Packages

c

scalation.linalgebra.gen

SymTriMatrixN

class SymTriMatrixN[T] extends Matrix[T] with Error with Serializable

The SymTriMatrixN class stores and operates on symmetric tridiagonal matrices. The elements are of type of T. A matrix is stored as two vectors: the diagonal vector and the sub-diagonal vector.

Linear Supertypes
Serializable, Serializable, Matrix[T], Error, AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. SymTriMatrixN
  2. Serializable
  3. Serializable
  4. Matrix
  5. Error
  6. AnyRef
  7. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Instance Constructors

  1. new SymTriMatrixN(b: Matrix[T])(implicit arg0: ClassTag[T], arg1: Numeric[T])

    Construct a symmetric tridiagonal matrix from the given matrix.

    Construct a symmetric tridiagonal matrix from the given matrix.

    b

    the matrix of values to assign

  2. new SymTriMatrixN(v1: VectorN[T], v2: VectorN[T])(implicit arg0: ClassTag[T], arg1: Numeric[T])

    Construct a symmetric tridiagonal matrix with the given diagonal and sub-diagonal.

    Construct a symmetric tridiagonal matrix with the given diagonal and sub-diagonal.

    v1

    the diagonal vector

    v2

    the sub-diagonal vector

  3. new SymTriMatrixN(d1: Int)(implicit arg0: ClassTag[T], arg1: Numeric[T])

    d1

    the first/row dimension (symmetric => d2 = d1)

Value Members

  1. final def !=(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int
    Definition Classes
    AnyRef → Any
  3. def *(x: T): SymTriMatrixN[T]

    Multiply this matrix by scalar 'x'.

    Multiply this matrix by scalar 'x'.

    x

    the scalar to multiply by

    Definition Classes
    SymTriMatrixNMatrix
  4. def *(u: VectorN[T]): VectorN[T]

    Multiply this matrix by vector 'u'.

    Multiply this matrix by vector 'u'.

    u

    the vector to multiply by

    Definition Classes
    SymTriMatrixNMatrix
  5. def *(b: SymTriMatrixN[T]): MatrixN[T]

    Multiply this matrix by matrix 'b'.

    Multiply this matrix by matrix 'b'. Requires b to have type SymTriMatrixN [T], but returns a more general type of matrix.

    b

    the matrix to multiply by

  6. def *(b: Matrix[T]): SymTriMatrixN[T]

    Multiply this matrix by matrix 'b'.

    Multiply this matrix by matrix 'b'.

    b

    the matrix to multiply by

  7. def **(u: VectorN[T]): SymTriMatrixN[T]

    Multiply this matrix by vector 'u' to produce another matrix 'a_ij * u_j'

    Multiply this matrix by vector 'u' to produce another matrix 'a_ij * u_j'

    u

    the vector to multiply by

    Definition Classes
    SymTriMatrixNMatrix
  8. def **=(u: VectorN[T]): SymTriMatrixN[T]

    Multiply in-place this matrix by vector 'u' to produce another matrix 'a_ij * u_j'

    Multiply in-place this matrix by vector 'u' to produce another matrix 'a_ij * u_j'

    u

    the vector to multiply by

    Definition Classes
    SymTriMatrixNMatrix
  9. def *=(x: T): SymTriMatrixN[T]

    Multiply in-place this matrix by scalar 'x'.

    Multiply in-place this matrix by scalar 'x'.

    x

    the scalar to multiply by

    Definition Classes
    SymTriMatrixNMatrix
  10. def *=(b: Matrix[T]): SymTriMatrixN[T]

    Multiply in-place this matrix by matrix 'b'.

    Multiply in-place this matrix by matrix 'b'.

    b

    the matrix to multiply by

  11. def +(x: T): SymTriMatrixN[T]

    Add this matrix and scalar 'x'.

    Add this matrix and scalar 'x'.

    x

    the scalar to add

    Definition Classes
    SymTriMatrixNMatrix
  12. def +(b: Matrix[T]): SymTriMatrixN[T]

    Add this matrix and matrix 'b'.

    Add this matrix and matrix 'b'.

    b

    the matrix to add (requires 'leDimensions')

  13. def ++(u: VectorN[T]): SymTriMatrixN[T]

    Concatenate this matrix and vector 'u'.

