Packages

class CheckLP extends Error

The CheckLP class checks the solution to Linear Programming (LP) problems. Given a constraint matrix 'a', limit/RHS vector 'b' and cost vector 'c', determine if the values for the solution/decision vector 'x' maximizes the objective function 'f(x)', while satisfying all of the constraints, i.e.,

maximize f(x) = c x subject to a x <= b, x >= 0

Check the feasibility and optimality of the solution.

Linear Supertypes
Error, AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. CheckLP
  2. Error
  3. AnyRef
  4. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Instance Constructors

  1. new CheckLP(a: MatrixD, b: VectorD, c: VectorD)

    a

    the M-by-N constraint matrix

    b

    the M-length limit/RHS vector (make b_i negative for '>=' constraint => surplus)

    c

    the N-length cost vector

Value Members

  1. final def flaw(method: String, message: String): Unit
    Definition Classes
    Error
  2. def isCorrect(x: VectorD, y: VectorD, f: Double): Boolean

    Check whether the solution is correct, feasible and optimal.

    Check whether the solution is correct, feasible and optimal.

    x

    the N-length primal solution vector

    y

    the M-length dual solution vector

    f

    the optimum (maximum) value of the objective function

  3. def isDualFeasible(y: VectorD): Boolean

    Determine whether the solution dual feasible 'y >= 0 and y a >= c'.

    Determine whether the solution dual feasible 'y >= 0 and y a >= c'.

    y

    the M-length dual solution vector

  4. def isOptimal(x: VectorD, y: VectorD, f: Double): Boolean

    Check whether the optimum objective function value f == c x == y b.

    Check whether the optimum objective function value f == c x == y b.

    x

    the N-length primal solution vector

    y

    the M-length dual solution vector

    f

    the optimum (maximum) value of the objective function

  5. def isPrimalFeasible(x: VectorD): Boolean

    Determine whether the solution primal feasible '(x >= 0 and a x [<= | >=] b)'.

    Determine whether the solution primal feasible '(x >= 0 and a x [<= | >=] b)'.

    x

    the N-length primal solution vector