trait Classifier extends AnyRef
The Classifier
trait provides a common framework for several classifiers.
A classifier is for bounded responses. When the number of distinct responses
cannot be bounded by some integer 'k', a predictor should be used.
- Alphabetic
- By Inheritance
- Classifier
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Abstract Value Members
-
abstract
def
classify(z: VectoD): (Int, String, Double)
Given a new continuous data vector 'z', determine which class it fits into, returning the best class, its name and its relative probability.
Given a new continuous data vector 'z', determine which class it fits into, returning the best class, its name and its relative probability.
- z
the real vector to classify
-
abstract
def
classify(z: VectoI): (Int, String, Double)
Given a new discrete data vector 'z', determine which class it fits into, returning the best class, its name and its relative probability.
Given a new discrete data vector 'z', determine which class it fits into, returning the best class, its name and its relative probability.
- z
the integer vector to classify
-
abstract
def
reset(): Unit
Reset the frequency counters.
-
abstract
def
size: Int
Return the number of data vectors/points in the entire dataset (training + testing),
-
abstract
def
test(itest: IndexedSeq[Int]): Double
Test the quality of the training with a test dataset and return the fraction of correct classifications.
Test the quality of the training with a test dataset and return the fraction of correct classifications.
- itest
the indices of the instances considered test data
-
abstract
def
train(itest: IndexedSeq[Int]): Classifier
Train the classifier by computing the probabilities from a training dataset of data vectors and their classifications.
Train the classifier by computing the probabilities from a training dataset of data vectors and their classifications. The indices for the testing dataset are given and the training dataset consists of all the other instances. Must be implemented in any extending class.
- itest
the indices of the instances considered as testing data
Concrete Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
-
def
clone(): AnyRef
- Attributes
- protected[java.lang]
- Definition Classes
- AnyRef
- Annotations
- @native() @throws( ... )
-
def
crossValidate(nx: Int = 10, show: Boolean = false): Double
Test the accuracy of the classified results by cross-validation, returning the accuracy.
Test the accuracy of the classified results by cross-validation, returning the accuracy. The "test data" starts at 'testStart' and ends at 'testEnd', the rest of the data is "training data'. FIX - should return a StatVector
- nx
the number of crosses and cross-validations (defaults to 10x).
- show
the show flag (show result from each iteration)
-
def
crossValidateRand(nx: Int = 10, show: Boolean = false): Double
Test the accuracy of the classified results by cross-validation, returning the accuracy.
Test the accuracy of the classified results by cross-validation, returning the accuracy. This version of cross-validation relies on "subtracting" frequencies from the previously stored global data to achieve efficiency. FIX - are the comments correct? FIX - should return a StatVector
- nx
number of crosses and cross-validations (defaults to 10x).
- show
the show flag (show result from each iteration)
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
equals(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
finalize(): Unit
- Attributes
- protected[java.lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] )
-
def
fit(y: VectoI, yp: VectoI, k: Int = 2): VectoD
Return the quality of fit including 'acc', 'prec', 'recall', 'kappa'.
Return the quality of fit including 'acc', 'prec', 'recall', 'kappa'. Override to add more quality of fit measures.
- y
the actual class labels
- yp
the predicted class labels
- k
the number of class labels
- See also
ConfusionMat
medium.com/greyatom/performance-metrics-for-classification-problems-in-machine-learning-part-i-b085d432082b
-
def
fitLabel: Seq[String]
Return the labels for the fit.
Return the labels for the fit. Override when necessary.
-
def
fitMap(y: VectoI, yp: VectoI, k: Int = 2): Map[String, String]
Build a map of quality of fit measures (use of
LinedHashMap
makes it ordered).Build a map of quality of fit measures (use of
LinedHashMap
makes it ordered). Override to add more quality of fit measures.- y
the actual class labels
- yp
the predicted class labels
- k
the number of class labels
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
def
hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
def
test(testStart: Int, testEnd: Int): Double
Test the quality of the training with a test dataset and return the fraction of correct classifications.
Test the quality of the training with a test dataset and return the fraction of correct classifications. Can be used when the dataset is randomized so that the testing/training part of a dataset corresponds to simple slices of vectors and matrices.
- testStart
the beginning of test region (inclusive).
- testEnd
the end of test region (exclusive).
-
def
toString(): String
- Definition Classes
- AnyRef → Any
-
def
train(): Classifier
Train the classifier by computing the probabilities from a training dataset of data vectors and their classifications.
Train the classifier by computing the probabilities from a training dataset of data vectors and their classifications. Must be implemented in any extending class. Can be used when the whole dataset is used for training.
-
def
train(testStart: Int, testEnd: Int): Classifier
Train the classifier by computing the probabilities from a training dataset of data vectors and their classifications.
Train the classifier by computing the probabilities from a training dataset of data vectors and their classifications. Must be implemented in any extending class. Can be used when the dataset is randomized so that the training part of a dataset corresponds to simple slices of vectors and matrices.
- testStart
starting index of test region (inclusive) used in cross-validation
- testEnd
ending index of test region (exclusive) used in cross-validation
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @throws( ... )