    Concatenate this matrix and vector 'u'.

    u

    the vector to be concatenated as the new last row in matrix

    Definition Classes
    SymTriMatrixNMatrix
  14. def +=(x: T): SymTriMatrixN[T]

    Add in-place this matrix and scalar 'x'.

    Add in-place this matrix and scalar 'x'.

    x

    the scalar to add

    Definition Classes
    SymTriMatrixNMatrix
  15. def +=(b: Matrix[T]): SymTriMatrixN[T]

    Add in-place this matrix and matrix 'b'.

    Add in-place this matrix and matrix 'b'.

    b

    the matrix to add (requires 'leDimensions')

  16. def -(x: T): SymTriMatrixN[T]

    From this matrix subtract scalar 'x'.

    From this matrix subtract scalar 'x'.

    x

    the scalar to subtract

    Definition Classes
    SymTriMatrixNMatrix
  17. def -(b: Matrix[T]): SymTriMatrixN[T]

    From this matrix subtract matrix 'b'.

    From this matrix subtract matrix 'b'.

    b

    the matrix to subtract (requires 'leDimensions')

  18. def -=(x: T): SymTriMatrixN[T]

    From this matrix subtract in-place scalar 'x'.

    From this matrix subtract in-place scalar 'x'.

    x

    the scalar to subtract

    Definition Classes
    SymTriMatrixNMatrix
  19. def -=(b: Matrix[T]): SymTriMatrixN[T]

    From this matrix subtract in-place matrix 'b'.

    From this matrix subtract in-place matrix 'b'.

    b

    the matrix to subtract (requires 'leDimensions')

  20. def /(x: T)(implicit fr: Fractional[T]): SymTriMatrixN[T]

    Divide this matrix by scalar 'x'.

    Divide this matrix by scalar 'x'.

    x

    the scalar to divide by

    Definition Classes
    SymTriMatrixNMatrix
  21. def /=(x: T)(implicit fr: Fractional[T]): SymTriMatrixN[T]

    Divide in-place this matrix by scalar 'x'.

    Divide in-place this matrix by scalar 'x'.

    x

    the scalar to divide by

    Definition Classes
    SymTriMatrixNMatrix
  22. final def ==(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  23. val _0: T

    Numeric zero (0)

  24. val _1: T

    Numeric one (1)

  25. val _1n: T

    Numeric minus one (-1)

  26. def apply(i: Int, jr: Range): VectorN[T]

    Get a slice this matrix row-wise at index 'i' and column-wise on range 'jr'.

    Get a slice this matrix row-wise at index 'i' and column-wise on range 'jr'. Ex: u = a(2, 3..5)

    i

    the row index

    jr

    the column range

    Definition Classes
    SymTriMatrixNMatrix
  27. def apply(ir: Range, j: Int): VectorN[T]

    Get a slice this matrix row-wise on range 'ir' and column-wise at index 'j'.

    Get a slice this matrix row-wise on range 'ir' and column-wise at index 'j'. Ex: u = a(2..4, 3)

    ir

    the row range

    j

    the column index

    Definition Classes
    SymTriMatrixNMatrix
  28. def apply(ir: Range, jr: Range): SymTriMatrixN[T]

    Get a slice this matrix row-wise on range 'ir' and column-wise on range 'jr'.

    Get a slice this matrix row-wise on range 'ir' and column-wise on range 'jr'. Ex: b = a(2..4, 3..5)

    ir

    the row range

    jr

    the column range

    Definition Classes
    SymTriMatrixNMatrix
  29. def apply(i: Int): VectorN[T]

    Get this matrix's vector at the 'i'th index position ('i'th row).

    Get this matrix's vector at the 'i'th index position ('i'th row).

    i

    the row index

    Definition Classes
    SymTriMatrixNMatrix
  30. def apply(i: Int, j: Int): T

    Get this matrix's element at the 'i,j'-th index position.

    Get this matrix's element at the 'i,j'-th index position.

    i

    the row index

    j

    the column index

    Definition Classes
    SymTriMatrixNMatrix
  31. final def asInstanceOf[T0]: T0
    Definition Classes
    Any
  32. def at(i: Int, j: Int): T

    Get this matrix's element at the 'i,j'-th index position, returning 0.0 if off tridiagonal.

    Get this matrix's element at the 'i,j'-th index position, returning 0.0 if off tridiagonal.

    i

    the row index

    j

    the column index

  33. def clean(thres: T, relative: Boolean = true)(implicit fr: Fractional[T]): SymTriMatrixN[T]

    Clean values in matrix at or below the threshold by setting them to zero.

    Clean values in matrix at or below the threshold by setting them to zero. Iterative algorithms give approximate values and if very close to zero, may throw off other calculations, e.g., in computing eigenvectors.

    thres

    the cutoff threshold (a small value)

    relative

    whether to use relative or absolute cutoff

    Definition Classes
    SymTriMatrixNMatrix
  34. def clone(): AnyRef
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @native() @throws( ... )
  35. def col(col: Int, from: Int = 0): VectorN[T]

    Get column 'col' from the matrix, returning it as a vector.

    Get column 'col' from the matrix, returning it as a vector.

    col

    the column to extract from the matrix

    from

    the position to start extracting from

    Definition Classes
    SymTriMatrixNMatrix
  36. val d1: Int
  37. def det: T

    Compute the determinant of this matrix.

    Compute the determinant of this matrix.

    Definition Classes
    SymTriMatrixNMatrix
  38. def dg: VectorN[T]

    Get the diagonal of the matrix.

  39. def dg_(v: VectorN[T]): Unit

    Set the diagonal of the matrix.

    Set the diagonal of the matrix.

    v

    the vector to assign to the diagonal

  40. def diag(p: Int, q: Int): SymTriMatrixN[T]

    Form a matrix '[Ip, this, Iq]' where 'Ir' is a 'r-by-r' identity matrix, by positioning the three matrices 'Ip', this and 'Iq' along the diagonal.

    Form a matrix '[Ip, this, Iq]' where 'Ir' is a 'r-by-r' identity matrix, by positioning the three matrices 'Ip', this and 'Iq' along the diagonal.

    p

    the size of identity matrix Ip

    q

    the size of identity matrix Iq

    Definition Classes
    SymTriMatrixNMatrix
  41. def diag(b: Matrix[T]): SymTriMatrixN[T]
  42. lazy val dim1: Int

    Dimension 1

    Dimension 1

    Definition Classes
    SymTriMatrixNMatrix
  43. lazy val dim2: Int

    Dimension 2

    Dimension 2

    Definition Classes
    SymTriMatrixNMatrix
  44. final def eq(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  45. def equals(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  46. def finalize(): Unit
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  47. final def flaw(method: String, message: String): Unit

    Show the flaw by printing the error message.

    Show the flaw by printing the error message.

    method

    the method where the error occurred

    message

    the error message

    Definition Classes
    Error
  48. def foreach[U](f: (Array[T]) ⇒ U): Unit

    Iterate over the matrix row by row.

    Iterate over the matrix row by row.

    f

    the function to apply

    Definition Classes
    Matrix
  49. final def getClass(): Class[_]
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  50. def getDiag(k: Int = 0): VectorN[T]

    Get the 'k'th diagonal of this matrix.

    Get the 'k'th diagonal of this matrix. Assumes 'dim2 >= dim1'.

    k

    how far above the main diagonal, e.g., (-1, 0, 1) for (sub, main, super)

    Definition Classes
    SymTriMatrixNMatrix
  51. def hashCode(): Int
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  52. def inverse(implicit fr: Fractional[T]): SymTriMatrixN[T]

    Invert this matrix (requires a 'squareMatrix') using partial pivoting.

    Invert this matrix (requires a 'squareMatrix') using partial pivoting.

    Definition Classes
    SymTriMatrixNMatrix
  53. def inverse_ip(implicit fr: Fractional[T]): SymTriMatrixN[T]

    Invert in-place this matrix (requires a 'squareMatrix') using partial pivoting.

    Invert in-place this matrix (requires a 'squareMatrix') using partial pivoting.

