class Markov extends Error
The Markov
class supports the creation and use of Discrete-Time Markov Chains
'DTMC's. Transient solution: compute the next state 'pp = p * tr' where 'p' is
the current state probability vector and 'tr' is the transition probability matrix.
Equilibrium solution (steady-state): solve for 'p' in 'p = p * tr'.
- Alphabetic
- By Inheritance
- Markov
- Error
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Instance Constructors
-
new
Markov(tr: MatriD)
- tr
the transition probability matrix
Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
animate(): Unit
Animate this Markov Chain.
Animate this Markov Chain. Place the nodes around a circle and connect them if there is a such a transition.
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
-
def
clone(): AnyRef
- Attributes
- protected[java.lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
equals(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
finalize(): Unit
- Attributes
- protected[java.lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] )
-
final
def
flaw(method: String, message: String): Unit
- Definition Classes
- Error
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
-
def
hashCode(): Int
- Definition Classes
- AnyRef → Any
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
def
isStochastic: Boolean
Check whether the transition matrix is stochastic.
-
def
limit: VectoD
Compute the limiting probabilistic state 'p * tr^k' as 'k -> infinity', by solving a left eigenvalue problem: 'p = p * tr' => 'p * (tr - I) = 0', where the eigenvalue is 1. Solve for p by computing the left nullspace of the 'tr - I' matrix (appropriately sliced) and then normalize 'p' so '||p|| = 1'.
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
next(p: VectoD, k: Int = 1): VectoD
Compute the 'k'th next probabilistic state 'p * tr^k'.
Compute the 'k'th next probabilistic state 'p * tr^k'.
- p
the current state probability vector
- k
compute for the 'k'th step/epoch
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
-
def
simulate(i0: Int, endTime: Int): Unit
Simulate the discrete-time Markov chain, by starting in state 'i0' and after the state's holding, making a transition to the next state according to the jump matrix.
Simulate the discrete-time Markov chain, by starting in state 'i0' and after the state's holding, making a transition to the next state according to the jump matrix.
- i0
the initial/start state
- endTime
the end time for the simulation
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
def
toString(): String
Convert 'this' discrete-time Markov Chain to a string.
Convert 'this' discrete-time Markov Chain to a string.
- Definition Classes
- Markov → AnyRef → Any
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )