class ExpSmoothing extends Forecaster with Error
The ExpSmoothing
class provide very basic time series analysis capabilities of
Exponential Smoothing models. ExpSmoothing
models are often used for forecasting.
Given time series data stored in vector 'y', its next value 'y_t = y(t)'
may be predicted based on prior/smoothed values of 'y':
y_t = s_t-1 + α (s_t-1 - s_t-2)
where vector 's' is the smoothed version of vector 'y' and 'α in [0, 1]' is the smoothing parameter. ------------------------------------------------------------------------------
- Alphabetic
- By Inheritance
- ExpSmoothing
- Error
- Forecaster
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Instance Constructors
-
new
ExpSmoothing(y: VectoD, t: VectoD)
- y
the input vector (time series data)
- t
the time vector
Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
-
def
clone(): AnyRef
- Attributes
- protected[java.lang]
- Definition Classes
- AnyRef
- Annotations
- @native() @throws( ... )
-
def
diagnose(yy: VectoD, ee: VectoD): Unit
Compute diagostics for the Exponential Smoothing model.
Compute diagostics for the Exponential Smoothing model.
- yy
the response vector
- ee
the error/residual vector
- Attributes
- protected
- Definition Classes
- ExpSmoothing → Forecaster
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
equals(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
eval(yy: VectoD = y): Unit
Compute the error and useful diagnostics.
Compute the error and useful diagnostics.
- yy
the response vector
- Definition Classes
- ExpSmoothing → Forecaster
-
def
eval(xx: MatriD, yy: VectoD): Unit
Compute the error and useful diagnostics for the test dataset.
Compute the error and useful diagnostics for the test dataset.
- xx
the test data matrix
- yy
the test response vector FIX - implement in classes
- Definition Classes
- Forecaster
-
def
f_obj(αα: Double): Double
The objective function to be minimized (sum of squared errors for the given 'αα').
The objective function to be minimized (sum of squared errors for the given 'αα').
- αα
the parameter of the objective function to be optimized
-
def
finalize(): Unit
- Attributes
- protected[java.lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] )
-
def
fit: VectoD
Return the quality of fit including 'rSquared'.
Return the quality of fit including 'rSquared'. Not providing 'rBarSq'.
- Definition Classes
- ExpSmoothing → Forecaster
-
def
fitLabels: Seq[String]
Return the labels for the fit.
Return the labels for the fit.
- Definition Classes
- ExpSmoothing → Forecaster
-
final
def
flaw(method: String, message: String): Unit
- Definition Classes
- Error
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
def
hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
val
index_rSq: Int
- Definition Classes
- Forecaster
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
val
mae: Double
- Attributes
- protected
- Definition Classes
- Forecaster
-
def
metrics: Map[String, Any]
Build a map of selected quality of fit measures/metrics.
Build a map of selected quality of fit measures/metrics.
- Definition Classes
- Forecaster
-
val
mse: Double
- Attributes
- protected
- Definition Classes
- Forecaster
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
def
predict(s: VectoD): Double
Predict the next (unknown) value in the time-series.
Predict the next (unknown) value in the time-series.
- s
the smoothed time-series data
- Definition Classes
- ExpSmoothing → Forecaster
-
def
predict(z: VectoI): Double
Given a new discrete data vector z, predict the y-value of f(z).
Given a new discrete data vector z, predict the y-value of f(z).
- z
the vector to use for prediction
- Definition Classes
- Forecaster
-
val
rSq: Double
- Attributes
- protected
- Definition Classes
- Forecaster
-
val
rmse: Double
- Attributes
- protected
- Definition Classes
- Forecaster
-
def
smooth(α_new: Double = α): VectoD
Smooth the times series data.
Smooth the times series data.
- α_new
the new smoothing parameter, skip to use default
-
val
sse: Double
- Attributes
- protected
- Definition Classes
- Forecaster
-
val
ssr: Double
- Attributes
- protected
- Definition Classes
- Forecaster
-
val
sst: Double
- Attributes
- protected
- Definition Classes
- Forecaster
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
def
toString(): String
- Definition Classes
- AnyRef → Any
-
def
train(yy: VectoD = y): ExpSmoothing
Train the
ExpSmoothing
model to times series data, by finding the value for the smoothing parameter 'α' that minimizes the sum of squared errors (sse).Train the
ExpSmoothing
model to times series data, by finding the value for the smoothing parameter 'α' that minimizes the sum of squared errors (sse). FIX - use either a penalty or cross-validation, else α -> 1- yy
the response vector
- Definition Classes
- ExpSmoothing → Forecaster
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @throws( ... )