    Definition Classes
    SymTriMatrixNMatrix
  54. def inverse_npp(implicit fr: Fractional[T]): SymTriMatrixN[T]

    Invert this matrix (requires a 'squareMatrix') not using partial pivoting.

    Invert this matrix (requires a 'squareMatrix') not using partial pivoting.

    Definition Classes
    SymTriMatrixNMatrix
  55. final def isInstanceOf[T0]: Boolean
    Definition Classes
    Any
  56. def isNonnegative: Boolean

    Check whether this matrix is nonnegative (has no negative elements).

    Check whether this matrix is nonnegative (has no negative elements).

    Definition Classes
    SymTriMatrixNMatrix
  57. def isRectangular: Boolean

    Check whether this matrix is rectangular (all rows have the same number of columns).

    Check whether this matrix is rectangular (all rows have the same number of columns).

    Definition Classes
    SymTriMatrixNMatrix
  58. def isSquare: Boolean

    Check whether this matrix is square (same row and column dimensions).

    Check whether this matrix is square (same row and column dimensions).

    Definition Classes
    Matrix
  59. def isSymmetric: Boolean

    Check whether this matrix is symmetric.

    Check whether this matrix is symmetric.

    Definition Classes
    Matrix
  60. def leDimensions(b: Matrix[T]): Boolean

    Check whether this matrix dimensions are less than or equal to 'le' those of the other Matrix.

    Check whether this matrix dimensions are less than or equal to 'le' those of the other Matrix.

    b

    the other matrix

    Definition Classes
    Matrix
  61. def lud(implicit fr: Fractional[T]): (Matrix[T], Matrix[T])

    Decompose this matrix into the product of lower and upper triangular matrices '(l, u)' using the 'LU' Decomposition algorithm.

    Decompose this matrix into the product of lower and upper triangular matrices '(l, u)' using the 'LU' Decomposition algorithm. This version uses partial pivoting.

    Definition Classes
    SymTriMatrixNMatrix
  62. def lud_ip(implicit fr: Fractional[T]): (Matrix[T], Matrix[T])

    Decompose in-place this matrix into the product of lower and upper triangular matrices '(l, u)' using the 'LU' Decomposition algorithm.

    Decompose in-place this matrix into the product of lower and upper triangular matrices '(l, u)' using the 'LU' Decomposition algorithm. This version uses partial pivoting.

    Definition Classes
    SymTriMatrixNMatrix
  63. def mag: T

    Find the magnitude of this matrix, the element value farthest from zero.

    Find the magnitude of this matrix, the element value farthest from zero.

    Definition Classes
    SymTriMatrixNMatrix
  64. def max(e: Int = dim1): T

    Find the maximum element in this matrix.

    Find the maximum element in this matrix.

    e

    the ending row index (exclusive) for the search

    Definition Classes
    SymTriMatrixNMatrix
  65. def min(e: Int = dim1): T

    Find the minimum element in this matrix.

    Find the minimum element in this matrix.

    e

    the ending row index (exclusive) for the search

    Definition Classes
    SymTriMatrixNMatrix
  66. final def ne(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  67. def norm1: T

    Compute the 1-norm of this matrix, i.e., the maximum 1-norm of the column vectors.

    Compute the 1-norm of this matrix, i.e., the maximum 1-norm of the column vectors. This is useful for comparing matrices '(a - b).norm1'.

    Definition Classes
    SymTriMatrixNMatrix
  68. final def notify(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  69. final def notifyAll(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  70. val nu: Numeric[T]

    Import Numeric evidence (gets nu val from superclass)

  71. def nullspace(implicit fr: Fractional[T]): VectorN[T]

    Compute the (right) nullspace of this m by n matrix (requires n = m + 1) by performing Gauss-Jordan reduction and extracting the negation of the last column augmented by 1.

    Compute the (right) nullspace of this m by n matrix (requires n = m + 1) by performing Gauss-Jordan reduction and extracting the negation of the last column augmented by 1. The nullspace of matrix a is "this vector v times any scalar s", i.e., a*(v*s) = 0. The left nullspace of matrix a is the same as the right nullspace of a.t (a transpose).

