any
  22. final def wait(): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  23. final def wait(arg0: Long, arg1: Int): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  24. final def wait(arg0: Long): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from Error

Inherited from AnyRef

Inherited from Any

Ungrouped