    Definition Classes
    SymTriMatrixNMatrix
  72. def nullspace_ip(implicit fr: Fractional[T]): VectorN[T]

    Compute the (right) nullspace in-place of this 'm-by-n' matrix (requires n = m + 1) by performing Gauss-Jordan reduction and extracting the negation of the last column augmented by 1.

    Compute the (right) nullspace in-place of this 'm-by-n' matrix (requires n = m + 1) by performing Gauss-Jordan reduction and extracting the negation of the last column augmented by 1. The nullspace of matrix a is "this vector 'v' times any scalar s", i.e., 'a*(v*s) = 0.0'. The left nullspace of matrix 'a' is the same as the right nullspace of a.t (a transpose).

    Definition Classes
    SymTriMatrixNMatrix
  73. val range1: Range

    Range for the storage array on dimension 1 (rows)

    Range for the storage array on dimension 1 (rows)

    Attributes
    protected
    Definition Classes
    Matrix
  74. val range2: Range

    Range for the storage array on dimension 2 (columns)

    Range for the storage array on dimension 2 (columns)

    Attributes
    protected
    Definition Classes
    Matrix
  75. def rank(implicit fr: Fractional[T]): Int

    Determine the rank of this 'm-by-n' matrix by taking the upper triangular matrix from the 'LU' Decomposition and counting the number of non-zero diagonal elements.

    Determine the rank of this 'm-by-n' matrix by taking the upper triangular matrix from the 'LU' Decomposition and counting the number of non-zero diagonal elements. FIX: should implement in implementing classes.

    Definition Classes
    Matrix
  76. def reduce(implicit fr: Fractional[T]): SymTriMatrixN[T]

    Use Gauss-Jordan reduction on this matrix to make the left part embed an identity matrix.

    Use Gauss-Jordan reduction on this matrix to make the left part embed an identity matrix. A constraint on this 'm-by-n' matrix is that 'n >= m'.

    Definition Classes
    SymTriMatrixNMatrix
  77. def reduce_ip(implicit fr: Fractional[T]): Unit

    Use Gauss-Jordan reduction in-place on this matrix to make the left part embed an identity matrix.

    Use Gauss-Jordan reduction in-place on this matrix to make the left part embed an identity matrix. A constraint on this 'm-by-n' matrix is that 'n >= m'.

    Definition Classes
    SymTriMatrixNMatrix
  78. def sameCrossDimensions(b: Matrix[T]): Boolean

    Check whether this matrix and the other matrix have the same cross dimensions.

    Check whether this matrix and the other matrix have the same cross dimensions.

    b

    the other matrix

    Definition Classes
    Matrix
  79. def sameDimensions(b: Matrix[T]): Boolean

    Check whether this matrix and the other Matrix have the same dimensions.

    Check whether this matrix and the other Matrix have the same dimensions.

    b

    the other matrix

    Definition Classes
    Matrix
  80. def sd: VectorN[T]

    Get the sub-diagonal of the matrix.

  81. def sd_(v: VectorN[T]): Unit

    Set the sub-diagonal of the matrix.

    Set the sub-diagonal of the matrix.

    v

    the vector to assign to the sub-diagonal

  82. def selectCols(colIndex: Array[Int]): SymTriMatrixN[T]

    Select columns from this matrix according to the given index/basis.

    Select columns from this matrix according to the given index/basis. Ex: Can be used to divide a matrix into a basis and a non-basis.

    colIndex

    the column index positions (e.g., (0, 2, 5))

    Definition Classes
    SymTriMatrixNMatrix
  83. def selectRows(rowIndex: Array[Int]): SymTriMatrixN[T]

    Select rows from this matrix according to the given index/basis.

    Select rows from this matrix according to the given index/basis.

    rowIndex

    the row index positions (e.g., (0, 2, 5))

    Definition Classes
    SymTriMatrixNMatrix
  84. def set(i: Int, u: VectorN[T], j: Int = 0): Unit

    Set this matrix's 'i'th row starting at column 'j' to the vector 'u'.

    Set this matrix's 'i'th row starting at column 'j' to the vector 'u'.

    i

    the row index

    u

    the vector value to assign

    j

    the starting column index

    Definition Classes
    SymTriMatrixNMatrix
  85. def set(u: Array[Array[T]]): Unit

    Set all the values in this matrix as copies of the values in 2D array 'u'.

    Set all the values in this matrix as copies of the values in 2D array 'u'.

    u

    the 2D array of values to assign

    Definition Classes
    SymTriMatrixNMatrix
  86. def set(x: T): Unit

    Set all the elements in this matrix to the scalar 'x'.

    Set all the elements in this matrix to the scalar 'x'.

    x

    the scalar value to assign

    Definition Classes
    SymTriMatrixNMatrix
  87. def setCol(col: Int, u: VectorN[T]): Unit

    Set column 'col' of the matrix to a vector.

    Set column 'col' of the matrix to a vector.

    col

    the column to set

    u

    the vector to assign to the column

    Definition Classes
    SymTriMatrixNMatrix
  88. def setDiag(x: T): Unit

    Set the main diagonal of this matrix to the scalar 'x'.

    Set the main diagonal of this matrix to the scalar 'x'. Assumes 'dim2 >= dim1'.

    x

    the scalar to set the diagonal to

    Definition Classes
    SymTriMatrixNMatrix
  89. def setDiag(u: VectorN[T], k: Int = 0): Unit

    Set the 'k'th diagonal of this matrix to the vector 'u'.

    Set the 'k'th diagonal of this matrix to the vector 'u'. Assumes 'dim2 >= dim1'.

    u

    the vector to set the diagonal to

    k

    how far above the main diagonal, e.g., (-1, 0, 1) for (sub, main, super)

    Definition Classes
    SymTriMatrixNMatrix
  90. def slice(r_from: Int, r_end: Int, c_from: Int, c_end: Int): SymTriMatrixN[T]

    Slice this matrix row-wise 'r_from' to 'r_end' and column-wise 'c_from' to 'c_end'.

    Slice this matrix row-wise 'r_from' to 'r_end' and column-wise 'c_from' to 'c_end'.

    r_from

    the start of the row slice

    r_end

    the end of the row slice

    c_from

    the start of the column slice

    c_end

    the end of the column slice

    Definition Classes
    SymTriMatrixNMatrix
  91. def slice(from: Int, end: Int): SymTriMatrixN[T]

    Slice this matrix row-wise 'from' to 'end'.

    Slice this matrix row-wise 'from' to 'end'.

    from

    the start row of the slice (inclusive)

    end

    the end row of the slice (exclusive)

    Definition Classes
    SymTriMatrixNMatrix
  92. def sliceExclude(row: Int, col: Int): SymTriMatrixN[T]

    Slice this matrix excluding the given row and column.

    Slice this matrix excluding the given row and column.

    row

    the row to exclude

    col

    the column to exclude

    Definition Classes
    SymTriMatrixNMatrix
  93. def solve(lu: (Matrix[T], Matrix[T]), b: VectorN[T])(implicit fr: Fractional[T]): VectorN[T]

    Solve for 'x' in the equation 'l*u*x = b' (see 'lud' above).

    Solve for 'x' in the equation 'l*u*x = b' (see 'lud' above).

    lu

    the lower and upper triangular matrices

    b

    the constant vector

    Definition Classes
    SymTriMatrixNMatrix
  94. def solve(l: Matrix[T], u: Matrix[T], b: VectorN[T])(implicit fr: Fractional[T]): VectorN[T]

    Solve for 'x' in the equation 'l*u*x = b' (see 'lud' above).

    Solve for 'x' in the equation 'l*u*x = b' (see 'lud' above).

    l

    the lower triangular matrix

    u

    the upper triangular matrix

    b

    the constant vector

    Definition Classes
    SymTriMatrixNMatrix
  95. def solve(d: VectorN[T])(implicit fr: Fractional[T]): VectorN[T]

    Solve for 'x' in the equation 'a*x = 'd where 'a' is this matrix.

    Solve for 'x' in the equation 'a*x = 'd where 'a' is this matrix.

    d

    the constant vector.

    Definition Classes
    SymTriMatrixNMatrix
  96. def sum: T

    Compute the sum of this matrix, i.e., the sum of its elements.

    Compute the sum of this matrix, i.e., the sum of its elements.

    Definition Classes
    SymTriMatrixNMatrix
  97. def sumAbs: T

    Compute the 'abs' sum of this matrix, i.e., the sum of the absolute value of its elements.

    Compute the 'abs' sum of this matrix, i.e., the sum of the absolute value of its elements. This is useful for comparing matrices '(a - b).sumAbs'.

    Definition Classes
    SymTriMatrixNMatrix
  98. def sumLower: T

    Compute the sum of the lower triangular region of this matrix.

    Compute the sum of the lower triangular region of this matrix.

    Definition Classes
    SymTriMatrixNMatrix
  99. final def synchronized[T0](arg0: ⇒ T0): T0
    Definition Classes
    AnyRef
  100. def t: SymTriMatrixN[T]

    Transpose this matrix (rows => columns).

    Transpose this matrix (rows => columns). Note, since the matrix is symmetric, it returns itself.

    Definition Classes
    SymTriMatrixNMatrix
  101. def toString(): String

    Convert this symmetric tridiagonal matrix to a string showing the diagonal vector followed by the sub-diagonal vector.

    Convert this symmetric tridiagonal matrix to a string showing the diagonal vector followed by the sub-diagonal vector.

    Definition Classes
    SymTriMatrixN → AnyRef → Any
  102. def trace: T

    Compute the trace of this matrix, i.e., the sum of the elements on the main diagonal.

    Compute the trace of this matrix, i.e., the sum of the elements on the main diagonal. Should also equal the sum of the eigenvalues.

    Definition Classes
    SymTriMatrixNMatrix
    See also

    Eigen.scala

  103. def update(i: Int, jr: Range, u: VectorN[T]): Unit

    Set a slice this matrix row-wise at index 'i' and column-wise on range 'jr'.

    Set a slice this matrix row-wise at index 'i' and column-wise on range 'jr'. Ex: a(2, 3..5) = u

    i

    the row index

    jr

    the column range

    u

    the vector to assign

    Definition Classes
    SymTriMatrixNMatrix
  104. def update(ir: Range, j: Int, u: VectorN[T]): Unit

    Set a slice this matrix row-wise on range 'ir' and column-wise at index 'j'.

    Set a slice this matrix row-wise on range 'ir' and column-wise at index 'j'. Ex: a(2..4, 3) = u

    ir

    the row range

    j

    the column index

    u

    the vector to assign

    Definition Classes
    SymTriMatrixNMatrix
  105. def update(ir: Range, jr: Range, b: SymTriMatrixN[T]): Unit

    Set a slice this matrix row-wise on range 'ir' and column-wise on range 'jr'.

    Set a slice this matrix row-wise on range 'ir' and column-wise on range 'jr'. Ex: a(2..4, 3..5) = b

    ir

    the row range

    jr

    the column range

    b

    the matrix to assign

  106. def update(i: Int, u: VectorN[T]): Unit

    Set this matrix's row at the 'i'th index position to the vector 'u'.

    Set this matrix's row at the 'i'th index position to the vector 'u'.

    i

    the row index

    u

    the vector value to assign

    Definition Classes
    SymTriMatrixNMatrix
  107. def update(i: Int, j: Int, x: T): Unit

    Set this matrix's element at the 'i,j'-th index position to the scalar 'x'.

    Set this matrix's element at the 'i,j'-th index position to the scalar 'x'. Only store x if it is non-zero.

    i

    the row index

    j

    the column index

    x

    the scalar value to assign

    Definition Classes
    SymTriMatrixNMatrix
  108. final def wait(): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  109. final def wait(arg0: Long, arg1: Int): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  110. final def wait(arg0: Long): Unit
    Definition Classes
    AnyRef
    Annotations
    @native() @throws( ... )
  111. def ~^(p: Int): SymTriMatrixN[T]

    Raise this matrix to the 'p'th power (for some integer 'p >= 2').

    Raise this matrix to the 'p'th power (for some integer 'p >= 2').

    p

    the power to raise this matrix to

    Definition Classes
    SymTriMatrixNMatrix

Inherited from Serializable

Inherited from Serializable

Inherited from Matrix[T]

Inherited from Error

Inherited from AnyRef

Inherited from Any

Ungrouped